

² Supplementary Material: Deep Learning Based Super ³ Resolution of 4D-flow MRI Data

1 QUANTITATIVE RESULT

Methods	s	PVNR (dB) \uparrow	$\mathbf{RMS}_{speed} \ (ms^{-1}) \downarrow$	$\mathcal{E}_{dir}\downarrow$	\mathbf{RMS}_{div} (s ⁻¹) \downarrow
Cubic Spline	$\times 2$	32.42 ± 0.491	0.0348 ± 0.00987	0.0126 ± 0.00017	0.0019 ± 0.00051
WDSR-3D	$\times 2$	37.84 ± 0.705	0.0187 ± 0.00578	0.0097 ± 0.00005	0.0015 ± 0.00041
SRflow (ℓ_1)	$\times 2$	38.12 ± 0.696	0.0182 ± 0.00563	0.0090 ± 0.00009	0.0014 ± 0.00039
SRflow (mp- ℓ_1)	$\times 2$	37.71 ± 0.553	0.0168 ± 0.00508	0.0086 ± 0.00008	0.0015 ± 0.00040
SRflow (opt)	$\times 2$	39.14 ± 0.629	0.0161 ± 0.00487	0.0084 ± 0.00008	0.0014 ± 0.00038
Cubic Spline	$\times 3$	27.33 ± 0.444	0.0621 ± 0.01720	0.0317 ± 0.00030	0.0023 ± 0.00063
WDSR-3D	$\times 3$	34.55 ± 0.682	0.0269 ± 0.00826	0.0102 ± 0.00008	0.0018 ± 0.00054
SRflow (ℓ_1)	$\times 3$	35.15 ± 0.634	0.0254 ± 0.00767	0.0093 ± 0.00008	0.0015 ± 0.00044
SRflow (mp- ℓ_1)	$\times 3$	34.64 ± 0.495	0.0271 ± 0.00786	0.0119 ± 0.00002	0.0019 ± 0.00054
SRflow (opt)	$\times 3$	35.20 ± 0.520	0.0253 ± 0.00732	0.0102 ± 0.00008	0.0015 ± 0.00042
Cubic Spline	$\times 4$	24.53 ± 0.394	0.0851 ± 0.02302	0.0554 ± 0.00049	0.0027 ± 0.00077
WDSR-3D	$\times 4$	33.22 ± 0.540	0.0313 ± 0.00914	0.0102 ± 0.00012	0.0018 ± 0.00050
SRflow (ℓ_1)	$\times 4$	33.50 ± 0.676	0.0304 ± 0.00930	0.0105 ± 0.00014	0.0020 ± 0.00057
SRflow (mp- ℓ_1)	$\times 4$	33.18 ± 0.520	0.0315 ± 0.00910	0.0095 ± 0.00012	0.0018 ± 0.00049
SRflow (opt)	$\times 4$	33.87 ± 0.642	0.0293 ± 0.00888	0.0097 ± 0.00015	0.0017 ± 0.00048

