

Supplementary Material

Functional Characterization Of UDP-glycosyltransferases

Involved in Anti-viral Lignan Glycosides Biosynthesis in

Isatis indigotica

Yuping Tan^{1,2}, Jian Yang², Yinyin Jiang², Jian Wang², Yahui Liu³, Yujun Zhao², Baolong Jin², Xing Wang^{4, 5}, Tong Chen², Liping Kang², Juan Guo², Guanghong Cui², Jinfu Tang^{2, *}, Luqi Huang^{1, 2,*}

¹School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, PR China

²State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China

³National Institute of Metrology, Beijing, PR China

⁴School of Traditional Chinese Medicine, Capital Medical University, Beijing, PR China

⁵Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, PR China

* Correspondence:

Jinfu Tang jinfutang@126.com

Luqi Huang huangluqi01@126.com

1 **1** Supplementary Figures and Tables

2 **1.1 Supplementary Figures**

- 3 **Supplementary Figure 1**. PCR amplifiation of the ORF of ten candidate *IiUGT*
- 4 genes.
- 5 Lane M: DNA Marker DL5000; Lane 1~Lane 10: *IiUGT1~IiUGT71B5a*.

- 6 Supplementary Figure 2. SDS-PAGE analysis of expression of
- 7 His-MBP-pET28a-*IiUGT*.
- 8 Lane M: molecular weight marker; Lane C: The crude protein induced by IPTG in E.
- 9 coli Rosetta (DE3) containing the empty vector induced by IPTG; Lane 1: The crude
- 10 protein in E. coli Rosetta (DE3) containing the recombinant vector without IPTG;
- 11 Lane 2: The crude protein in *E. coli* Rosetta (DE3) containing the recombinant vector
- 12 induced by IPTG.

Supplementary Figure 3. UPLC/Q-TOF-MS analysis of the reactions of candidate
IiUGTs with UDP-glucose and (1) lariciresinol as substrates.

15 (A) The enzyme reactions of crude proteins of *E. coil* carrying empty vector (EV),

16 IiUGTs were assayed with UDP-glucose as the sugar donor. (1) lariciresinol; (1a)

17 lariciresinol-4'-O- β -D-glucoside; (1b) lariciresinol-4-O- β -D-glucoside; (1c)

18 clemastanin B. (B) MS spectra of the products in negative mode.

- 20 (A) Chemical structures of lignans (glycosy acceptors). UPLC-ESI-MS/MS analysis
- 21 of candidate IiUGT enzymatic reaction products against coniferyl alcohol (B) and
- 22 pinoresinol (C), secoisolariciresinol (D) and matairesinol (E), respectively. The
- enzyme reactions of crude proteins of *E. coil* carrying empty vector (EV), IiUGT1,
- 24 IiUGT4, IiUGT10 were assayed with UDP-glucose as the sugar donor. (B) 2. CA,
- 25 coniferyl alcohol; 2a. coniferin. (C) 3. Pin, pinoresinol; 3b. PD, pinoresinol
- 26 diglucoside. (D) 4. Seco, secoisolariciresinol. (E) 5. Mat, matairesinol. (F) MS spectra
- 27 of the products in negative mode.

- 28 **Suppelmentary Figure 5.** SDS-PAGE analysis of purified proteins.
- 29 SDS-PAGE analysis showed that the purified IiUGTs fused with a HIS-MBP tag
- 30 (41.34 kDa).

31 Supplementary Figure 6. Properties of recombinant IiUGTs.

To verify pH preference (A), (B), (C), optimal temperature (D), optimal reactive 32 time (E), and optimal reactive protein quantity (F), reactions were examined using 33 lariciresinol ans UDP-glucose as substrates as described in the experimental 34 procedures. The squares represent Citric acid-sodium citrate Buffer (pH 4.0-6.0), the 35 triangles represent Sodium phosphate Buffer (pH 6.0-8.0), the inverted triangles 36 37 represent Tris-Cl Buffer (pH 7.0-9.0) and the diamonds represent Sodium carbnote 38 Buffer (pH 9.0-10.8) in (A), (B), (C). Values of the relative activities are average \pm 39 SD (n=3), with maximum activity levels assumed to be 100%.

