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1 IMPLEMENTATION DETAILS

State-of-the-art Deep RL algorithms are difficult to implement from scratch due to their complexity.
Normally, the code used to obtain the published results is provided by the authors. However, the code might
not always be guaranteed to work as expected. RL algorithms started to become somewhat standardised
with the introduction of OpenAI Spinning Up Achiam (2018). However, the RL implementations found in
Spinning Up are designed for educational purposes. A more robust library is OpenAI Baselines, which
offers tested implementations of the main algorithms, with the primary two purposes of comparing their
performance and improving the algorithms Dhariwal et al. (2017).

Stable Baselines is a fork of OpenAI Baselines, and it provides an RL library of reliable algorithm
implementations with an improved performance by using hardware acceleration Hill et al. (2018). Stable
baselines was initially used to train PPO, TD3 and SAC agents on QFBEnv. However, a more stable
implementation of SAC from Hirländer (2020) was used to obtain the best policy for SAC.

Stable Baselines supports Tensorflow, which allows the use of Graphics Processing Units (GPUs) for faster
training Abadi et al. (2016). Furthermore, Tensorflow provides a visualisation toolkit called Tensorboard.
This tool proved to be essential for logging purposes during RL training. Considering that RL algorithms
have many moving parts, Tensorboard condensed training information and made it easier to compare
different RL agents.

NAF2 and AE-DYNA were implemented using a fork of the original code used in Hirlaender and
Bruchon (2020). NAF2 was upgraded to Tensorflow 2 for more efficient training and logging. Nevertheless,
difficulties were found when using the original implementation of AE-DYNA. With a code upgrade
provided in Hirländer (2020), a newer version of AE-DYNA was attempted, and the results shown were
obtained from this version.

2 SUPPLEMENTARY RL ALGORITHMS

2.1 Training

Table S1. Hyperparameter search of TD3.

Learning Batch Buffer τ

rate size size

3 × 10−4 32 1000 0.05
3 × 10−4 64 10000 0.005

128 50000
512

The Twin-Delayed Deep Deterministic policy gradient
(TD3) algorithm as introduced in td3 (2018) was attem-
pted on QFBEnv. Regardless, the training was unsuccessful
and the policy did not converge. As a result, a hyperpa-
rameter grid-search was performed. A permutation of the
parameters shown in Table S1 was attempted. The agents
which obtained an average success rate of 100% at least once
during their training were recorded. The different agents
were sorted by the best average episode length. Five con-
figurations out of 48 obtained a 100% success rate at least
once. Table S2 shows the hyperparameters of the successful
agents.Figure S1 shows the training performance statistics
of the five best agents trained in the hyperparameter search. It can be seen that TD3#4 obtained the highest
return of -0.9. However, upon inspection of the policy at steps 75000 and 76000, it was found that both had
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Table S2. Hyperparameters of the five successful agents and the corresponding best mean episode length. The best agent, TD3#0, obtained an average episode
length of 41.3 steps after 15000 training steps.

Index Learning rate Batch size Buffer size τ Ave. Ep. Length (@
train. step)

TD3#0 3 × 10−5 64 50k 0.005 41.3 (15k)
TD3#1 3 × 10−4 512 50k 0.05 45.92 (7k)
TD3#2 3 × 10−5 128 10k 0.05 46.4 (23k)
TD3#3 3 × 10−5 64 10k 0.005 49.38 (15k)
TD3#4 3 × 10−4 32 1k 0.005 64.96 (59k)

Figure S1. Performance statistics of the best TD3 agents during the hyperparameter search. (A) Episode
length; (B) Undiscounted episode return and; (C) Success rate.

failed to converge. This suggests that the 100% successful policy obtained on step 75600 was forgotten
after a few hundred steps. For comparison of the training with the other algorithms attempted in this work,
Figure S2 shows the average training performance of five TD3 agents using the best hyperparameters and
initialised using different random seeds.
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Figure S2. Performance statistics of NAF2, PPO, TD3 and SAC-TFL agents during training. Five agents
per algorithm were initialised with different random seeds. (A) Average episode length; (B) Average
episode return and; (C) Average success rate.

Table S3. Hyperparameters
used for SAC-TFL.

