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S1 NSCLC Model

The model of the NSCLC is [1]

ẋ = f(x,u), y = Cx = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]x (S1)

where the vector field f(., .) is detailed in (S4)-(S23), x is the state vector containing 21 molecule concentrations
(Table S1), u is the input vector u = [I1, I2, I3]

T (orange in (S4)-(S23), each input acts on both the active and
inactive target molecule and therefore appears twice in (S4)-(S23)) and y is the vector of outputs y1 = pERK and
y2 = pAkt (blue in (S4)-(S23)).

xi Shorthand Molecule
x1 pEGFR Active epidermal growth factor receptor
x2 DSOS Deactive SOS
x3 SOS Son Of Sevenless, a Guanine nucleotide exchange factor
x4 Raf Raf kinase
x5 pRas Active Ras, a small GTPase
x6 pMEK Active PI3K
x7 ERK Extracellular-signal-regulated kinase
x8 pERK Active ERK
x9 pIGF1R Active Insulin-like growth factor receptor
x10 PI3K Phosphoinositide 3-kinase
x11 pPI3K Set of three serine/threonine-specific protein kinases
x12 pAkt Active Akt
x13 Akt Active Methyl ethyl ketone
x14 PP2A Protein phosphatase 2, Kinase inhibitor
x15 Ras A small GTPase
x16 pRaf Active Raf
x17 MEK Methyl Ethyl Ketone
x18 RasGAP GTP hydrolyser of Ras
x19 ppRaf Raf which has been phosphorylated twice
x20 P90 Ribosomal S6 kinase
x21 pP90 Active P90

Table S1

S1.1 Difference Between NSCLC and Wild Type Cells

Mutations present in NSCLC cells can lead to an overexpression of EGFR and IGF1R; this is represented by using
different initial conditions for pEGFR and pIGF1R [1] and leads to the response shown in Figure 2.

NSCLC Cell: pEGFR0 = 800000 µM pIGF1R0 = 400000 µM

Wild Type Cell: pEGFR0 = 8000 µM pIGF1R0 = 800 µM
(S2)

SOS0 = 120000 µM Ras0 = 120000 µM Raf0 = 120000 µM MEK0 = 600000 µM

ERK0 = 600000 µM P90Rsk0 = 120000 µM PI3K0 = 120000 µM ppRaf0 = 120000 µM

PP2A0 = 120000 µM RasGAP0 = 120000 µM

DSOS0 = pRas0 = pRaf0 = pMEK0 = pERK0 = pP90Rsk0 = pPI3K0 = 0 µM

(S3)
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S1.2 Conservation Equations

Each molecule can either be active, p(.), or inactive, but there is a constant total concentration of each molecule
within the model. This total, (.)T , is defined by the following conservation equations:

EGFRT = pEGFR+ EGFR IGF1RT = pIGF1R+ IGF1R SOST = SOS +DSOS

RasT = pRas+Ras RafT = pRaf +Raf MEKT = pMEK +MEK

ERKT = pERK + ERK PI3KT = pPI3K + PI3K AktT = pAkt+Akt

(S24)
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S1.3 Parameters in the NSCLC Model

Variable Definition Value, [1]
kfE EGFR deactivation 0.02h−1

kSOS:E Catalytic constant for SOS activation by EGFR 694.731 min−1

KMSOS:E Michaelis–Menten constant for SOS activation by EGFR 6086070.0 µM
kPI3K:E Catalytic constant for PIK3 activation by EGFR 10.6737 min−1

KMPI3K:E Michaelis–Menten constant for PIK3 activation by EGFR 184912.0 µM
kfI IGF1R deactivation 0.02 min−1

kSOS:I Catalytic constant for SOS activation by IGF1R 500.0 min−1

KMSOS:I Michaelis–Menten constant for SOS activation by IGF1R 1000000.0 µM
kPI3K:I Catalytic constant for PIK3 activation by IGF1R 10.6737 min−1

KMPI3K:I Michaelis–Menten constant for PIK3 activation by IGF1R 184912.0 µM
kDSOS:P90 Catalytic constant for DSOS deactivation by p90Rsk 161197.0 min−1

KMDSOS:P90 Michaelis–Menten constant for DSOS deactivation by p90Rsk 896896.0 µM
kRas:SOS Catalytic constant for Ras activation by SOS 32.344 min−1