40 SUpplementary Figure 7. RNAi silencing of *IiUGT1*, *IiUGT4* and *IiUGT10* in *I*.

(A) Schematic diagram of the RNAi vector. CaMV 35S, CaMV 35S promater; hpt II,
hygromycin resistance gene; Intron, the Pdk intron; grey arrow, the 200-300bp
fragment of the coding region of *liUGTs*. (B) PCR amplifiation of the target *liUGTs*interference fragmnets. M: DNA Marker; Lane 1: *liUGT4*-RNAi sence; Lane 2: *liUGT4*-RNAi antisence; Lane 3: *liUGT10*-RNAi sence; Lane 4: *liUGT1*-RNAi sence;
Lane 5: *liUGT1*-RNAi antisence; Lane 6: *liUGT10*-RNAi antisence.

⁴¹ *indigotica* hairy roots.

48 Supplementary Figure 8. PCR analysis of *rolb*, *rolc*, *hpt* and additional *liUGT*-RNAi

49 fragment in *I. indigotica* hairy roots.

50 Lane M: DNA Marker; Lane N: Negative control; Lane C1, C2: Wild-type lines; Lane

51 V2, V3: Control lines with the empty construct.

52 Supplementary Figure 9. Overexpression of *IiUGTs* in *I. indigotica* hairy roots.

53 (A) The full length ORF of *liUGTs* were inserted into the pCAMBIA1300-Super

54 expression vector under control of the Super promoter, respectively. (B) PCR

amplifiation of the ORF of the target *liUGTs*. Lane M: DNA Marker; Lane 1: *liUGT1*;

56 Lane 2: IiUGT4; Lane 3: IiUGT10.

- Supplementary Figure 10. PCR analysis of *rolb*, *rolc*, *hpt* and the exogenous *liUGT*gene with flag tag in *I. indigotica* hairy roots.
- 59 (A) Lane M: DNA Marker; Lane N: Negative control; Lane C1, C2: Wild-type lines;
- 60 Lane V1, V2, V3: Control lines with the empty construct.

- 61 Supplementary Figure 11. Amino acid sequence alignment of the PSPG conserved
- 62 motif for IiUGTs and lignan glycosylation UGTs.

- Supplementary Figure 12. UPLC/Q-TOF-MS analysis of the reactions of candidate
 IiUGTs with UDP-glucose and (2) coniferly alcohol as substrates.
- 65 (A) The enzyme reactions of crude proteins of *E. coil* carrying empty vector (EV),
- 66 IiUGTs were assayed with UDP-glucose as the sugar donor. CA, coniferyl alcohol. (B)
- 67 MS spectra of the products in negative mode.

- Supplementary Figure 13. UPLC/Q-TOF-MS analysis of the reactions of candidate
 IiUGTs with UDP-glucose and (3) pinoresinol as substrates.
- 70 The enzyme reactions of crude proteins of *E. coil* carrying empty vector (EV), IiUGTs
- 71 were assayed with UDP-glucose as the sugar donor. Pin, pinoresinol; PD, pinoresinol
- 72 diglucoside.

- 73 Supplementary Figure 14. UPLC/Q-TOF-MS analysis of the reactions of candidate
- 74 IiUGTs with UDP-glucose and (4) secoisolariciresinol as substrates.
- 75 The enzyme reactions of crude proteins of *E. coil* carrying empty vector (EV), IiUGTs
- ⁷⁶ were assayed with UDP-glucose as the sugar donor. Seco, secoisolariciresinol.

- 77 Supplementary Figure 15. UPLC/Q-TOF-MS analysis of the reactions of candidate
- 78 IiUGTs with UDP-glucose and (5) matairesinol as substrates.
- 79 The enzyme reactions of crude proteins of *E. coil* carrying empty vector (EV), IiUGTs
- 80 were assayed with UDP-glucose as the sugar donor. Mat, matairesinol.

82 Supplementary Figure 16. The deductive pathway of lignan glycosides in *I*.

- *indigotica*.
- *liUGT* genes playing a dominant role in the biosynthesis were in red blod.

- **Supplementary Figure 17.** Molecular docking of IiUGT4 with (+)-lariciresinol (A),
- 86 (-)-lariciresinol (B).

1.2 Supplementary Tables

Range of Length (bp)	Total Number	Percentage	(%)
200~300	19,709)	33.43
300~500	13,45	8	23.58
500~1000	10,032	2	17.58
1000~2000	8,640	5	15.15
>2000	5,85	7	10.26
Total	57,072	2	100
Total Length	47,238,100	5	
N50	1,540	5	
Mean	827.6)	

Supplementary Table 1. Unigenes generated from *I. indigotica* transcriptome.

