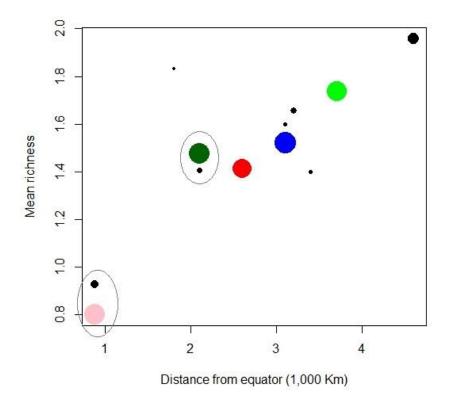

Supplementary Material

Variations in the identity and complexity of endosymbiont combinations in whitefly hosts

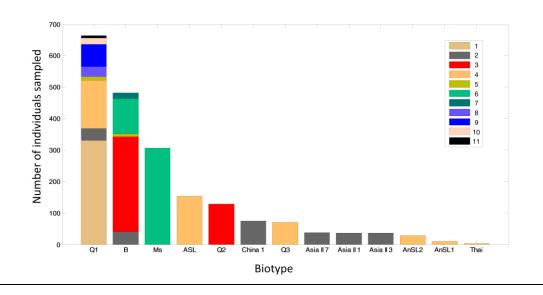
Einat Zchori-Fein¹, Tamar Lahav², and Shiri Freilich^{2*}

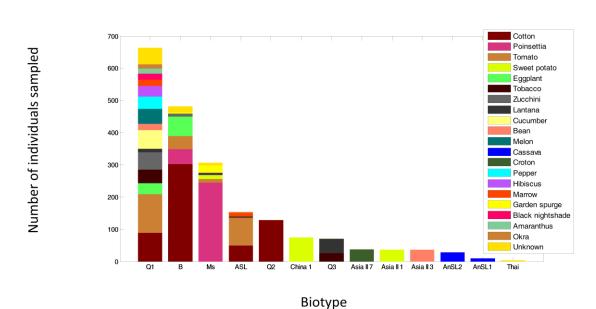
Supplementary Figures

Supplementary Figure 1. The biotype distribution of facultative endosymbionts across the six screenings. Rows represent the six screenings projects reported at the main text. A - Tsagkarakou et al., 2012; B - Bing et al., 2013; C - Zchori-Fein's lab, unpublished. D - Gueguen et al., 2010; E - Thierry et al., 2011; F -Gnankine et al., 2012. Columns represent FSs. A – *Arsenophonus*, C – *Cardinium*, H – *Hamiltonella*, R – *Rickettsia*, W – *Wolbachia*. All facultative symbionts were detected in three of the screenings (B, D, F). The miss identifications of *Arsenophonus* (A) in screening A, *Cardinium* (C) in screening C, and *Wolbachia* (W) in screening E can be related to the absence of the relevant biotypes in the relevant screenings, as can be indicated from the biotype distribution in the columns, pointing at the biotype-endosymbiont associations.


¹Institute of Plant Protection and ²Institute of Plant Sciences, The Agricultural Research Organization (ARO), Newe Ya'ar Research Center, Israel.

^{*} Correspondence: Shiri Freilich, Institute of Plant Sciences, The Agricultural Research Organization (ARO), Newe Ya'ar Research Center, Ramat Yishay 30095, P.O.B. 1021, Israel. shiri.freilich@gmail.com.


Supplementary Figure 2. The biotype distribution of facultative endosymbionts. Numbers in bracts are the numbers of whitefly individuals sampled, carrying a specific facultative endosymbiont. A – *Arsenophonus*, C – *Cardinium*, H – *Hamiltonella*, R – *Rickettsia*, W – *Wolbachia*. Legneds are as in Supplementary Figure 1.


Supplementary Figure 3. Mean genera richness of facultative endosymbiont species coinfecting whitefly individuals in each geographic location (Pearson correlation: 0.73, *P*-value 0.05). Circle sizes indicate the number of sampled individuals. The figure repeats the analysis reported at figure 1 in the main text (left), while further dividing the groups within each location according to its contributing project (Project A: green; project B: red; project C: blue; project D: black; project E: dark green; project F: pink). Groups from similar locations that were analyzed by different laboratories show high similarity in their typical genera richness (indicated by gray circles). A gradient of increasing genera richness with the distance from the equator exists between locations that were analyzed by a single group (black circles).