KMRas:SOS Michaelis–Menten constant for Ras activation by SOS 35954.3 µM
kRas:Gab Catalytic constant for Ras deactivation by RasGAP 1509.36 min−1

KMRas:Gab Michaelis–Menten constant for Ras deactivation by RasGAP 1432410.0 µM
kRaf :Ras Catalytic constant for Raf activation by Ras 0.884096 min−1

KMRaf :Ras Michaelis–Menten constant for Raf deactivation by Ras 62464.6 µM
kRaf :ppRaf Catalytic constant for Raf deactivation by RafPP 0.126329 min−1

KMRaf :ppRaf Michaelis–Menten constant for Raf deactivation by RafPP 1061.71 µM
kRaf :Akt Catalytic constant for Raf deactivation by Akt 15.1212 min−1

KMRaf :Akt Michaelis–Menten constant for Raf deactivation by Akt 119355.0 µM
kRaf :MEK Catalytic constant for MEK activation by Raf 185.759 min−1

KMRaf :MEK Michaelis–Menten constant for MEK activation by Raf 4768350.0 µM
kMEK:PP2A Catalytic constant for MEK deactivation by PP2A 2.83243 min−1

KMMEK:PP2A Michaelis–Menten constant for MEK deactivation by PP2A 518753.0 µM
kERK:MEK Catalytic constant for ERK activation by MEK 9.85367 min−1

KMERK:MEK Michaelis–Menten constant for ERK deactivation by MEK 1007340.0 µM
kERK:PP2A Catalytic constant for ERK activation by PP2A 9.85367 min−1

KMERK:PP2A Michaelis–Menten constant for ERK deactivation by PP2A 1007340.0 µM
kdP90 p90Rsk deactivation 0.0050 min−1

kP90:ERK Catalytic constant for p90Rsk activation by Erk 0.0213697 min−1

KMP90:ERK Michaelis–Menten constant for p90Rsk activation by Erk 763523.0 µM
kAkt:PI3K Catalytic constant for Akt activation by PIK3 0.0566279 min−1

KMAkt:PI3K Michaelis–Menten constant for Akt activation by PIK3 653951.01 µM
kdAkt Akt deactivation 0.0050 min−1

kdPI3K PI3K deactivation 0.0050 min−1

Value estimated in this report

Kon1 Catalytic constant for PI3K deactivation by I1 0.1 min−1

Km1 Michaelis-Menten constant for PI3K deactivation by I1 60 µM
Kon2 Catalytic constant for Akt deactivation by I2 0.01 min−1

Km2 Michaelis-Menten constant for Akt deactivation by I2 8.9 µM
Kon3 Catalytic constant for ERK deactivation by I3 2 min−1

Km3 Michaelis-Menten constant for ERK deactivation by I3 2.5 µM

Table S2: Parameters used in the NSCLC model including the six input parameters discussed in Section S2.
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S2 Parameter Choice For Input Interactions

The equation governing the inputs reaction with the target molecule is given by

dTarget

dt
= −Target KonI

Km+ I
, (S25)

where the Michealis-Menten parameter values associated with each input are reported in Table S3. Km is
equivalent to the IC50 value of the inhibitor being used on each target. To make the response of the controller
inputs less ‘switch like’, inhibitors with relatively large IC50 values have been chosen. Kon has then been chosen
by fitting the model simulations to western blots for I1-3MA [2], I2-Oridonin [3] and I3-Pimasetib [4].

Drug Km(µM) Kon(min−1) Target Molecule
I1 - 3MA 60 [5] 0.1 PI3K
I2 - Oridonin 8.9 [6] 0.01 Akt
I3 - Pimasetib 2 [7] 2.5 MEK

Table S3: Input properties used in the simulations

S3 Step Input Response

Step input simulations for each input, as described in Section 3.1.1, can be seen in Figure S1. In all cases, the control
performance is worst as compared to that obtained with SISO control (Figure 4), as the EI is either comparable
(Figure S1A) or higher ( Figure S1C and E) than those obtained applying feedback control; also, in all step input
simulations, the Dose Index is higher.

Figure S1: Step Input simulations. (A) The response of y2 (Akt) to the step input of I1 in (B). (C) The response
of y2 (Akt) to the step input of I2 in (D). (E) The response of y1 (ERK) to the step input of I3 in (F).