Supplementary Table 2. The 10 *IiUGT* genes cloned in the study.

Gene Name	Subfamily	Protein Squences
		mkitrphavmfaspgmghvipvielgkrlvgshgfqvtifvleadaasaqsq flnstgcdatlidviclptpdisglvdpsaffaiklltmmretiptirskieemqh kptalivdlfgldalrlggefnmltyvfiasnarfvaltlyfptlekdaeeehiikk
IiUGT1	UGT72E	kplampgcepvrfedtlepfldptdqiyrifvpfglvyptadgiivntwddme pktlkslqdpkllgriarvpvypigplsrpvdpsktnhpvldwlnkqpeesvl yisfgsggslsakqltelawglelsqqrfvwvvrppvdssacseylsansgev qdgtpdylpkefisrtqerglvvpswapqaeilahqavggflthcgwnsvles vvsgvpmitwplfadqkmnatllneelgvairsrklpseevtlrveieslvrrl mvedegremrekvkklrdtaemslrcdggssheslsrvanechrllerarma
		rga
IiUGT2	UGT71C	haketempypstgintvinerakrinnenriqutindindspinphasviats lvasqpqirlhslpvlhdpppsdlykrapeayivqlvkkttplvkdavssivesr gsdsvrvaglvldffcnslikdvgnelnlptyifltcnarylsmmkyipdrhrk maskldwssgdeelpipgfanpiptkfmppglfnqegyeayvelaprfaha kgilvnsiaelephpfgyfsqqhnyppvypvgpilslkdraspneeeaadrdr ilrwledqpessvvflcfgskgsvdepqvkeiaqalevvgcrflwsirmsleei kpsdvlpegfmgrvagrglvcgwapqvevlahkaiggfvshcgwnstlesl wfgvpvatwpmyaeqqlnaftlvkelglavdlrmdyvsgrgglvtcdeiara vrslmdggegkrvkvkemadaarkammdggssylatarfigellddgss
liUGT3	UGT72E	mqitkphaamfsspgmghlipvielakrlsanhgfrvtvfvlesdaasaqskf Instgvdvvnlpspdisdlvdpadhvvtkigiimreavpalrskiaemnqkpt aliidlfgtdalclaaefkmltyvliasnarylgvamyyptldkhvqeehtvqrk plevpgcepvrfedtmdaylvpdeplyrdfvrhslaypkadgilvntwdem epkslkslqdpkllgrvarvpvypvgplcrpveqsktghpvldwlneqpdes vlyisfgsggsltakqltelawgleqsqqrfvwvvrppvdgsscceyfsanga ekkdstpeylpegfvtrtcdrglvvqswapqaevlahravggflthcgwnstl egvvsgvpmiawplfaeqnmnaallsdelgiavradnlkeavtrfeieaivrk vmteeegeemrmkvkklkdkaemllssdgggsaheslckvtvecerflerd mdlarga
IiUGT4	UGT71B	mkqelvfipspgdghirplvqvakllvdrdehisitiliipqmhgfgsgssnsy iaslstasedrlhynvlsvadepnsddakpnflshinsfkpqvkatveklitspa rpdsppsrlagivvdmfctdmidvanefdvpsymfytsnatflgllshvqhly ddknydvsdlldsevteleipcltcplpvkclpsvmlnkewlpialsqvrryke tkgilvntfaelepqamkffsgednllptvypvgpilnlktngpnpaddkqsei lrwldeqpretvvflcfgsmggfredqakeiaialersghrfvwslrrarpegtr gppgeftnleeilpegfldrtakigkvigwapqtailanpavrgfvshcgwnst leslwfgvpiatwplyaeqqvnafemveelglaveirnsfradfmaaeselm taeeiergirclmeqdnvrdrvkemsekshvslmeggsshaallkfiedvtsn is
IiUGT5	UGT71D	mivvlvntrkvrggnnrsyqflemrnaelifipaptvghlvpslelarrlidqdd riritvlvmklqgqshldtyvksigsslpfvrfidvpeledkptfgstqsaeafvy