Table S1: Experiment-1 Part A: Synthetic Cerebrovascular Results

Methods	s	PVNR (dB) \uparrow	$\mathbf{RMS}_{speed} \ (ms^{-1}) \downarrow$	$\mathcal{E}_{dir}\downarrow$	\mathbf{RMS}_{div} (s ⁻¹) \downarrow
Cubic Spline	$\times 2$	28.37 ± 2.046	0.0274 ± 0.01348	0.0228 ± 0.01275	0.0096 ± 0.00439
WDSR-3D	$\times 2$	29.33 ± 2.227	0.0248 ± 0.01260	0.0220 ± 0.00579	0.0071 ± 0.00347
SRflow (ℓ_1)	$\times 2$	29.45 ± 2.202	0.0245 ± 0.01246	0.0209 ± 0.00625	0.0068 ± 0.00329
SRflow (mp- ℓ_1)	$\times 2$	30.01 ± 2.215	0.0226 ± 0.01148	0.0182 ± 0.00490	0.0072 ± 0.00341
SRflow (opt)	$\times 2$	30.56 ± 2.393	0.0220 ± 0.01149	0.0146 ± 0.00403	0.0072 ± 0.00346
Cubic Spline	$\times 3$	23.81 ± 1.831	0.0447 ± 0.02161	0.0684 ± 0.03950	0.0092 ± 0.00422
WDSR-3D	$\times 3$	26.21 ± 1.809	0.0334 ± 0.01628	0.0525 ± 0.02257	0.0071 ± 0.00353
SRflow (ℓ_1)	$\times 3$	26.99 ± 1.923	0.0312 ± 0.01544	0.0425 ± 0.01636	0.0064 ± 0.00330
SRflow (mp- ℓ_1)	$\times 3$	26.80 ± 2.020	0.0314 ± 0.01555	0.0425 ± 0.01318	0.0070 ± 0.00352
SRflow (opt)	$\times 3$	27.36 ± 2.014	0.0300 ± 0.01489	0.0367 ± 0.01250	0.0067 ± 0.00350
Cubic Spline	$\times 4$	21.31 ± 1.738	0.0583 ± 0.02795	0.1214 ± 0.06776	0.0091 ± 0.00437
WDSR-3D	$\times 4$	25.15 ± 1.637	0.0368 ± 0.01760	0.0738 ± 0.03595	0.0068 ± 0.00341
SRflow (ℓ_1)	$\times 4$	25.55 ± 1.736	0.0359 ± 0.01733	0.0616 ± 0.02935	0.0063 ± 0.00331
SRflow (mp- ℓ_1)	$\times 4$	25.08 ± 1.835	0.0370 ± 0.01802	0.0677 ± 0.02744	0.0068 ± 0.00352
SRflow (opt)	$\times 4$	25.61 ± 1.848	0.0354 ± 0.01740	0.0611 ± 0.02672	0.0066 ± 0.00352

 Table S2: Experiment-1 Part B: In Vivo Cerebrovascular 4D-flow MRI Results

Performance comparison of our proposed method with the baseline model and cubic-spline-based
interpolation. We compare three different loss functions in our study for the proposed network to investigate

6 contributions each of its contributions to the vector-field super-resolution. Higher (\uparrow) PVNR and lower

7 (\downarrow) RMS_{speed}, \mathcal{E}_{dir} and RMS_{div} indicates better performance. We pairwise report Wilcoxon signed rank

8	between the best performing methods (shown in bold) and the other methods for all the metrics. Methods
9	that do not differ significantly from the best performing one (p -value> 0.001), are also reported in bold.

Methods	s	PVNR (dB) \uparrow	$\mathbf{RMS}_{speed} \ (ms^{-1}) \downarrow$	$\mathcal{E}_{dir}\downarrow$	\mathbf{RMS}_{div} (s ⁻¹) \downarrow
Cubic Spline	$\times 2$	23.53 ± 3.009	0.0936 ± 0.03924	0.2316 ± 0.15496	0.0131 ± 0.00872
WDSR-3D	$\times 2$	24.80 ± 2.477	0.0805 ± 0.02708	0.1902 ± 0.13379	0.0113 ± 0.00741
SRflow (ℓ_1)	$\times 2$	24.82 ± 2.481	0.0805 ± 0.02696	0.1898 ± 0.13372	0.0113 ± 0.00745
SRflow (mp- ℓ_1)	$\times 2$	24.81 ± 2.666	0.0762 ± 0.02561	0.1929 ± 0.13352	0.0136 ± 0.00872
SRflow (opt)	$\times 2$	24.86 ± 2.532	0.0760 ± 0.02542	0.1892 ± 0.13317	0.0130 ± 0.00835
Cubic Spline	$\times 3$	21.60 ± 3.642	0.1252 ± 0.06540	0.3096 ± 0.18966	0.0108 ± 0.00825
WDSR-3D	$\times 3$	23.17 ± 2.774	0.1016 ± 0.03806	0.2495 ± 0.16765	0.0090 ± 0.00663
SRflow (ℓ_1)	$\times 3$	23.16 ± 2.784	0.1021 ± 0.03857	0.2485 ± 0.16736	0.0090 ± 0.00659
SRflow (mp- ℓ_1)	$\times 3$	23.15 ± 2.865	0.0949 ± 0.03669	0.2499 ± 0.16787	0.0109 ± 0.00788
SRflow (opt)	$\times 3$	23.26 ± 2.735	0.0983 ± 0.03621	0.2482 ± 0.16734	0.0094 ± 0.00694
Cubic Spline	$\times 4$	20.55 ± 4.061	0.1476 ± 0.08548	0.3609 ± 0.20501	0.0100 ± 0.00822
WDSR-3D	$\times 4$	22.27 ± 3.031	0.1156 ± 0.04693	0.2865 ± 0.18165	0.0082 ± 0.00633
SRflow (ℓ_1)	$\times 4$	22.25 ± 3.065	0.1168 ± 0.04817	0.2845 ± 0.18102	0.0082 ± 0.00626
SRflow (mp- ℓ_1)	$\times 4$	22.29 ± 3.076	0.1061 ± 0.04399	0.2869 ± 0.18090	0.0102 ± 0.00782
SRflow (opt)	$\times 4$	22.38 ± 2.963	0.1115 ± 0.04442	0.2843 ± 0.18081	0.0086 ± 0.00663