Name Value

learning rate 0.001
γ 0.99

batch size 256
buffer size 500000

τ 0.005

The SAC implementation which trained the best agents is based on the
work in Hirländer (2020). Since this implementation uses TensorLayer,
an open-source deep-learning and RL library extended from Tensor-
Flow, it will be denoted by SAC-TFL. The hyperparameters shown
in Table S3 are the parameters as implemented in Hirländer (2020).
Figure S2 shows the average training performance statistics of five
SAC-TFL agents initialised with different random seeds. Figure S2A
to S2C show that some agents managed to obtain episode lengths smal-
ler than 20 after approximately 45000 steps. A success rate of 100%
was maintained for approximately 5000 steps, after which the policy
maintains an episode return on the same order of magnitude. In real
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Figure S3. Snapshot of the training performance of AE-DYNA-SAC. Sim denotes information about the
agent performance over the models. Tests denotes information about the agent performance over the real
environment.

LHC operation on the QFB, the worst-case training time of 45,000 steps is estimated by:

45, 000 steps
12.5 Hz

× 2 = 2 h

Training AE-DYNA on QFBEnv consists of performing a sequence of three tasks iteratively. The tasks
are: a) collecting a batch of data by interacting with the real environment; b) training a set of models from
the collected data independently, where each model can accept a state-action pair and predict the next-state
and reward; c) train a standard Model-Free (MF) RL algorithm by interacting with the trained models
instead of the real environment.

Anchored-ensembles of neural networks were used to model both the aleatoric and epistemic uncertainty
of the environment. This allowed the sampling of the next-state and reward from different, randomly
initialised networks Pearce et al. (2018). This has been shown to approximate the stochasticity observed
in a real environment and to capture the epistemic uncertainty of the system dynamics. In this work, the
MF-RL algorithm chosen was SAC-TFL, which was trained from scratch on every epoch. An epoch is
defined as the time between data collections from the real environment, i.e. time between two batches. The
trained agent is consecutively used to obtain new batches of data from the real environment to diversify the
variety of trajectories in the buffer. Consequently, the agent is re-initialised and the AE-DYNA training
loop repeats.

The training performance of the best AE-DYNA-SAC on QFBEnv is shown in Figure S3. AE-DYNA-
SAC was trained for six epochs which is equal to 4500 steps in QFBEnv. This is equivalent to 6 min of
beam time and was the only data available for the models and the agent to successfully train a policy.
Sim and Test denote information about the interactions of the RL agent with the models and the real
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environment, respectively. If the trained models were perfect representations of the real environment, the
results of Sim would be equivalent to Test (training = evaluation). The top plot of Figure S3 shows that
during evaluation on the real environment, a 100% success rate with an average episode length of 35
steps is observed at around 155000 training steps (black line). On the contrary, the predicted success rate
of the agent by the models remains 0% throughout all the training (orange line). This indicates that the
models cannot guide training and constant testing on the real environment is required to successfully train
AE-DYNA-SAC.

To counteract the unsuccessful termination when using models to train the agent, evaluation episodes on
the real environment are required to probe the performance of the latest AE-DYNA-SAC policy. If one
evaluation episode is done on the real environment every 1000 training steps in the models, 155000 training
steps become approximately:

(
155000
1000 ∗ 70

)
∗ 1

12.5Hz ≈ 14.5 min. The total worst case training time for
AE-DYNA while using these evaluation parameters becomes: (Batch time + Test time) × 2 ≈ 41 min

2.2 Evaluation

2.2.1 Effect of Gaussian noise

Figure S4A shows three episodes obtained by the best TD3 agent with deterministic actions in QFBEnv.
The top plots show that the policy does not take the most optimal path to the terminal state. In particular,
the state evolution of Episode #1 shows that the agent takes smaller steps towards the optimal point than
the PI controller, and as a result, the episode length approximately doubles. The bottom plots show that
similarly to PPO, the actions of TD3 start to converge back to zero towards the end of the episode. It can
also be observed that the change in subsequent actions is gentler than both NAF2 and PPO. Figure S4B to
S4D show a set of three evaluation episodes each obtained from the best TD3 agent under the effect of
Gaussian action noise. It can be seen that the TD3 agent managed to satisfy the early termination criterion
until 10% action noise, beyond which the episode length increases to 70 steps. The top plots of Figure S4C
also show that the state excursions become longer for the agent, especially in Episode #3. This indicates
that TD3 policy trained is not robust to stochasticity in QFBEnv.