6



S4 Model Predictive Control (MPC)

MPC uses a model of the plant (system to be controlled) in the feedback loop to estimate the effect of the inputs
the controller will choose at each time step. The inputs are chosen to minimise a user-defined cost function that
typically includes terms penalising the magnitude of the inputs, u(t), and the magnitude of errors, e(t), between
the response of the system and reference signals [8], as shown in Figure S2. The feedback loop then measures the
outputs of the actual plant, y(t), to estimate the actual states, x(t), and reiterates the MPC scheme to choose each
subsequent input, u(t).

Some modifications to the cost function are discussed in Sections S4.2 and S4.3. MPC controllers are not limited
to linear systems, however, non-linear systems can result in a larger computational effort and require more complex
optimisation solvers, as discussed in Section S7.

Figure S2: MPC architecture.

For the present numerical study, the plant is the non-linear NSCLC model presented in Equations (S4)–(S23)
and all the system states, x(t), are measured directly. In practice, only a few outputs/states can be measured and
an estimator is required to estimate the remaining states from input-output data as shown in Figure S2.

The control reference signal, r(t), is chosen as the response of a wild type cell (i.e. without cancer). e(t) is the
error signal between the reference, r(t), and internal states of the plant, x(t). e(t) is fed into the regulation block
of the control scheme; this is where the optimisation problem is solved.

S4.1 Cost Function Derivation

The internal state errors e(t) are calculated and fed into the MPC block at each time step. The MPC controller
uses the model of the plant system to predict the future state error of the system for possible combinations of
inputs, within the problem constraints, over the prediction horizon, N . The controller then optimally chooses the
input profile that results in the minimum of a predetermined cost function, J(U), in the regulator. The inputs of
the first time step of this optimal sequence are then applied to the plant system. At the next time step, the error
in the states is estimated and this process repeats.

Usually, the optimisation problem contains the cost function to be minimised, and the state and input constraints.

min
U

(J(E,U)) st. −U ≤ UL, U ≤ UU ,

where J(E,U) = ETQE+UTRU
(S26)

The model that the regulator sees is a discrete approximations of the NSCLC model for 1 ≤ k ≤ N steps.
E = [e(0), e(1), . . . , e(N)]T describes the current and future predicted state errors. U = [u(1),u(2), . . . ,u(N)]T

describes the future inputs. The weight of the cost function related to each term can vary what is considered the
optimal input. Q weights the error of the states and R weights the use of the inputs [8]. For example, if we

7



want to minimise the use of a drug then the weight of the cost function associated with the inputs, R, should be
relatively large compared to the weight of the state error, Q. Constraints on the input bounds are also included
here (UL ≤ U ≤ UU , in all simulations UL = 0µM and UU = 1µM).

S4.1.1 Linear MPC

If a linear approximation of the model can be produced and represented by a state space, the future behaviour
of the model can be calculated offline and the optimisation problem is convex (for affine constraints). The cost
function can be minimised using a quadratic solver, which is relatively computationally light (MATLAB R2021b’s
‘quadprog’ solver was used here). Here, a state space was used to represent the plant’s model:

e(k + 1) = Ae(k) +Bu(k + 1) y(k) = Ce(k) (S27)

As long as the current state is known, each future state can be estimated for a given input profile, i.e.

e(1) = Ae0 +Bu(1)

e(2) = Ae1 +Bu(2) = A(Ae0 +Bu(1)) +Bu(2)

e(N) = ANe0 +AN−1Bu(1) +AN−2Bu(2) + . . .+Bu(N).

(S28)

Defining a new notation containing all of the states in the prediction horizon we get:

E = Me0 + C̃U

U =


u(1)

u(2)
...

u(N)

 M =


I

A
...

AN

 C̃ =



0 0 . . . 0

B 0 . . . 0

AB B . . . 0
...

...
. . .

...
AN−1B AN−2B . . . B


(S29)

Therefore, the cost function can be rearranged as

J(E(U),U) = ETQE+UTRU

J(U) = (Me0 + C̃U)TQ(Me0 + C̃U) +UTRU

= UT (C̃TQC̃+R)U+ 2eT0 (C̃
TQM)TU+ eT0 M

TQMe0

= UT (Q̃+R)U+ q̃U+ eT0 M
TQMe0

(S30)

The final term in the cost function can be removed as it is constant with respect to the inputs and therefore
will not affect the position of the minimum point; thus,

J(U) = UTRU+
(
UT Q̃U+ q̃U

)
= UT (Q̃+R)U+ q̃U

(S31)

Only the optimal inputs for the first time step are then applied to the plant, u(1), the whole optimisation process
is repeated at the next time step.

