

Supplementary Material

Supplemental Figure 1. Forest plot of objective response rate (ORR) among patients who received brigatinib as first-line treatment.

Supplemental Figure 2. Forest plot of intracranial objective response rate (iORR) among patients who received brigatinib as first-line treatment.

(3A)

(3B)

(3C)

Supplemental Figure 3. A, Sensitivity analysis of objective response rate (ORR); B, Sensitivity analysis of disease control rate (DCR); C, Sensitivity analysis of progression free survival (PFS).

(4A)

Meta-regression

REML estimate of between-study variance
% residual variation due to heterogeneity
Proportion of between-study variance explained
With Knapp-Hartung modification

Number of obs = 6 tau2 = .06782 I-squared_res = 93.41% Adj R-squared = -28.18%

orr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
participants	.0002471	.0024537		0.925	006565 4	.0070595
_cons	.6192675	.1924284		0.032	.0850005	1.153535

(4B)

Supplemental Figure 4. A, Meta-regression analysis for heterogeneity of objective response rate (ORR) regarding sample size; B; Meta-regression analysis for heterogeneity of objective response rate (ORR) regarding brain metastases.

(5A)

Meta-regression

REML estimate of between-study variance
% residual variation due to heterogeneity
Proportion of between-study variance explained
With Knapp-Hartung modification

Number of obs = 4 tau2 = .002547 I-squared_res = 27.81% Adj R-squared = -96.14%

dcr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
participants _cons	0008715 .9260117		-0.76 11.07		0057913 .566162	.0040483 1.285861

(5B)

Supplemental Figure 5. A, Meta-regression analysis for heterogeneity of disease control rate (DCR) regarding sample size; B; Meta-regression analysis for heterogeneity of disease control rate (DCR) regarding brain metastases.

(6A)

participants _cons	.0304864 9.406849	.0382823 3.669978	0.80 2.56	0. 4 52 0.037		.1210096 18.08497
pfs	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Meta-regression REML estimate of between-study variance % residual variation due to heterogeneity Proportion of between-study variance explained With Knapp-Hartung modification Number of obs tau2 I-squared_res Adj R-squared						

(6B)

brainmetastasesatdiagnosis _cons	-8.580177 16.63752	11.43503 6.815945	-0.75 2.44	0.478 0.045		-35.61973 .5203719	18.45937 32.75467
pfs	Coef.	Std. Err.	t	P> t		[95% Conf.	Interval]
Proportion of between-study With Knapp-Hartung modificat	-	lained	Adj R-	squared	=	-7.00%	
% residual variation due to	-			89.32%			
REML estimate of between-stu	tau2		=	36.17			
Meta-regression	Number	cd obs	=	9			

Supplemental Figure 6. A, Meta-regression analysis for heterogeneity of progression free survival (PFS) regarding sample size; B; Meta-regression analysis for heterogeneity of progression free survival (PFS) regarding brain metastases.

(7A)

(**7B**)

(**7C**)

(**7D**)

Supplemental Figure 7. A, Funnel plot of objective response rate (ORR); B, Funnel plot of disease

control rate (DCR); C, Funnel plot of progression free survival (PFS); D, Funnel plot of intracranial objective response rate (iORR); E, Funnel plot of intracranial progression free survival (iPFS).

Supplemental Table 1. Treatment line and number of patients for included studies.

Study	Treatment line	Number of patients	
Camidge 2018 (phase I/II)	1L, 2L post-crizotinib	46	
Lin 2018	2L post-alectinib	22	
Heredia 2020	≥2L	46	
Descourt 2021 (BrigALK2 study)	≥2L	183	
Camidge 2021 (ALTA-1L)	1L	137	
Nishio 2021 (J-ALTA)	≥2L post alectinib±crizotinib	47	
Stinchcombe 2021	≥2L	20	
(NCT02706626)			
Popat 2021	≥2L	104	
Gettinger 2021 (phase I/II)	1L, 2L post-crizotinib	28 (1L, n=3; 2L post-	
		crizotinib, n=25)	
Gettinger 2021 (ALTA)	2L post-crizotinib	110	
Kondo 2021 (J-ALTA)	1L	32	

Supplemental Table 2. Publication bias based on Begg's test and Egger's test

C	Begg's test		Egger	's test
Comparisons	Z	P	t	P
ORR	0.38	0.707	-1.27	0.273
iORR	1.70	0.089	-2.64	0.118
PFS	0.94	0.348	-0.31	0.763
iPFS	1.04	0.296	29.46	0.022
DCR	-0.34	1.000	-0.09	0.938