dfierniplvrnivmdilsspaldgvtvkgivadffclpmvdvakdvslpfhvf lttnsvflammqyladrhskdtsvfvrnsgemlsipgfvnpvpanvlptalfm edgyeayvklailfakakgilvntyfdlepislnhfhneqnypsvyavgpvfn pnaqphpdqdlarrdelvkwlddqpeasvvflcfgsmgrlsgplvkeiahgl elcqyrflwslrteevthddlfpegfldrvsgrgmicgwspqveilahkavgsf vshcgwnslveslwfgvpivtwpmyaeqqlnaflmvkelnlavemkldyr vrsddlvnaneietaircvmnednnlvrkrvidisqmarkatlnggssylatek fiqdvigikp

mktselifvplpetghllstiefgkrlldldrrismitilsmklpyaphadaslaslt asepgirlislpeiqdpppiklldtssetyildfveknipflrktirdlvsssgedsn hvaglildffcvdlidigrevnlpsyifmtsnfgflgflqylperhrsissefdess gdeelpipafvnrvpakvlppgvfdklsygtlvkigerlneakgifvnsfseve pyaaehfsrggdypraypvgpvlnltgrtnpglasaqyaemmkwlddqpd ssvlflcfgsmgvfsaaqiteiahaielvgfrfiwairtnmegdgdpheplpeg fvdrtmgrgivcswapqvdilahkatggfvshcgwnsiqeslwygvpiatw pmyaeqqlnafemvkelglaveirldyvadgdrvtleivsadeiaaairslmd gdnlirkkvrevsaaarkavsdggssmvatgdfirdilgdhf

meqphallvaspglghlipilelgnrlssvlnihvtvlavpsgsssspteteaira avargtceiaelpsvdiehlvepdatvatrifekmratrpavqdavkamnrkp tvmivdffatglmsvaddvgvtakyvyvpshawflavmvylpvldkvveg eyidikepmkipgcrsvgpdelmdtmfdrsdrqyrecvrcgeeipmsdgil vntweelqgntlaalredgelsrvmkvpvyaigpfvrsngpiekpksifewld kqrdrsvvyvclgsggilsleqtmelawglelsgqsflwvlrrptsylearssdd dqvsaglpegfldrtrgvglvvtqwapqveilshgsiggflshcgwssvleslt kgvpivawplyaeqwmnatllteeigvavrtselpskkvigreevaslvrkiv aeedeegrkvrakaeevkatseaawaqggsshgsllewakrcrlvcdsqii mgngeiifvpypipghllvtielakylikrdnrihtitilhwtlplaphadlfaksl vaseprirlftlpdvpnpppfelflrateayvleftkctvplvrealstivssrdgsd pvwvaglvldffcvplievgnefnlpsyifltcnagflgilkylperhrriaselel seehhpipgfvssvpskvlpsgqfvresyeawieiaqkfpkakgilvnsftcle qnafdyfaclpenfppvypvgpvlsledrpspdldtsdqcrvmtwlddqpes UGT71C svvylcfgsfgvlgepgieeiaraleisshrflwsirtekatpydllpegfmdrtv skglvcgwapqvevlahkavggfvshcgwnsvleslwfdvpiatwplyae qqlnaytmvkelglsvelrldyvsakkvivkadeiagairslmdgedtprrrv kkmaeaarmalmeggssfvavkrfiddlvgedf

mqntkphaamltspgmghvipviqlgkrlagfhgfhvtifvleadaasaqsq
 flnspgcdattlvdviglpspdisglvepsasfgtklltmmreavpsirskiaem
 qhkptalivdllsldalrlggefnmltylfiasnarfvalmmyfptldrdveeeh
 iikkkplaipgceplrfedtfeifldpssqmyqecvplglvyatvdgiivntwd
 UGT72E
 dmepktlkslqdpkllgriarvpiypigplcrpvdpsktnhpvldwlnkqpd
 esvlyisfgsggslsakqltelawglelsqqrfvwvvrppvdgsacsayfsvnt
 gqvrdgtpdylpeefvsrtlerglvvpswapqaeilahtavggflthcgwnsil
 esvvigvpmiawplfaeqmtnatllneelgiavrsrrlpseglilreeiealvrri
 mvdeegcvmrkkvkklsdtaekslscegtlsrvaeecerrlehdrsmarga

