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METHODS 

Statistical analysis of FIV transmission networks 

 To determine factors structuring FIV transmission networks, we used an exponential 

random graph modeling approach (ERGM). As described in the main text, ERGMs model the 

edges in networks, with explanatory variables representing the potential structural drivers of the 

observed network (1). We considered a suite of network structural variables (also called dyad-

dependent variables; see main text), which can account for the non-independence in network 

data, and our key transmission predictors of interest (dyad-independent variables). When 

evaluating unweighted (binary), undirected networks, dyad-independent variables operate like 

explanatory variables in a logistic regression, and can include both node-level variables (e.g., 

node age or sex) and edge-level variables (e.g., genetic distance). Further, node-level variables 

can be evaluated as continuous or categorical variables (e.g., are males involved in more 

transmission events?), but can also test for difference or matching relationships which capture 

homophily within the network (e.g. do more transmission events occur between male/female 

dyads or same-sex dyads?). In keeping with ERGM analysis terminology, categorical node 

variables are referred to as node factor, continuous as node covariate, matching relationships 

as node matching, mixing relationships (not constrained to homophily) as node mixing, and 

continuous edge variables as edge covariate (1,2). 

 Among the dyad-independent variables we examined in our ERGM analysis (see main 

text), we evaluated panther sex and age class as both node factors and node mixing variables. 

For panther age class, subadults were classified as individuals between the ages of 6 months 

and two years, and adults classified as individuals over two years of age.  
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Our ERGM analysis also included several spatial variables. Home range centroids were 

used in the generation of several of these variables and were determined by first estimating 

95% minimum convex polygon (MCP) home ranges for telemetry-monitored panthers. To 

estimate these MCP home ranges, we used only those telemetry data collected in the 12 

months after an individual’s initial capture, and only for those individuals with at least 30 

relocations in that time period. MCPs were generated with the adehabitatHR package in R (3), 

and centroids were calculated using the rgeos package (4). Our priority was to capture the 

range of panther-occupied landscape, so we also incorporated point locations for individuals 

without at least 30 telemetry relocations. For these point locations, we prioritized using the 

location of an individual at capture; if this information was not available, we instead used the 

telemetry relocation collected closest to the date of capture. For the main FIV network, this 

approach resulted in 11 point locations from MCP centroids, 7 were capture locations, and 1 

was a relocation closest to capture date. Hereafter, these locations are referred to as centroids.  

Major roadways have been shown to alter puma (Puma concolor) movement in North 

America (5), so we hypothesized that panthers would be more likely to transmit to panthers on 

the same side of Florida’s major I-75 freeway as themselves. Our ERGM analysis therefore 

included a node-matching variable for location of panthers’ centroids north versus south of the I-

75 freeway (which runs east-west through panther habitat), defined as latitude 26.15. We further 

hypothesized that panthers closer to urban areas would face greater competition for resources 

and therefore be involved in more transmission events due to increased fighting behaviors. We 

therefore also examined a node covariate term for distance to the nearest urban area (in km). 

We used the “near table” function in ArcGIS to determine the distance of each centroid to the 

closest urban area edge, defining urban areas using the USA Urban Areas layer publicly 

available in ArcGIS (Census 2010 Urbanized Areas and Clusters; [6]). We included pairwise 

geographic distances between panthers using distances between centroids (in km), and log-

transformed this edge covariate for ERGM analysis (Figure S1). Lastly, we hypothesized that 
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panthers with overlapping home ranges would be more likely to transmit to each other, so we 

included a spatial overlap edge covariate based on the pairwise utilization distribution overlap 

indices (UDOI) of 95% bivariate normal home range kernels (7), using the default settings in the 

adehabitatHR package in R (3). Of note: UDOI assesses overlap between utilization 

distributions, such that the home range kernels used in this analysis are distinct from the MCP 

home ranges used to estimate centroid locations.   

For our pairwise relatedness variable (see main text), we used previously published 

microsatellite data (8). One individual in the FIV transmission networks lacked microsatellite 

data, but had known pedigree sibling relationships with other individuals in the transmission 

networks (9). In order to preserve available data (ERGMs cannot operate with missing data), we 

interpolated sibling relatedness values for this individual using mean relatedness values from 

other known sibling pairs. Non-sibling relationships for this individual were conservatively 

interpolated at population mean relatedness, functionally assuming no relatedness.  

Goodness of fit for ERGMs was performed using the ergm package in R (10). We 

evaluated fit for degree distribution, geodesic distance, and triad census (“degree”, “distance,” 

and “triadcensus” terms, respectively). Model selection included evaluation of AIC and 

improvement to goodness of fit, using these terms.  
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Figure S1: Histogram of raw (untransformed) pairwise distances between centroids.  

 

Panther centroid simulation 

Because pairwise geographic distances were found to be significant in ERGM analysis 

of FIV transmission networks (see main text), in order to simulate potential transmission 

pathways among panthers, we also had to simulate these geographic pairwise distances. We 

did so by simulating home range centroids based on the empirical panther population. 

