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Homogeneous system

The condition for a reaction-diffusion system to pro-
duce a pattern is to have a linearly stable state in the
absence of diffusion, that becomes unstable when diffu-
sion is introduced [1]. Below we analyze the conditions to
form a pattern for the system considered in this work. We
first consider the homogeneous system ∂xxu = ∂xxv = 0,
with a vanishing sink profile strength s0 = 0. Equations
for the local reactions are

∂u

∂t
= γ

(
u− u3 − κ4v

)
(1)

∂v

∂t
= γ (κ5u− κ6v) . (2)

Introducing the functions

f(u, v) = u− u3 − κ4v (3)

g(u, v) = κ5u− κ6v , (4)

the nullclines, defined by f(u, v) = 0 y g(u, v) = 0, are
the curves in the (u, v) plane

v =
1

κ4
(u− u3) (5)

v =
κ5

κ6
u . (6)

The first one is a cubic function that crosses the origin
and the second one is a linear function through the ori-
gin with slope κ5/κ6. The fixed points of the dynamical
system are given by the nullclines intersection, Fig. 1,
and determined as the points that simultaneously verify
f(u, v) = 0 and g(u, v) = 0,

u

((
1− κ4κ5

κ6

)
− u2

)
= 0 . (7)

Regardless of parameter values, there is always a solu-
tion (u0, v0) = (0, 0). For (κ4κ5)/κ6 < 1 there are two
additional solutions

u± = ±
√

1− κ4κ5

κ6
. (8)

For a non-vanishing sink profile s0 > 0 we have

g(u, v) = κ5u− κ6v − s0s(x)v , (9)
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Figure 1. Nullclines for the homogeneous system Eqs. (5) and
(6). Depending on parameter values for the local reactions,
the system displays (A) a single stable fixed point at (0, 0)
(solid black dot), or (B) two stable fixed points (solid black
dots) and an unstable fixed point (open dot) at (0, 0).
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Figure 2. Effective nullclines for the system with sinks
Eqs. (5) and (10), for different values of the dimensionless
sink strength s0 as indicated.
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and the second nullcline becomes

v =
κ5

κ6 + s0s(x)
u . (10)

Thus, in the presence of sinks the slope of the linear
nullcline depends on position x and the sink strength s0.
The effect of sinks on the nullcline can be thought of as
an effective κ6, Fig. 2.

The stability of fixed points can be determined by
means of small perturbations and linearization around
the equilibrium points. We follow the standard proce-
dure and consider a perturbation w with respect to the
fixed point (u0, v0)

w =

(
u− u0

v − v0

)
. (11)

For a small perturbation, dynamics is given by

dw

dt
= γAw , A =

(
fu fv
gu gv

)
(12)

where

fu = ∂uf(u, v) , fv = ∂vf(u, v) ,

gu = ∂ug(u, v) , gv = ∂vg(u, v)
(13)

and derivatives are to be evaluated at the fixed point
(u0, v0). Solutions to Eq. (12) are

w ∝ eΛt (14)

with an eigenvalue Λ. Eigenvalues are obtained as the
roots of the characteristic polynomial, which is given by
the condition

|ΛI − γA| = 0 , (15)

where I is the identity matrix. The resulting eigenvalues
are

Λ1,2 =
1

2
γ
[
(fu + gv)± {(f+gv)2 − 4(fugv − fvgu)}1/2

]
.

(16)
Linear stability of the fixed point requires the real part
of these eigenvalues to be negative, ReΛ < 0. This trans-
lates into the two conditions

detA = fugv − fvgu > 0 , (17)

trA = fu + gv < 0 . (18)

In particular, for the fixed point (u0, v0) = (0, 0) we have

A =

(
1 −κ4

κ5 −κ6

)
(19)

and the conditions on the determinant (17) and the trace
(18) become

κ4κ5

κ6
> 1 , (20)

κ6 > 1 . (21)

Under these two conditions, the fixed point (u0, v0) =
(0, 0) is linearly stable in the homogeneous case [2].
Breaking the first condition Eq. (20), the fixed point loses
stability to the two fixed points Eq. (8). Breaking the sec-
ond condition Eq. (21), the fixed point loses stability to
an oscillatory state.

Diffusion-driven instability

Above we considered the conditions for the homoge-
neous system to be stable. Next, we obtain conditions
for the homogeneous steady state to become unstable in
the presence of diffusion. We follow the standard deriva-
tion, as in [2]. Considering now the full system, the linear
approximation around the steady state is

∂w

∂t
= γAw +D∇2w , with D =

(
1 0
0 δ

)
. (22)

We introduce the time independent solution W (x) for
the spatially extended problem

∇2W + k2W = 0 . (23)

With no flux boundary conditions (n · ∇)W = 0, we
obtain solutions

W (x) ∝ cos(nπx/L) , (24)

where L denotes dimensionless system size and the wave
number k = nπ/L is the eigenvalue of the time indepen-
dent solution. For the complete system, solutions take
the form

w(x, t) =
∑
k

cke
ΛtWk(x) (25)

where the coefficients ck can be determined from a
Fourier expansion of the initial conditions in terms of
Wk(x). Substituting w(x, t) in the complete system
Eq. (22) and dropping the exponentials eΛt we arrive at