S4.1.2 Weighting of the Traditional Cost Function

The cost function as shown in (S30), can be weighted as a balance of using the inputs, γ; the error in all of the
estimated states, α and the error in the outputs, β.
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Q = αI+ β


CTC . . . 0

...
. . .

...
0 . . . CTC


R =


γI . . . 0
...

. . .
...

0 . . . γI


(S32)

where I is an identity matrix. The cost function can be tuned by α, β and γ.

J(U) = UT (Q̃(α, β) +R(γ))U+ q̃(α, β)U (S33)

S4.2 Differential Terms in the Cost Function

The controller can favour to rapidly change input concentrations, which is not ideal for in vitro experiments, where
there might be delays in the actuation, and frequent media change might cause stress to cells. Therefore, a term
related to the gradient of the inputs was added to the cost function to reduce fast variations of the inputs. The
linear approximation of the model used within the MPC simulations is discrete and therefore the derivative is
approximated by the scaled difference between inputs at adjacent time steps.

dU

dt
|k ≈

U(k)−U(k − 1)

Ts
(S34)

Using the squared sum of the derivative of the inputs, the gradient of the steps between the last actual input
and the last step in the prediction horizon can be added to the cost function. Any constant scaling can be dropped
as this would just change the weighting added to the term.

∑k=j+N
k=j (U(k)−U(k − 1))2 =

∑k=j+N
k=j U(k)2 +U(k − 1)2 − 2U(k)U(k − 1)

= U(j − 1)2 − 2U(j)U(j − 1) + 2[U(j)2 + ...+U(j +N − 1)2

−U(j)U(j + 1)− ...−U(j +N − 1)U(j +N)] +U(j +N)2

= UTDU+ dU

(S35)

The gradient can be added to the cost function, J(U), (Equation S33,) through D and d, pre-multiplying by θ.

D = θ



2I −I 0 . . . 0

−I 2I −I . . . 0

0 −I 2I . . . 0
...

...
...

. . .
...

0 0 0 . . . I


d = θ

[
2U(j − 1) 0 0 . . . 0

]
(S36)

where I is a square identity matrix (size equal to the number of inputs).

J(U) = UTRU+
(
UT Q̃U+ q̃U

)
+
(
UTDU+ dU

)
= UT (Q̃(α, β) +R(γ) +D(θ))U+ (q̃(α, β) + d(θ))U

(S37)

Figure 3 demonstrates the effect of the differential cost.
An alternative approach would have been to add the gradient as a constraint into the optimisation problem

preventing the inputs from varying faster than a limiting value. However, this would have merely limited the
maximum rate of inputs’ variation.
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S4.3 Integral Terms in the Cost Function

When controlling a signalling phosphorylation cascades, it is desirable to decrease both the peak and the duration
of an error [9]. Both the duration and the peak are included in the integral of the outputs. Therefore the integral
of the output errors should be added as a term in the cost function. The square of the integral errors has been
approximated.

( ∫ j+N
j

e(t)dt
)2 ≈

∑k=j+N
k=j e(k)2 + e(k − 1)2 + 2e(k)e(k − 1)

≈ e(j − 1)2 + 2e(j − 1)e(j) + e(j +N)2+

2
(
e(j)2 + . . .+ e(j +N − 1)2 + e(j)e(j + 1) + . . .+ e(j +N − 1)e(j +N)

)
≈ ETPE+ pE

(S38)

The first term is constant and is therefore dropped. P and p are weighted by η in the cost function.

P = η



2CTC CTC 0 . . . 0

CTC 2CTC CTC . . . 0

0 CTC 2CTC . . . 0
...

...
...

. . .
...

0 0 0 . . . CTC


p = η

[
0 2CTCeT0 0 . . . 0

]
(S39)

The integral cost is defined in terms of the future state errors E rather than the inputs U. The matrices defined
in Equation (S29) can be used.

ETPE+ pE = (Me0 + C̃U)TP(Me0 + C̃U) + p(Me0 + C̃U)

= eT0 M
TPMe0 +UT C̃TPC̃U+ 2eT0 M

TPC̃U+ pMe0 + pC̃U
(S40)

The constant terms with respect to U can be dropped and the quadratic and proportional terms reorganised.