Simulated centroids were generated by plotting the observed MCP centroids from 2002-2004; 

the polygon encompassing these centroids was then split into 70 quadrats, and simulated 
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centroids were randomly drawn from these quadrats, according the proportion of the observed 

population that was found within each quadrat. This functionally kept much of the heterogeneity 

in distribution of home range centroids across panther habitat. Pairwise distances were then 

calculated between simulated centroids and log transformed, as was done to calculate pairwise 

distances for the original ERGM analysis (see main text).  

 

Overlap-based networks 

To compare FeLV transmission predictions from FIV-based networks against simpler 

model types, we generated spatial overlap-based networks, through which we also simulated 

FeLV transmission (see main text). To do so, we first generated networks of utilization 

distribution overlap index (UDOI) spatial overlap (with 95% bivariate normal kernel) among 

collared panthers in each year from 2002-2004 (three total networks; [3]), considering an edge 

to exist if UDOI was greater than 1. We calculated the degree distribution from each of these 

networks, and fit a negative binomial distribution to the degree distribution for each year using 

the fitdistrplus package in R (11). We took the means of the parameter values for the resulting 

three negative binomial distributions to create a single “summary” negative binomial distribution. 

We simulated new overlap-based networks using this summary negative binomial to draw 

degree distributions, and then used simulated annealing (12,13) to generate random networks 

based on the drawn distributions. Because simulated overlap-based networks were informed by 

degree distributions, they were not spatially explicit, but represent data typically available in 

long-term wildlife monitoring studies.  
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Table S1: Network and transmission simulation parameters 

Parameter Definition Range Reference 

Pop_size Population size 80-120 (14) 

Adult_prop Proportion adults versus subadults 0.82-0.99 (15) 

Net_dens Simulated network density 0.05-0.15 NA 

β 
Probability of transmission from progressives, 
given effective contact 0.17-0.29 (16) 

C 

Constant multiplier for probability of 
transmission from regressives, given effective 
contact 0, 0.1, 0.5, 1 NA 

! Weekly probability of contact 0.1-0.4 (17) 

𝜇 
Weekly probability of death from progressive 
infection 1/18, 1/26* (18) 

K 
Constant multiplier for weekly probability of 
recovery from regressive infection 0.5, 1 NA 

𝜈 
Weekly probability of territory repopulation 
("respawn rate") 1/12-1/4 NA 

𝜏 Weekly probability of vaccination 0.5-1 NA 

ve Probability of vaccine efficacy 0.4-1 (18) 

P 
Proportion randomly assigned to each of the 
progressive and, regressive states† 0.25 (18) 

Note: Parameter gives parameter symbols or abbreviations; definition gives the description for 

each parameter. Range shows the continuous range or discrete values sampled from in 

simulations, with references giving literature supporting ranges or values. *We tested a lower 

death rate (prolonged duration of infection) due to the low number of observed panther cases 

and the generally longer infection duration in domestic cats (19). †The proportion randomly 

assigned to the abortive state was therefore 1-2P (0.50).  
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Gillespie algorithm 

 We also compared FeLV transmission predictions from FIV-based networks to 

predictions from a homogeneous mixing model: in this case, a Gillespie algorithm (stochastic, 

time-to-event model). This model was specified in order to align with the chain binomial network 

model specifications (Figure 2; main text), resulting in the following rate functions: 

 

Susceptibles infection rate = !"#*Net_dens*S(Ip + C*Ir) 
 

Vaccinates infection rate = !"#*(1-ve)*Net_dens*V(Ip + C*Ir) 
 
Progressives mortality rate = 𝜇Ip 
 
Recovery rate = 𝜇*K*Ir 
 
Respawn rate = 𝜈D 
 
Vaccination rate (after one simulation year) = 𝜏*S/N 

 

In the above rate functions, N is the total population, S is susceptibles, Ip is progressively 

infected individuals, Ir is regressively infected individuals, V is vaccinated individuals, and D 

marks unoccupied territories after death of the prior occupant and prior to “respawning” (as in 

network models). All other parameters are as in Table S1. Of special note, Net_dens represents 

the density of networks from network transmission models, and here functions as a population 

size-scaled contact rate. This contact rate is further modified by the weekly probability of 

contact, 𝜔, as was done in network models (see main text). The vaccination rate is scaled by 

population size as vaccination was applied to the whole population in both network and Gillespie 

models, but only susceptibles could transition from susceptible to vaccinated. 
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FeLV spatial analyses 

 To test for spatial clustering of FeLV in the observed panther outbreak, we used a 

dataset of FeLV qPCR results (n = 31), in which 12 individuals tested positive. We used a 

circular window with a maximum spatial cluster of 50% of the population at risk. In addition, we 

used the same data to test for global clustering using Cuzick and Edward’s test with the 

smacpod package in R (20,21). Here, we evaluated nearest neighbor levels (k) of 1, 3, 5, 7, 9 

and 11, and used 999 iterations for inference. We used these same parameterizations for 

SaTScan and Cuzick and Edward’s analyses of FeLV simulations, with the exception that we 

only evaluated k = 3, 5, and 7 for simulated data (see main text).  