IiUGT6

UGT71C

IiUGT7 UGT72D

IiUGT8 U

IiUGT9

		V
liUGT71B5a UGT71B	ierairrvmeqdsdvrnrvkemaekchvaltdggssqvalrkfiqdvienvv	
	gvpmvtwplyaeqkvnafvmveelglaveirrslkgdlmaggmetvaaed	
	dldevlpegfldrtlergki igwapqaavlak paiggfvth cgwnsmleslwf	
	aksvvflcfgsmggfneeqtreiavaldrsghrflwslrraspdilkqgpgdyt	
	a elephalel fsgdddl pray pvg pvl hlesgsdn snddg k qseilrwldd qp	
	eldes vnele fpcltrpy pveclpylf is kewlpffmdqars frkmkgilvn tv	
	lagfvvdmfctsmidladefgvptymvytsnatflgitlhlqlmldekkydts	
	faas qdrlryet is vadept adrlpt qlyikn qkp qvr davakild parvd sppr	
		mkielv fipspgighlrstvelakqlvngddrlsitviii prssggdatdsaqissl

Gene	Accession	Species
UGT71A5	BAF96584.1	Antirrhinum majus
UGT88D3	Q33DV3.1	A. majus
At3Rt	NP_564357.1	Arabidopsis thaliana
UGT71B1	NP_188812.1	A. thaliana
UGT71B6	NP_188815.2	A. thaliana
UGT71C1	NP_180536.1	A. thaliana
UGT73B1	NP_567955.1	A. thaliana
UGT73C6	NP_181217.1	A. thaliana
UGT74F2	OAP07463.1	A. thaliana
UGT75C1	AAL69494.1	A. thaliana
UGT71B2	NP_188813.1	A. thaliana
UGT78D2	NP_197207.1	A. thaliana
UGT89C1	Q9LNE6.1	A. thaliana
UGT74AN1	AXF50399.1	Asclepias curassavica
UGT94B1	Q5NTH0.1	Bellis perennis
UGT71F1	AAS94330.1	Beta vulgaris
UGT708G1	BBA18062.1	Citrus japonica
CmF7G2"RT	Q8GVE3.2	Citrus maxima
UGT708G2	BBA18063.1	Citrus unshiu
UGT78K6	4REL_A	Clitoria ternatea
UGT709G1	APU54677.1	Crocus sativus
F7GAT	ANC70234.1	Erigeron breviscapus
UGT708C1	BAP90360.1	Fagopyrum esculentum
FiF3GT	AAD21086.1	Forsythia x intermedia
UGT71A18	BAI65912.1	F. x intermedia
UGT73B4	NP_001354361.1	Glycine max
GmF3G2"GT	BAR88077.1	G. max
GmF3G6"RT	BAN91401.1	G. max
UGT78K1	ADC96620.1	G. max
UGT88E3.	NP_001235161.1	G. max
UGT73P12	BBN60804.1	G. uralensis
VhA5GT	Q9ZR25.1	Glandularia x hybrida
GeIF7GT	BAC78438.1	Glycyrrhiza echinata
UGT73F17	AXS75258.1	Glycyrrhiza uralensis
UGT72B11	ACB56923.1	Hieracium pilosella
HvF3GT	P14726.1	Hordeum vulgare
UGT79G16.	Q53UH5.1	Ipomoea purpurea
UGT71B5b	QTI0875.1	Isatis indigotica
UGT88D2	BAE48240.1	Linaria vulgaris
UGT74S1	AGD95005	Linum usitatissimum
UGT73A10	BAG80536.1	Lvcium barbarum

Supplementary Table 3. GenBank accession numbers of UGT proteins in Figure 3.