Supplementary Figure 4. The geographical location distribution of whitefly individuals. Geographic locations are outlined at Figure 1 in the main text.

Supplementary Figure 5. The host-plant distribution of whitefly individuals.

1. Supplementary Tables

Supplementary Table 1. The PCR protocols used for species detection by the different laboratories included in the screening.

Contributing labratory	A (Tsagkarakou et al., 20	B (Bing et al., 2013)	C (Zchori-Fein's lab, unpu	D (Gueguen et al., 2010)	E (Thierry et al., 2011)	F (Gnankine et al., 2012)
DNA extraction	Lysis buffer	Lysis buffer, following	Lysis buffer, following	Extraction with chelex, fo	Lysis buffer (no ref.)	Lysis buffer (no ref.)
	similar to Bing but not	De Barro and Driver (199	Frohlich et al. (1999)	Walsh et al. 1991	similar to Bing but not	similar to Bing et al. but not
	identical	and Frohlich et al. (1999)		and lysis buffer following	identical	identical
				Delatte et al. 2005		
Primers used to detect						
symbionts:						
Portiera		Por-F, Por-R		Por-F, Por-R	Port-F,Port-R	Por-F, Por-R
		(Zchori-Fein&Brown, 200	2)	(Zchori-Fein&Brown, 200	(Thierry et al. 2011)	(Zchori-Fein & Brown, 2002)
Primers Tm		60,58		60,57	52	58
Hamiltonella	Ham-F, Ham-R	Ham-F, Ham-R	Ham-F, Ham-R	Ham-F, Ham-R	Ham-F, Ham-R	Ham-F, Ham-R
	(Zchori-Fein&Brown, 200	(Zchori-Fein&Brown, 200	(Zchori-Fein&Brown, 200	(Zchori-Fein&Brown, 200	(Zchori-Fein&Brown, 200	(Zchori-Fein&Brown, 2002)
Primers Tm	58	60,58	58	58	58	58
Rickettsia	Rb-F, Rb-R	Rb-F, Rb-R	Rb-F, Rb-R	Rb-F, Rb-R	Rb-F, Rb-R	Rb-F, Rb-R
	(Gottlieb et al., 2006)	(Gottlieb et al., 2006)	(Gottlieb et al., 2006)	(Gottlieb et al., 2006)	(Gottlieb et al., 2006)	(Gottlieb et al., 2006)
Primers Tm	58	59	58	58	58	58
Wolbachia	WSP-F,WSP-R	Wol-16S-F, Wol-16S-R	Woll16SF,Woll16SR	81F, 415R	81-F,598-R	81F, 415R
	(Zhou et al.,1998)	(Chiel et al., 2007)	(Heddi et al., 1999)	(Braig et al., 1998), (Vaut	(Braig et al. 1998)	(Braig et al. 1998), (Vautrin 200
Primers Tm	55	55	55	56	45	56
Cardinium	CFB-F,CFB-R	Ch-F, Ch-R	CFB-F,CFB-R	CFB-F,CFB-R	CFB-F,CFB-R	CFB-F,CFB-R
	(Weeks et al. 2003)	(Zchori-Fein et al., 2004)	(Weeks et al. 2003)	(Weeks et al., 2003)	(Weeks et al. 2003)	(Weeks et al. 2003)
Primers Tm	56	57	56	56	56	56
Arsenophonus	Ars23S-1,Ars23S-2	Ars23S-1,Ars23S-2	Ars23S-1,Ars23S-2	Ars23S-1,Ars23S-2	Ars23S-1,Ars23S-2	Ars23S-1,Ars23S-2
	(Thao & Baumann, 2004	(Thao&Baumann, 2004)	(Thao & Baumann, 2004)	(Thao&Baumann, 2004)	(Thao & Baumann, 2004)	(Thao & Baumann, 2004)
Primers Tm	60	60.5	60	60	60	60
Fritschea bemisiae			U23F, 23SIGR	Frit-F,Frit-R		Frit-F,Frit-R
			(Everett et al., 2005)	(Thao et al. 2003)		(Thao et al. 2003)
Primers Tm			60	62		60

References:

Braig, H.R., Zhou, W., Dobson, S.L. & O'Neill, S.L. (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. *Journal of Bacteriology*, 180, 2373–2378

Chiel, E., Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Katzir, N., Inbar, M. and Ghanim, M. (2007) Biotype-dependent secondary symbiont communities in sympatric populations of *Bemisia tabaci*. *Bulletin of Entomological Research*, 97, 407–413.