UT C̃TPC̃U+ 2eT0 M
TPC̃U+ pC̃U = UT P̃U+ p̃U

P̃ = C̃TPC̃ p̃ = pC̃+ (2eT0 M
TPC̃)

(S41)

The cost function, J(U) (from Equation S37), can be formed including the integral of the state error.

J(U) = UTRU+
(
UT Q̃U+ q̃U

)
+
(
UTDU+ dU

)
+
(
UT P̃U+ p̃U

)
= UT (Q̃(α, β) +R(γ) +D(θ) + P̃(η))U+ (q̃(α, β) + d(θ) + p̃(η))U

(S42)

This is the cost function that has been used in all the simulations with different weights. Figure 3A) demonstrates
the effect of the integral cost on reducing both the amplitude and the duration of the outputs.

S4.4 Adaptive MPC

Adaptive MPC describes an MPC control scheme in which the model of the plant changes as the simulation
progresses [10]. Here, it is assumed that the states of the actual plant can be perfectly measured at each step
(as no estimator is used). Our non-linear model of the NSCLC, (S4) - (S23), can then be linearised about these
current measurements of the states, x(k), at each time step. This linear model forms the state space in Equation
S27 and the cost function is reformed at each iteration to better represent the local future dynamics of the plant.
The adaptive linear MPC has a better performance than a single linear model and is less computationally expensive
than using a full non-linear model [11–13].
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S5 Normalisation of Indexes And Bliss Independence

In order to easily compare simulations, it is useful to have an index which summarises the performance of the
controller and the type of input it takes to achieve this performance, EI and DIi, respectively (normalised here
such that multiple plots can be compared within Figure 7.

The Error Index, EI, is the sum of the squared errors of the outputs, calculated by integrating the square of all
the output error signals by using a trapezium approximation of the discrete data:

EI =
∫ T
0
eTCe dt (S43)

The largest EI (worst performance) found in any MPC simulation using the chosen cost function to control y2
(Akt) is the SISO simulation using I1 (EI = 2.75, Figure 4). This has been used to normalise EI to form ÊI.

ÊI = EI
max
γ2/γ1

(EI) =
EI

EII1SISO (S44)

DIi is equivalent to the integration of input profile for each input, Ii:

DIi =
∫ T
0
Ii(t) dt, DIiSISO =

∫ T
0
ISISOi (t) dt (S45)

DIi is normalised by the DIi of Ii’s SISO simulation (I1 and I2 acting on y2 (Akt) and I3 acting on y1 (ERK)
in Figure 4, DI1SISO = 1068, DI2SISO = 546, DI3SISO = 4), producing D̂Ii.

D̂Ii =
DIi

DIiSISO
(S46)

D̂Ii does not give a quantitative measure on the dose of the combined input profile. Within current literature,
there are many methods of trying to summarises the joint effect and toxicity of combination therapies, where
multiple drugs are given together at a determined time point [14]; however these do not look into dynamic dosages
over a given time period. Therefore a combined effect of the drug profiles can be estimated by replacing these static
drug dosages with the normalised Dose Index, D̂Ii.

An Isobole can be defined as Iso = D̂I1 + D̂I2 for these therapies. From this definition our combinations are
all antagonistic. The Bliss Independence formula, BI, assumes that there is no correlation between the two agents.

BI = D̂I1 + D̂I2 − D̂I1D̂I2 (S47)

Our model is deterministic, with each input having a different target molecule, therefore within these in silico
simulations there is no correlation between the inputs. Therefore the Bliss Independence formula can be used to
gauge the combined effect of 2 drugs [15]. All three indexes are used in Figure 7 to compare multiple simulations.

S6 Drug Holidays

Within the adaptive MPC program, the user can set specific time intervals in which the controller does not give
specific drugs or can specify that only one drug can be used at a time, in order to avoid toxicity induced by long
exposure.