Figure S5A shows three episodes obtained using the best SAC-TFL policy with deterministic actions.
The top plots show that SAC-TFL has found an optimal policy which converges to the optimal point before
the PI controller. However, the bottom plots illustrate that the deterministic actions selected by SAC-TFL
are the most chaotic of all the agents discussed so far. Furthermore, the actions are not decaying to zero,
which implies that SAC-TFL converged to a sub-optimal policy. Similarly to the other agents, Figure S5B
to S5D show a set of three evaluation episodes each using different action noise. Until 25%, the agent
obtains a shorter average episode length than the PI controller of approximately 15 steps. At 50% action
noise, the SAC-TFL average episode length increases to approximately 30 steps. Notwithstanding the
undesirable choice of actions, the agent managed to end each episode successfully. This result indicates
that the SAC-TFL policy trained is very robust to stochasticity in QFBEnv.

Figure S6A shows three episodes obtained by the best AE-DYNA-SAC policy with deterministic actions.
Similarly to the other agents, Figure S6B toS6D correspond to an action noise of 10%, 25% and 50%. In the
deterministic case, the policy converges to the optimal point with an average episode length approximately
equal to that of the PI controller. As the action noise is increased, the state excursions become larger;
e.g. Episode #2 of Figure S6C; and the policy can also converge to a bad optimum, e.g. Episode #1 of
Figure S6C.

Frontiers 5



Supplementary Material

Figure S4. Episodes from the best TD3 agent and the PI controller with the same initial states and with a
varying additive Gaussian action noise with zero mean and standard deviation as a percentage of the half
action space [0, 1]. (A) 0%, (B) 10%, (C) 25%, and (D) 50% Gaussian action noise.
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Figure S5. Episodes from the best SAC-TFL agent and the PI controller with the same initial states and
with a varying additive Gaussian action noise with zero mean and standard deviation as a percentage of the
half action space [0, 1]. (A) 0%, (B) 10%, (C) 25%, and (D) 50% Gaussian action noise.
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Figure S6. Episodes from the best AE-DYNA-SAC agent and the PI controller with the same initial states
and with a varying additive Gaussian action noise with zero mean and standard deviation as a percentage
of the half action space [0, 1]. (A) 0%, (B) 10%, (C) 25%, and (D) 50% Gaussian action noise.
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Table S4. The statistics (mean±std.) for the episode length obtained by the best RL agents and PI controller with respect to the amplitude of Gaussian action
noise.

Action noise 0% 10% 25% 50%
TD3 39.06 ± 12.08 40.34 ± 12.43 47.06 ± 15.24 63.36 ± 13.21

SAC-TFL 13.34 ± 3.19 13.64 ± 3.43 15.60 ± 4.53 24.81 ± 12.27
AE-DYNA-SAC 36.25 ± 17.50 37.22 ± 17.78 41.98 ± 18.24 54.51 ± 17.84

PI controller 20.32 ± 3.60 20.66 ± 3.82 25.20 ± 7.33 53.12 ± 18.92

Table S5. Episode length statistics (mean±std) under the effect of actuator failures.

Algorithm Nb. of actuator failures
0 1 3 5

NAF2 9.10 ± 1.39 33.01 ± 29.24 69.14 ± 7.01 70.00 ± 0.00
PPO 8.80 ± 1.28 9.14 ±1.50 41.60 ± 29.85 70.00 ± 0.00
TD3 39.06 ± 12.08 69.05 ± 6.21 70.00 ± 0.00 70.00 ± 0.00
SAC 43.09 ± 25.49 62.97 ± 17.77 69.72 ± 3.93 70.00 ± 0.00

SAC-TFL 12.97 ± 3.03 29.44 ± 24.69 63.45 ± 17.40 69.90 ± 2.21
AE-DYNA-SAC 36.79 ± 17.55 61.58 ± 15.97 69.82 ± 2.72 70.00 ± 0.00