ΛWk(x) = γAWk −Dk2Wk . (26)

Non-trivial solutions require a vanishing determinant

|ΛI − γA+Dk2| = 0 . (27)

We evaluate this determinant and obtain eigenvalues
Λ(k) as the root of

Λ2 + Λ[k2(1 + δ)− γ(fu + gv)] + h(k2) = 0 (28)

with

h(k2) = δk4 − γ(δfu + gv)k2 + γ2|A| . (29)

The characteristic polynomial for the homogeneous sys-
tem is recovered for k = 0. For a diffusion driven in-
stability to occur, at least one eigenvalue must have a
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positive real part. This requires that h(k2) < 0 for some
k 6= 0, which leads to the condition

δfu + gv > 0 . (30)

Together with the condition fu + gv < 0 of Eq. (18) this
implies δ 6= 1 and that fu and gv must be of opposite
signs. Furthermore, given the signs of the partial deriva-
tives fu > 0 y gv < 0, this imposes a condition on δ, that
results in the relation between the diffusion coefficients

δ =
DV

DU
> 1 . (31)

This means that for a diffusion driven instability to occur,
the inhibitor must diffuse faster than the activator, as it
is well known [3]. For the solution (u0, v0) = (0, 0) this
further implies

δ − κ6 > 0 . (32)

This condition is necessary but not sufficient to ensure
that h(k2) is negative for some nonzero k. Additionally,
we require the minimum of h to be negative, which results
in

(δfu + gv)2

4δ
> |A| . (33)

For the vanishing state (u0, v0) = (0, 0) this becomes

(δ − κ6)2

4δ
> −κ6 + κ4κ5 . (34)

Putting these results together, the conditions on param-
eter values that allow for pattern formation through a
diffusion driven instability are

κ6 > 1 ,
κ4κ5

κ6
> 1 , δ > κ6 ,

(δ − κ6)2 > 4δ(−κ6 + κ4κ5)
(35)

Together, these conditions ensure that there is at least
one wave number k such that the corresponding eigen-
value Λ(k2) has a positive real part. Depending on pa-
rameter values, there may be more than one mode with
an eigenvalue that has a positive real part. For long
times, the terms in the solution that correspond to neg-
ative eigenvalues decay, while terms with positive eigen-
values contribute to the final state. Thus, it is interesting
to consider the range of wavenumbers k with eigenvalues
such that ReΛ(k2) > 0. These are k2 values that result
in h(k2) < 0, so we look for the roots of h(k2) to find the
bounds of this range k2

1 < k2 < k2
2,

k2
1 =

γ

2δ

[
(δfu + gv)−

(
(δfu + gv)

2 − 4δ|A|
)1/2

]
< k2

<
γ

2δ

[
(δfu + gv) +

(
(δfu + gv)

2 − 4δ|A|
)1/2

]
= k2

2

(36)

In particular, for the state (u0, v0) = (0, 0) of our system
we obtain

k2
1 =

γ

2δ

[
(δ − κ6)−

(
(δ − κ6)

2 − 4δ (−κ6 + κ4κ5)
)1/2

]
< k2

<
γ

2δ

[
(δ − κ6) +

(
(δ − κ6)

2 − 4δ (−κ6 + κ4κ5)
)1/2

]
= k2

2 .

(37)

Considering the decay of terms with negative eigenval-
ues for long times, the solution in this regime is approx-
imated by

w(x, t) ≈
k2∑
k1

cke
Λ(k2)tWk(x) . (38)

Among the modes with positive eigenvalues, the fastest
growing is the one that maximizes ReΛ(k2) > 0. The
corresponding wave number is

k2
0 =

γ

δ − 1

(
(δ + 1)

[
−fvgu

δ

]1/2

− fu + gv

)
, (39)

which for the stable state (u0, v0) = (0, 0) results in

k2
0 =

γ

δ − 1

(
(δ + 1)

[κ4κ5

δ

]1/2

− 1− κ6

)
. (40)

This mode will have the characteristic wavelength

λ0 =
2π

k0
(41)

Thus, in the absence of any external stimulus, with
random initial conditions, the mode that grows faster cor-
responds to this wavelength λ0. Both the range of wave-
lengths that are compatible with pattern formation and
the natural wavelength λ0 depend on parameter values.
For example, the parameter δ can control the range of
wave numbers compatible with pattern formation, which
expands for larger δ. Decreasing the value of γ reduces
the wavenumber k0 and therefor results in a larger se-
lected wavelength λ0. The signs of partial derivatives
f(u, v) and g(u, v) determine that both species co-localize
instead of alternating in space [2].

In this work, we used the conditions we have obtained
in these supplementary notes to choose dimensionless pa-
rameter values that ensure the possibility of pattern for-
mation through a diffusion driven instability,

γ = 1000, δ = 100, κ4 = 1, κ5 = 10, κ6 = 5 ,
(42)

verifying all inequalities in Eq. (35). With this choice,
the range of wavelengths supported is 0.210 < λ < 0.840
and the natural wavelength is λ0 = 0.388.
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