A discrete MISO simulation, as described in Section 3.4, where Ts = 1min can be seen in Figure S4. Figure S4
achieves an EI = 1.3533, significantly better than just a SISO simulation in Figure 4 (EI → 1.35 < 1.95 < 2.75)
whilst using a lower Dose Index (DI1 → 645 < 1068 and DI2 → 438 < 546). However in this simulation both
inputs rapidly fluctuate from 0µM to 1µM , therefore a longer time step can be used to reduce the fluctuations.
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Figure S3: A MISO adaptive MPC simulation swapping I1 and I2 to control y2 (Akt). (A) The response of Akt.
(B, C) The inputs used in the simulation. Parameters: Ts = 1min, N = 10, α = 0, β = 0, γ = [1,∞,−] when 0 ≤
t ≤ 600min and γ = [∞, 105,−] when 600 < t ≤ 2200min, θ = 0 and η = 1.
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Figure S4: A discrete MISO adaptive MPC simulation using I1 and I2 to control the concentration of y2(Akt). A)
The response of Akt. B) and C) The inputs used in the simulation. Parameters: Ts = 1min, N = 10, α = 0, β = 0,
γ = [1, 105,−], θ = 0 and η = 1.

S7 Linear vs Non-Linear MPC

All MPC simulations use an adaptive linear MPC controller, where the linear model is based off a linearisation
of a non-linear model of the NSCLC system (S4)-(S23). Using non-linear MPC creates a non-convex optimisation
problem requiring a more complex (and computationally heavy) solver with no guarantee of reaching the global
minimum. The non-linear simulations have used MATLAB’s ‘fmincon’, a gradient based non-linear solver. It is the
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Figure S5: A discrete MISO adaptive MPC simulation using I1 and I2 to control y2 (Akt). (A) The response of
Akt to the inputs in (B) and (C). Parameters: Ts = 30min, N = 10, α = 0, β = 0, γ = [1, 105,−], θ = 0 and η = 1.

fastest appropriate solver in MATLAB R2021b.
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Figure S6: Two MISO MPC simulations using I1 and I2 to control the concentration of y2 (Akt). (A) The response
of Akt to a non-linear MPC controller(−) and an adaptive linear MPC controller (−). (B, C) Inputs I1 and I2 used
in the non-linear simulation. (D, E) Inputs I1 and I2 used in the linear simulation. Parameters: Ts = 1, N = 10,
α = 0, β = 0, γ = [1, 105,−], θ = 0 and η = 1.

Figure S6 compares a MISO response using adaptive linear MPC (−) to non-linear MPC (−). It can be seen that
the non-linear MPC has a lower Error Index of EI = 0.0148 compared to the adaptive linear MPC’s EI = 0.2520.
However, the non-linear MPC had a significantly higher run-time, as expected.

Non-linear MPC would limit the controller’s use in vitro, as the time to process the measurements might be
longer than the data acquisition sampling time. This would then suggest using a larger sampling time, possibly
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causing issues with the controller performance (see Figures 5 and 6). When using the adaptive linear MPC controller,
each iteration of the algorithm is well within the sampling time and enables capturing key dynamics of the system
even though some of the non-linear couplings between the states are lost. It has been shown that a linear MPC is
more than sufficient for controlling gene expressions (e.g. [16]) and therefore in order to use a convex solver, the
linear adaptive MPC has been used.

S8 MPC vs Proportional (P) Control Schemes

All feedback simulations have used an MPC controller. Figure S7 compares the performance of a linear adaptive
MPC controller (−) to a Proportional controller (−). Due to the relatively slow changing outputs, a differential
gain was not used. An integral gain is not used as the output concentration is almost always greater than the
reference, therefore the integral error never resets to zero, leaving the inputs at a non-zero steady state, causing
a high DIi. Therefore a Proportional (P) controller is used. The two gains (for each input) can be tuned such
that the P controller’s initial reaction to the state error results in a relatively low EI, as shown in Figure S7 (−),
however the response is sensitive to the choice of gains. It can be seen in Figure S7 B) and C) that the inputs are
identical, as the controller does not know the dynamics of the plant.
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Figure S7: A comparison of a P(−) and adaptive MPC (−) controller using I1 and I2 to control the concentration
of y2(Akt). (A) The response of y2 (Akt) to a Proportional controller (−) and an adaptive linear MPC controller
(−). (B, C) Inputs I1 and I2, respectively, used in the P simulation. =Proportional gains: KpI1 = KpI2 = 0.001.
(D, E) Inputs I1 and I2 used in the MPC simulation. Parameters: Ts = 1, N = 10, α = 0, β = 0, γ = [1, 105,−],
θ = 0 and η = 1.