De Barro, P.J. and Driver, F. (1997) Use of RAPD PCR to distinguish the B biotype from other biotypes of *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae). *Australian Journal of Entomology*, 36, 149–152.

Delatte H, Reynaud B, Granier M et al. (2005) A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidarum) indigenous to the islands of the south-west Indian ocean. *Bulletin of Entomological Research*, 95, 29–35.

- Everett, K.D.E., Thao, M.L., Horn, M., Dyszynski, G.E. & Baumann, P. (2005) Novel chlamydiae in whiteflies and scale insects: endosymbionts 'Candidatus Fritschea bemisiae' strain Falk and 'Candidatus Fritschea eriococci' strain Elm. *International Journal of Systematic and Evolutionary Microbiology* 55, 1581–1587.
- Frohlich, D.R., Torres-Jerez, I., Bedford, I.D., Markham, P.G. and Brown, J.K. (1999) A phylogeographical analysis of the *Bemisia tabaci* species complex based on mitochondrial DNA markers. *Molecular Ecology*, 8, 1683–1691.
- Gottlieb, Y., Ghanim, M., Chiel, E., Gerling, D., Portnoy, V., Steinberg, S., Tzuri, G., Horowitz, A.R., Belausov, E., Mozes-Daube, N., Kontsedalov, S., Gershon, M., Gal, S., Katzir, N. and Zchori-Fein, E. (2006). Identification and localization of a *Rickettsia sp.* in *Bemisia tabaci* (Homoptera: Aleyrodidae). *Appl Environ Microbiol*, 72(5), 3646-52.
- Heddi, A., Grenier, A.M., Khatchadourian, C., Charles, H. & Nardon, P. (1999) Four intracellular genomes direct weevil biology: Nuclear, mitochondrial, principal endosymbiont, and Wolbachia. *Proceedings of the National Academy of Sciences USA* 96, 6814–6819.
- _Thao ML, Baumann L, Hess JM et al. (2003) Phylogenetic evidence for two new insect associated Chlamydia of the family Simkaniaceae. *Current Microbiology*, 47, 46–50.
- Thao, M.L. & Baumann, P. (2004) Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). *Current Microbiology*, 48, 140–144
- Vautrin E, Genieys S, Charles S, Vavre F (2008) Do vertically transmitted symbionts co-existing in a single host compete or cooperate? A modelling approach. *Journal of Evolutionary Biology*, 21, 145–161.
- Walsh PS, Metzger DA, Higuchi R (1991) Chelex-100 as a medium for simple extraction of DNA for PCR based typing from forensic material. *BioTechniques*, 10, 506–513.
- Weeks, A.R., Velten, R. & Stouthamer, R. (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. *Proceedings of the Royal Society Series B*, 270, 1857–1865.
- Zchori-Fein, E. and Brown, J.K. (2002) Diversity of prokaryotes associated with *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae). *Annals of the Entomological Society of America*, 95, 711–718.
- Zchori-Fein, E., Perlman, S.J., Kelly, S.E., Katzir, N. and Hunter, M.S. (2004) Characterization of a 'Bacteroidetes' symbiont in *Encarsia* wasps (Hymenoptera: Aphelinidae): proposal of '*Candidatus* Cardinium hertigii'. *International Journal of Systematic and Evolutionary Microbiology*, 54, 961–968.
- Zhou, W., Rousset, F. & O'Neil, S. (1998) Phylogeny and PCRbased classification of Wolbachia strains using wsp gene sequences. *Proceedings of the Royal Society of London, Series B* 265, 509–515.