PI controller 20.09 ± 3.70 70.00 ± 0.00 70.00 ± 0.00 70.00 ± 0.00

2.2.2 Effect of actuator failure

It can be seen from Figure S7A that the best TD3 agent trained in this work, already failed to successfully
terminate episodes with one actuator failure, i.e. fails to converge max(∆QH ,∆QV ) < Goal threshold.
This trend worsens as the number of actuator failures increases, as can be seen in Figure S7B. At one
actuator failure in Figure S7C, the SAC-TFL policy optimally converges to the optimal point. However,
at three actuator failures in Figure S7D, SAC-TFL approaches the optimal point but fails to converge
under the threshold boundary. Figure S8 shows that the AE-DYNA-SAC policy can, at times, converge
close to the optimal point. The performance continues to degrade as more actuator failures are introduced.
Nonetheless, the policy degradation is comparable to the performance degradation of the PI controller
during actuator failures.

The same procedure used to create the evaluation plots discussed above was used to obtain more statistics
on the performance of the trained RL agents and the PI controller in the presence of actuator failures. The
maximum episode length was set back to 70 steps. The episode length and the final distance to the optimal
point (DTO) were used as performance metrics. Three scenarios with one, three and five actuator failures
were attempted using the same procedure described above, with a total of 1000 episodes per scenario per
algorithm used to obtain the performance statistics.

Tables S5 and S6 tabulate the statistics for the episode length and DTO under the effect of actuator
failures for all algorithms attempted in this work. The best PPO agent manages to maintain the smallest
average episode length and a DTO which is close to the Goal threshold of QFBEnv at up to three actuator
failures. NAF2 and SAC-TFL show a similar performance up to one actuator failure, however, it can be
seen that SAC-TFL was the only agent which obtained successful termination at five actuator failures. The
performances of TD3, SAC and AE-DYNA-SAC with respect to the average episode length are similar,
however, AE-DYNA-SAC obtained slightly lower DTO. Ultimately, all the RL agents behaved better than
the PI controller, which obtained no successful termination during actuator failures.
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Figure S7. Episodes from the best RL agents and the PI controller under the effect of different number
of actuator failures.(A) TD3 agent with one actuator failure, (B) TD3 with three actuator failures, (C)
SAC-TFL agent with one actuator failure, (D) SAC-TFL agent with three actuator failures.
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Figure S8. Best AE-DYNA-SAC agent and PI controller with 1 actuator failure.

Figure S9. Best AE-DYNA-SAC agent and PI controller with 3 actuator failures.

Table S6. Distance to Optimal point (DTO) statistics (mean±std) under the effect of actuator failures. Underlined cells show where it is likely to observe
successful termination.

Algorithm Nb. of actuator failures
0 1 3 5

NAF2 0.02 ± 0.00 0.05 ± 0.02 0.13 ± 0.05 0.56 ± 0.87
PPO 0.01 ± 0.00 0.02 ± 0.01 0.07 ± 0.02 0.52 ± 1.02
TD3 0.03 ± 0.00 0.84 ± 0.76 1.96 ± 1.78 3.43 ± 2.03
SAC 0.04 ± 0.02 0.25 ± 0.16 1.92 ± 1.04 5.02 ± 1.82

SAC-TFL 0.02 ± 0.01 0.07 ± 0.07 0.26 ± 0.17 0.94 ±0.75
AE-DYNA-SAC 0.04 ± 0.04 0.18 ± 0.14 1.03 ± 0.87 2.18 ± 1.46

PI controller 0.02 ± 0.00 0.17 ± 0.01 0.98 ± 0.97 3.10 ± 1.34
Goal threshold 0.057
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2.2.3 Effect of incorrect tune estimation

Figure S10A shows the best TD3 policy under the effect of 50 Hz harmonics. It can be observed that the
policy behaves similarly to the response of the PI controller and extends up to the second harmonic away
from the optimal point. Figure S10B shows the results for the best SAC-TFL policy. It can be seen that the
state was maintained around the closest 50 Hz harmonic intersection to the optimal point. This performance
is similar to the best-performing agents, NAF2 and PPO. Figure S10C are the results corresponding to the
best AE-DYNA-SAC policy and show that the policy obtained a performance similar to the PI controller.
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Figure S10. Effect of 50 Hz harmonics on the best RL agents and a PI controller. (A) Best TD3 agent, (B)
best SAC-TFL agent and (C) best AE-DYNA-SAC agent.
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