In Figure S7 the two controllers obtain a similar performance, but the P controller (−) offers no control on the
inputs used. The P controller does not achieve robust control, as the low EI is as an effect of the finely tuned gains
reacting to the initial error in the output, whereas the adaptive MPC controller (−) can be tailored for specific
inputs’ choices.
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S9 Identified Model with a Kalman Filter

Experimentally, the controller does not have access to noise free measurements of all the internal states. To
replicate more closely experiments, we therefore made use of a Kalman filter to estimate the states that cannot be
measured [17], iteratively improving the estimates of the unknown states by using an estimator gain with faster
dynamics than the NSCLC system. This gain is optimally chosen to minimise the variance between the measured
output and the output of the model including all the estimated states. Crucially, this estimator only has access
to the output measurements and will subsequently estimate all the internal states required for the adaptive MPC
program.

Thus far it has been assumed that a non-linear model of the system of interest exists. Although this is true
for the NSCLC system, this is seldom true for other biological systems. Therefore, as discussed in Section 3.5, a
reduced order model can be identified from input/output data and used within the Kalman filter to estimate the
internal states of the reduced order model from the output and used within the MPC program to predict the future
behaviour of all the internal states, but most crucially the outputs.

S9.1 Data for Model Fitting

For a given control scheme it is possible to measure various input/output data sets, which can be used to identify
a model of the system. Here, the training data for model fitting consists of 91 simulated experiments sampled
every minute for 1500 minutes. The first experiment is a free response. The next 30 are random series of smaller
step changes of 0.2µM . Starting from a random initial concentration of 0, 0.2, 0.4, 0.6, 0.8 or 1µM according to an
uniform distribution, then using a uniform distribution with an 80% chance of staying at the same concentration,
10% chance of increasing by 0.2µM and a 10% chance of decreasing by 0.2µM , limited to a maximum concentration
of 1µM and a minimum of 0µM . The inputs can change every 20 minutes. Out of the 30 experiments, 10 use only
I1, 10 use only I2 and 10 use both inputs. The next 30 experiments are unit steps, with a step increasing from
0µM to 1µM at a random time, initiated by a normal distribution with a mean between the reference peak and the
free response peak, a standard deviation of 200 minutes and a duration according to a uniform distribution with a
maximum duration of 500 minutes, after which the input steps down from 1µM to 0µM . 10 experiments use only
I1, 10 use only I2 and 10 use both inputs. The final 30 experiments are random unit ramps, with the points where
the ramp leaves and returns to the x-axis set by normal distribution, with a mean of 200 minutes and 800 minutes
respectively and a standard deviation of 200 minutes. The peak of the ramp is 1µM at a time set by a uniform
distribution between the two points where the input is not zero. Similarly 10 experiments use only I1, 10 use only
I2 and 10 use both inputs.

S9.2 Linear Model Identification

In order to use the controller in its current adaptive form (successive linearisations), the model needs to be non-
linear with a known consistent structure to be linearised at each time step. Therefore a Grey box model needs to
be used (as opposed to a black box), where the structure of the model is set and parameters within the model are
estimated. Initially a linear Grey box model has been estimated using MATLAB’s ’GREYEST‘ function as in [18],
using the 91 data sets as discussed and the structure shown.

Due to the size of the problem, it has been decided to identify a model for y2(Akt) in response to I1 and I2 in
order to simulate this MISO response.
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x = [pEGFR; pIGF1R; pAkt]T u = [I1; I2]
T

ẋ =

p1 p2 p3

p4 p5 p6

p7 p8 p9

x+

p10 p11

p12 p13

p14 p15

u

y = [0, 0, 1]x

(S48)

The only constraints on the model structure are that the initial conditions of EGFR and IGF1R in the full
order model are the initial conditions of states one and two in the reduced order model, and that the third state
represents the output y2(Akt).

The initial estimate for each of the 15 parameters was set to zero and the ’fmincon‘ optimiser within the
’GREYEST‘ function was selected. The identified parameters can be seen in Table S4. The linear model achieves
a 91.24% fit to the free response and an FPE = 3.73603× 108 (The Akaike Final Prediction Error used within the
identification toolbox, representing the optimal cost function value, scaled by the number of estimated parameters
and data used).

S9.3 Non-Linear Model Identification

It has been assumed that the non-linear dynamics within the input/output data can be modelled by a quadratic
couplings between the states, as discussed in [19]. Therefore the non-linear reduced order model is identified by
using a ’best-case’ linear model and then identifying the quadratic parameters that improve the model. MATLAB’s
’NLGREYEST‘ function can be used with the ’lm’ optimisation option to identify the non-linear grey box model as
shown, all of the fixed parameters are denoted as p∗i and are taken from the linear model in Section S9.2, whereas
all the parameters to be identified are pi, with an initial estimation of zero.

