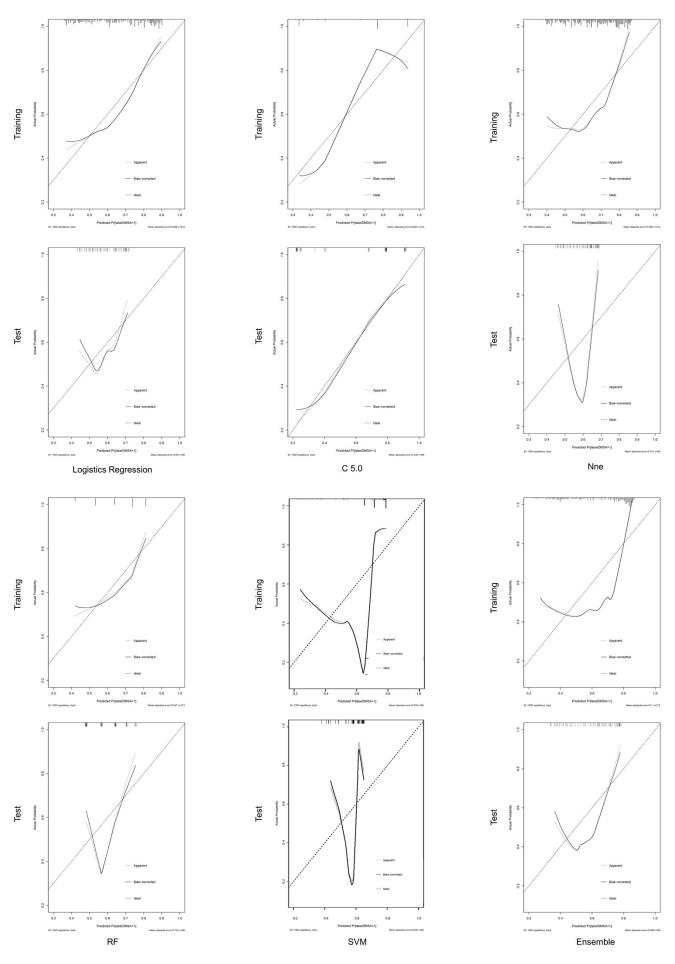

Supplementary Table 1. List of radiomics feature classes with descriptions from the PyRadiomics package


Radiomics feature	Description		
First-order statistics	Distribution ofvoxel intensities within the ROI		
Shape-based (2D)	Descriptors of the 2D size and shape of the ROI		
Gray-level co-occurrence matrix, GLCM	Second-order joint probability function of the ROI		
Gray-level run length matrix,	Quantification of the length in the number		
GLRLM	ofconsecutive pixels that have the same gray- level value in the ROI		
Gray-level size zone matrix,	Quantification ofgray-level zones (the number		
GLSZM	ofconnected pixels that share the same gray-level intensity) in the ROI		
Neighboring gray tone	Quantification ofthe difference between a gray		
difference matrix, NGTDM	value and the average gray value of its neighbors within the distance		
Gray-level dependence matrix,	Quantification ofgray-level dependencies (the		
GLDM	number of connected pixels within distance δ that are dependent on the center pixel) in the ROI		
Wavelet-based features	Wavelet filtering		
Exponential-based features	The index of the image intensity value		
Logarithm-based features	The logarithm of the absolute intensity of the image +1		

Supplementary Table 2. Univariate analysis results of image features

Features	Normal	Abnormal	P value
original_shape_Elongation	-0.27±0.78	0.25±1.11	0.000
wavelet-LLH_glszm_ZoneEntropy	-0.13±1.04	0.12±0.95	0.039
wavelet-LLH_glrlm_LongRunEmphasis	-0.14±0.90	0.13±1.08	0.025
wavelet-HLL_firstorder_Kurtosis	-0.19±0.70	0.17±1.19	0.003
wavelet-HLL_firstorder_Range	-0.13±0.94	0.12±1.04	0.032
wavelet-			
$HLL_glszm_LargeAreaHighGrayLevelEmphasis$	-0.13±0.91	0.12±1.04	0.035
wavelet-HLH_ngtdm_Contrast	-0.13±0.91	0.12±1.06	0.035
wavelet-HHH_ngtdm_Complexity	-0.15±1.01	0.13±0.98	0.020
wavelet-LLL_glszm_SizeZoneNonUniformity	-0.17±0.89	0.15±1.08	0.007
exponential_glcm_lmc1	-0.14±1.07	0.12±0.92	0.032

Supplementary Figure 1. Analysis of multicollinearity by assessing the variance inflation factor (VIF) among the selected features.

Supplementary Figure 2. Reliability curve of all models across training and test cohorts. The clinical–radiomics models: logistic regression (LR), decision tree (C5.0), Vector Machines (SVM), neural network (Nnet), Random Forest (RF) and Ensemble model.