UGT71A12	BAF96585.1	Lycium chinense
UGT71A13	ABL85473.1	Maclura pomifera
UGT75L4	ABL85474.1	M. pomifera
UGT88A4	ABL85471.2	M. pomifera
UGT71G1	XP_003615613.1	Medicago truncatula
UGT78G1	A6XNC6.1	M. truncatula
UGT88F1	NP_001315652.1	Malus domestica
MiCGTb	AMM73095.1	Mangifera indica
Ns3RT	BAC10994.1	Nierembergia sp. NB17
OcUGT1	AWD73588.1	Ornithogalum longebracteatum
UGT71A16	ACZ44836.1	Pyrus communis
UGT71K2	ACZ44837.1	P. communis
UGT88F2	ACZ44838.1	P. communis
PfF3GT	BAA19659.1	P. frutescens
PhA5GT	BAA89009.1	P. x hybrida
PhF3GT	BAA89008.1	P. x hybrida
PfA5GT	Q9ZR27.1	Perilla frutescens
PhA3G6"RT	CAA50376.1	Petunia x hybrida
PtUGT1	BBK15460.1	Polygala tenuifolia
RhA53GT	Q4R1I9.1	Rosa hybrid cultivar
SbB7GAT	Q76MR7.1	Scutellaria baicalensis
SbF7GT	BAA83484.1	S. baicalensis
UGT78B4	QBL54224.1	S. baicalensis
UGT94D1	BAF99027.1	Sesamum indicum
UGT71A9	XP_011100453.1	S. indicum
UGT71E1	Q6VAB2.1	Stevia rebaudiana
UGT74G1	AAR06920.1	S. rebaudiana
UGT71A8	BAF96581.1	Sesamum alatum
UGT71A10	BAF96583.1	Sesamum radiatum
TcCGT1	QCZ42162.1	Trollius chinensis
UGT74M1	ABK76266.1	Vaccaria hispanica
UGT73A16	ACO44747.1	Withania somnifera

	(+)-Lariciresinol-4- O - β -D-	Glucoside	e (+)-Lariciresinol-4'- O - β -D	-Glucoside
	δН	δC	δН	δC
1		134.3		132.1
2	6.89 (d, J = 1.8 Hz)	109.2	6.79 (d, J = 1.8 Hz)	112
3		149.5		149.4
4		145.7		145.9
5	7.09 (d, J = 8.2 Hz)	114.6	6.71 (d, J = 8.0 Hz)	114.8
6	6.74 (brs)	120.9	6.64 (dd, J = 8.0, 1.8 Hz)	120.7
7	2.98 (dd, J = 13.4, 4.8 Hz)	32.3	2.90 (dd, J = 13.5, 5.0 Hz)	32.2
	2.55 (dd, J = 13.4, 11.4 Hz)		2.50 (dd, J = 13.4, 11.2 Hz)	
8	2.72 - 2.77 (m)	42.4	2.68 - 2.74 (m)	42.4
9	3.99 (dd, J = 8.3, 6.5 Hz)	72	4.00 (dd, J = 8.3, 6.7 Hz)	72.3
	3.70 (dd, J = 8.4, 6.0 Hz)		3.74 (dd, J = 8.3, 6.4 Hz)	
3-OCH ₃	3.84 (s)	55	3.83 (s)	55
1′		135.7		138.1
2'	6.90 (d, J = 1.8 Hz)	112.9	6.98 (d, J = 2.0 Hz)	109.9
3'		147.6		147.6
4′		145		144.4
5'	6.77 – 6.78 (m)	116.9	7.13 (d, J = 8.4 Hz)	116.5
6'	6.75 – 6.76 (m)	118.4	6.88 (dd, J = 8.4, 2.0 Hz)	118.2
7′	4.75 (d, J = 6.9 Hz)	82.6	4.83 (d, J = 6.4 Hz)	82.4
8′	2.35 - 2.40 (m)	52.7	2.32 - 2.37 (m)	52.7
9′	3.81 - 3.86 (m)	59	3.84 - 3.88 (m)	59.1
	3.62 - 3.65 (m)		3.66 - 3.68 (m)	
3′-OCH3	3.85 (s)	55.3	3.86 (s)	55.3
Glc-1	4.87 (d, J = 7.6 Hz)	101.6	4.88 (d, J = 7.6 Hz)	101.5
Glc-2	3.43 - 3.49 (m)	73.5	3.44 - 3.48 (m)	73.5
Glc-3	3.57 - 3.60 (m)	76.4	3.57 - 3.60 (m)	76.4
Glc-4	3.38 - 3.40 (m)	70	3.36 - 3.40 (m)	70
Glc-5	3.66 - 3.68 (m)	76.8	3.63 - 3.66 (m)	76.8
Glc-6	3.85 - 3.88 (m)	61.1	3.84 - 3.88 (m)	61.1
	3.69 - 3.71 (m)		3.68 - 3.70 (m)	

Supplementary Table 4. ¹H-NMR, ¹³C-NMR spectra of monoglycoside products.

Supplementary Table 5. List of primers used in the study.