ẋ =

p
∗
1x(1) + p∗2x(2) + p∗3x(3) +p∗10u(1) + p∗11u(2) +p16x(1)x(2) + p17x(2)x(3) + p18x(3)x(1)

p∗3x(1) + p∗5x(2) + p∗6x(3) +p∗12u(1) + p∗13u(2) +p19x(1)x(2) + p20x(2)x(3) + p21x(3)x(1)

p∗5x(1) + p∗8x(2) + p∗9x(3) +p∗14u(1) + p∗15u(2) +p22x(1)x(2) + p23x(2)x(3) + p24x(3)x(1)

 (S49)

y =
[
0 0 1

]
x = [pAkt] (S50)

Therefore it can be seen that 15 of the parameters are estimated in the linear grey box identification and the
remaining 9 are estimated in the non-linear grey box identification. All identified parameter values can be seen
in Table S4. The non-linear model achieves a 91.50% fit to the free response and an FPE = 2.90675 × 108 (used
within the identification toolbox as an index of fit).

S9.4 Combination Therapies

As in Section 3.3, the weight of each input within the cost function can be varied in order to produce different input
profiles which achieve a similar performance. Figure S8 is plotted in the same way as Figure 7 but for the reduced
order model within the adaptive MPC alongside a Kalman filter. It should be noted that the normalising values for
the reduced order model are different, with max

γ2/γ1
(EI) = EII1SISO = 5.538, DI1SISO = 1103 and DI2SISO = 1224

instead of EII1SISO = 2.7495, DI1SISO = 1068 and DI2SISO = 546 from the full order model simulations, meaning
that the BI of the reduced order model(Figure S8) appears lower than the BI of the full order model (Figure 7);
however this is biased due to the normalisation of DI2 by a considerably higher DI2SISO.
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Linear Parameters Value (min−1) Non-Linear Parameters Value (min−1µM−1)
p1 1.84876560679288 p16 3.01715352715229e-10
p2 0.934424758794504 p17 4.23335038416439e-10
p3 -0.0552763825589960 p18 -7.44239585208250e-10
p4 -1.68009991335114 p19 6.67918779037395e-10
p5 -0.841260457140930 p20 1.69580767933824e-10
p6 0.0807205160834991 p21 -3.52482688591449e-10
p7 0.0160117099422266 p22 -1.80823509525499e-10
p8 0.0162103314558821 p23 -1.65822059757745e-09
p9 1.00272432189185 p24 -1.14930484477929e-09
p10 12975.8419361687
p11 25308.3253870871
p12 -24704.7367491077
p13 -47698.9440594388
p14 0
p15 0

Table S4: Identified parameters for the linear and non-linear reduced order models.

Figure S8 shows that for the reduced order model there is a range of R which can significantly reduce both EI
(−) and BI (−). Therefore, the control performance of the MISO controller is better than any SISO simulation
while keeping drug concentrations low. The optimal input is associated to the minimum value of the EI (−) with
the MISO response shown in Figure S9.

When comparing the full order model in Figure 7 to the reduced order model in Figure S8, it can be seen that
there is a larger region of R in the reduced order model in which the error, EI, decreases. Using this identified
model, MPC predicts that the inputs will have less of an effect on the output, when compared to the full order
model. Therefore, the cost function decides to use more of each input for the same weightings. This suggests that in
order to quickly identify the weights in the cost function that produce this optimum, a better model of the system
would result in a sharper decline of EI to this optimum.
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Figure S8: MISO adaptive MPC simulations based of a three state model identified from input/output data including
a Kalman filter to estimate the internal states from the measured output. Using I1 and I2 to control y2 (Akt) with
a range of weights for the inputs. Parameters: Ts = 1min, N = 10, α = 0, β = 0, θ = 0 and η = 1.
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Figure S9: Two MISO adaptive MPC simulation based of a three state model identified from input/output data
including a Kalman filter to estimate the internal states from the measured output, comparing the adaptive model
to the linear model. Using I1 and I2 to control y2 (Akt). (A) The response of Akt to the inputs in (B) and (C).
Parameters: Ts = 1min, N = 10, α = 0, β = 0, γ = [1, 105,−], θ = 0 and η = 1.
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