Methods	s	PVNR (dB) \uparrow	RMS _{speed} (ms^{-1}) \downarrow	$\mathcal{E}_{dir}\downarrow$	\mathbf{RMS}_{div} (s ⁻¹) \downarrow
Cubic Spline	$\times 2$	28.37 ± 2.046	0.0274 ± 0.01348	0.0228 ± 0.01275	0.0096 ± 0.00439
WDSR-3D	$\times 2$	30.93 ± 2.155	0.0191 ± 0.00948	0.0096 ± 0.00184	0.0107 ± 0.00460
SRflow (ℓ_1)	$\times 2$	32.20 ± 2.373	0.0182 ± 0.00912	0.0062 ± 0.00147	0.0102 ± 0.00456
SRflow (mp- ℓ_1)	$\times 2$	33.38 ± 2.678	0.0166 ± 0.00885	0.0057 ± 0.00149	0.0083 ± 0.00388
SRflow (opt)	$\times 2$	33.52 ± 2.703	0.0164 ± 0.00878	0.0053 ± 0.00160	0.0083 ± 0.00394
Cubic Spline	$\times 3$	23.81 ± 1.831	0.0447 ± 0.02161	0.0684 ± 0.03950	0.0092 ± 0.00422
WDSR-3D	$\times 3$	25.59 ± 1.628	0.0373 ± 0.01592	0.0190 ± 0.00450	0.0127 ± 0.00520
SRflow (ℓ_1)	$\times 3$	27.03 ± 1.855	0.0289 ± 0.01374	0.0244 ± 0.00684	0.0089 ± 0.00378
SRflow (mp- ℓ_1)	$\times 3$	30.23 ± 2.373	0.0231 ± 0.01187	0.0139 ± 0.00393	0.0070 ± 0.00336
SRflow (opt)	$\times 3$	30.46 ± 2.473	0.0228 ± 0.01188	0.0120 ± 0.00345	0.0070 ± 0.00333
Cubic Spline	$\times 4$	21.31 ± 1.738	0.0583 ± 0.02795	0.1214 ± 0.06776	0.0091 ± 0.00437
WDSR-3D	$\times 4$	27.82 ± 2.192	0.0296 ± 0.01497	0.0281 ± 0.00772	0.0062 ± 0.00306
SRflow (ℓ_1)	$\times 4$	28.22 ± 2.271	0.0288 ± 0.01463	0.0236 ± 0.00669	0.0063 ± 0.00310
SRflow (mp- ℓ_1)	$\times 4$	27.31 ± 1.501	0.0277 ± 0.01978	0.0346 ± 0.00749	0.0111 ± 0.00468
SRflow (opt)	$\times 4$	28.30 ± 2.321	0.0279 ± 0.01456	0.0242 ± 0.00723	0.0067 ± 0.00325

Table S4: Experiment-2 Part B: In Vivo Cerebrovascular 4D-flow MRI Results

Figure S1: In-plane dynamics for Synthetic Cerebrovascular Data from Experiment-1 Part A: $(A \rightarrow E)$ shows the one cardiac cycle dynamics for PVNR for corresponding slices $(A \rightarrow E)$ of the aneurysm geometry, respectively, for the upscaling factor of $2\times$. All learning-based solutions outperform cubic-spline based super-resolution. SRflow (opt) and SRflow $(mp - \ell_1)$ produces the best score in all 5 cases.

Figure S2: Flow Profile for Synthetic Cerebrovascular Data from Experiment-1 Part A:The first row shows the velocity profile of the reference data at the peak systolic time for five different cross-sections, as shown in Fig S1. The subsequent rows show the error in the velocity profile for different predictions. We observe that the cubic spline has a significant amount of error, and SRflow (opt) creates the least amount of error for all five cross-sections.