Primers	Squences
IiUGT1F	GAGGGATCCATGAAGATTACAAGACCACA
IiUGT1R	GAGGCGGCCGCCTAGGCACCACGTGCCATTC
IiUGT2F	GAGCATATGGCGAAAGAAACAGAGCTCA
IiUGT2R	GAGGTCGACTCAGCTCGAACCATCGTCCA
IiUGT3F	GAGGGATCCATGCAAATCACAAAACCACA
IiUGT3R	GAGGCGGCCGCCTAAGCACCACGTGCCAAGT
IiUGT4F	GAGGGATCCATGAAGACATCGGAGCTAAT
IiUGT4R	GAGGCGGCCGCTCAAAAGTGATCCCCAAGAA
IiUGT5F	GAGGGATCCATGGAGCAGCCTCACGCGCT
IiUGT5R	GAGGTCGACCTATATTATTTGCGAATCAC
IiUGT6F	GAGGGATCCATGGAAAAGCAAAACGCAAT
IiUGT6R	GAGGTCGACTCATTTTGGGCTCCACGATT
IiUGT7F	GAGGCTAGCATGGGGGAATCAAGAGATCATC
IiUGT7R	GAGGTCGACCTAAAAGTCCTCGCCGACCA
IiUGT8F	GAGGGATCCATGCAGAATACAAAACCTCA
IiUGT8R	GAGGCGGCCGCTTAGGCACCACGTGCCATGC
IiUGT9F	GAGGGATCCATGGAAAATCAAGAAGCTAT
IiUGT9R	GAGGTCGACTCATTTTGAGCTCCACGACT
IiUGT71B5aF	GAGGGATCCATGAAGATCGAGCTCGTGTT
IiUGT71B5aR	GAGGCGGCCGCCTAGACCACAACATTCTCGAT
138Actin-F	CCAGTGGTCGTACAACCGGTA
138Actin-R	TAGTTCTTTTCGATGGAGGAGCTG
IiUGT1RT-F	ATCAAAGGGTAAATGGACTG
IiUGT1RT-R	TCAGGTCTTGTCAAATGC
IiUGT4RT-4F	TGCTCTTCTCAAGTTCATTG
IiUGT4RT-4R	TGTACCTATATGCAATGTTTCTT
IiUGT71B5aRT-F	TTATCCTGTTGAATGCCTTC
IiUGT71B5aRT-R	AATTATCCGATCCGCTTTCA
IiUGT1I-1F	gatactagttctagagagcttgagggatacggcagagatg
IiUGT1I-1R	cggggaaattcgagctgtgactgcaagtggcgctg
IiUGT1I-2F	tcgagggtacccgggtgagggatacggcagagatg
IiUGT1I-2R	acgggggactctagaggtgactgcaagtggcgctg
IiUGT4I2-1F	gatactagttctagagagctgcacgctgctcttctcaagtt
IiUGT4I2-1R	cggggaaattcgagcttgcctaaaacatgtacctatatgcaatg
IiUGT4I2-2F	tcgagggtacccggggcacgctgctcttctcaag
IiUGT4I2-2R	acgggggactctagaggcctaaaacatgtacctatatg
IiUGT71B5aI-1F	gatactagttctagagagctgacgtgatcgagaatgttgtg
IiUGT71B5aI-1R	cggggaaattcgagctaggtctgaaccatctcaag
IiUGT71B5aI-2F	tcgagggtacccggggacgtgatcgagaatgttgtg
IiUGT71B5aI-2R	acgggggactctagagaggtctgaaccatctcaag

liUGT1SCF	GCTTCTGCAGGGGGCCCGGGGGATGAAGATTACAA GACCACA
IiUGT1SCR	GGATCCACTAGTATTTAAATGGGCACCACGTGC
IiUGT4SCF	GCTTCTGCAGGGGCCCGGGGATGAAACAGGAGC TGGTTTTC
liUGT4SCR	GGATCCACTAGTATTTAAATGAGAGATATTCGA AGTGACATC
IiUGT71B5aSCF	GCTTCTGCAGGGGGCCCGGGGGATGAAGATCGAGC TCGTGTTC
IiUGT71B5aSCR	GGATCCACTAGTATTTAAATGGACCACAACATT CTCGATCAC
RolB-F	CGAGGGGATCCGATTTGCTT
RolB-R	GACGCCCTCCTCGCCTTCCT
RolC-F	TCGCCATGCCTCACCAACTCAC
RolC-R	CCTTGATCGAGCCGGGTGAGAA
HPT-F	TACACAGCCATCGGTCCAGA
HPT-R	TTAGCGAGAGCCTGACCTATTG
224-35SF	GACGCACAATCCCACTATCC
NOS Ter SeqR	ATCATCGCAAGACCGGCAACAG
pZH02-F	GATAAAGAGTACCCACTGTATA
pZH02-R	caaccatgaacattaaagtg
SAIL_LB1	ggataaatagcettgettee
NOS Ter SeqR	ATCATCGCAAGACCGGCAACAG
IiUGT4F151A_F	cacctccaacgctacgGCTctcgggttg
IiUGT4F151A_R	GCcgtagcgttggaggtgtaaaacatgt
IiUGT4G14A_F	accatcacctggtgacGCCcacatcaga
IiUGT4G14A_R	GCgtcaccaggtgatggtatgaaaac
IiUGT4H373A_F	ccgaggatttgtgtcgGCCtgtggttgga
IiUGT4H373A_R	GCcgacacaaatcctcggacagcagggt
IiUGT4A207F_F	agtggctaccgattgcgGCTtcacaagtg
IiUGT4A207F_R	GCcgcaatcggtagccactccttgtttaa
IiUGT4D124A_F	ctggaatcgtggtggacGCGttctgcacg
IiUGT4D124A_R	GCgtccaccacgattccagcgagtcttga
IiUGT4N85D_F	tgatgacgccaaacccGACttcctctc
IiUGT4N85D_R	Cgggtttggcgtcatcagagtttggtt
IiUGT4N377A-F	gtcgcactgtggttggGCCtcgacactgg

IiUGT4N377A-R	GCccaaccacagtgcgacacaaatcctcg
IiUGT4Q398A_F	gccactctatgccgagGCAcaagttaacg
IiUGT4Q398A_R	GCctcggcatagagtggccacgtggcta
IiUGT4S196A_F	gttaagtgtttacccGCTgtgatgtt
IiUGT4S196A_R	Cgggtaaacacttaaccggcaaagga
IiUGT4S289A_F	gttcctctgttttggaGCCatgggaggtt
IiUGT4S289A_R	GCtccaaaacagaggaacacaacggttt
IiUGT4S289W_F	gttcctctgttttggaTGGatgggaggttt
IiUGT4S289W_R	CCAtccaaaacagaggaacacaacggttt
IiUGT4S378A-F	gcactgtggttggaacGCGacactggag
IiUGT4S378A-R	Cgttccaaccacagtgcgacacaaatc
IiUGT4W376A_F	gtgtcgcactgtggtGCGaactcgacac
IiUGT4W376A_R	GCaccacagtgcgacacaaatcctcgg
IiUGT4Y395F-F	agccacgtggccactcTTTgccgagcaac
IiUGT4Y395F-R	Aagagtggccacgtggctatcggaacacc

93 Supplementary Table 6. Mass spectrometry condition parameters of multi-target

94 ingredients in *I. indigotica* Fort.

Compounds	Molecular formulas	Rt (min) [M-]	H] ⁻ Negative ion mode Major Framents
Coniferyl alcohol	$C_{10}H_{12}O_3$	1.95 179	9.07179.07,146.21,164.04
Coniferin	$C_{16}H_{22}O_8$	1.29 341	1.34341.34,179.01
Pinoresinol	$C_{20}H_{22}O_{6}$	3.32 357	7.38357.38,342.10,150.81
Pinoresinol diglucoside	$C_{32}H_{42}O_{16}$	1.78 682	2.66680.90,519.02
Lariciresinol	$C_{20}H_{24}O_6$	2.84 36	50.4359.10,328.90
(+)-Lariciresinol-4- <i>O</i> -β-D-glucoside	e C ₂₆ H ₃₄ O ₁₁	2.07 522	2.54521.20,359.00,329.10
(+)-Lariciresinol-4'- <i>O</i> -β-D-glucoside	$e C_{26}H_{34}O_{11}$	2.17 523	3.54521.20,359.00,329.10
Clemastanin B	$C_{32}H_{44}O_{16}$	1.58 684	4.68683.20,521.10,359.00
Secoisolariciresinol	$C_{20}H_{26}O_{6}$	2.71 362	2.41361.14,179.91,164.92
Secoisolariciresinol diglucoside	$C_{32}H_{46}O_{16}$	2.11 686	5.69684.94,523.24
Matairesinol	$C_{20}H_{22}O_{6}$	3.58 358	3.38342.12,137.02,122.01