 

FeLV prediction target ranges 

When comparing FeLV simulation predictions against observations from the historical 

outbreak, we used several “target” ranges for outbreak duration and the number of progressive 

infections. More specifically, the empirical outbreak is considered to have occurred from July 1, 

2002 - June 30, 2004 (104 weeks), but due to uncertainty in the precise duration of the historical 

outbreak, we considered a simulated duration of 78-117 weeks to be “on target.” During the 

observed outbreak, 5 individuals were documented with progressive (or transient) infection. 

Panthers are cryptic, difficult-to-observe animals, resulting in uncertainty in detection of all 

progressive infections and full population size at the time. We therefore considered 5-20 

progressive infections in simulations to be on target. 

While our primary focus was progressive infections, we also included an expectation that 

at least 5 individuals were abortive infections. Empirically, these individuals were the most 

numerous, but as they were not clinically ill, abortive infections were less likely to be detected in 

normal panther management; we therefore did not include an upper bound for this target. 
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RESULTS 

Table S2: FIV transmission network characteristics 

Transmission network Network metric Estimate 

Main FIV network 

Nodes 19 

Edges 42 

Density 0.25 

Mean degree 4.42 

SD degree 3.88 

Summary network with window 
overlap 

Nodes 20 

Edges 43 

Density 0.23 

Mean degree 4.30 

SD degree 4.04 

Summary network without window 
overlap 

Nodes 20 

Edges 35 

Density 0.18 

Mean degree 3.50 

SD degree 3.35 
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Table S3: Best ERGM results for each FIV transmission network 

Transmission network Variable Estimate SE p-value 

Main FIV network 

Edges (intercept) -2.56 1.33 0.055 

gwesp 0.98 0.26 <0.001 

altkstar -0.70 0.96 0.47 

Age (Adult) 0.93 0.44 0.03 

Log pairwise distance -0.45 0.21 0.03 

Summary network with 
window overlap 

Edges (intercept) -0.15 1.48 0.92 

gwesp 1.03 0.31 <0.001 

altkstar -3.51 1.22 0.004 

Age (Adult) 1.36 0.61 0.02 

Log pairwise distance -0.63 0.22 0.004 

Summary network 
without window overlap 

Edges (intercept) -2.76 1.33 0.038 

gwesp 1.03 0.32 0.001 

altkstar -2.17 0.99 0.029 

Age (Adult) 1.03 0.57 0.073 
Note: “gwesp” is geometrically weighted edgewise shared partner distribution (a representation 

of triangle structures) and “altkstar” is alternating k-stars (a representation of star structures). 

Age classes were subadult and adult, with subadults the reference level; pairwise distances 

were between home range centroids and log-transformed. Only those variables from the final 

model are shown. Estimates shown are not exponentiated; SE represents standard error; p-

values less than 0.05 were considered statistically significant.  
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Figure S2: With Figure S3, best ERGM for main FIV network showed reasonable goodness of 

fit across standard goodness of fit metrics: (A)degree, (B) minimum geodesic distance. Boxplots 

show model predictions; solid black lines observations. 
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Figure S3: With Figure S2, best ERGM for main FIV network showed reasonable goodness of 

fit across standard goodness of fit metrics: (A) model statistics, (B) triad census. Boxplots show 

model predictions; solid black lines observations. 

 

Post hoc random network ERGM analysis 

Because there were some differences between ERGM results from the three FIV 

transmission networks (main text; Table S2), we performed a post hoc random network analysis 
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to determine the consistency of our results against “null” random networks. Using the same 

panthers and descriptive data from the main FIV transmission tree, we rewired this transmission 

network as an Erdős-Rényi random network of the same density and fit an ERGM with the same 

variables from our main ERGM. We repeated this procedure 50 times, recording variable 

coefficients with each iteration. We then compared the distribution coefficients from simulated 

random networks to those from our three ERGMs, finding strong consistency among our ERGM 

coefficients relative to those from random networks (Figure S4). 

 

 

Figure S4: Fitting the predictors from the best ERGMs to random networks (based on the main 

FIV network) shows that all three best models give largely consistent coefficient estimates. 

Boxplots show coefficient estimates from 50 random networks. Red diamonds are estimates 
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from the main FIV network ERGM; blue triangles are estimates from the summary network with 

window overlap; purple squares are estimates from the summary network without window 

overlap. Note that the primary inconsistency between models is that the summary network 

without overlap did not identify log pairwise distances as a significant predictor.  

 

FeLV spatial analyses 

 As reported in the main text, SaTScan analysis of observed FeLV status found weak 

evidence of spatial clustering (two clusters detected, but not statistically significant with p=0.165 

and 0.997, respectively; Figure S5). 
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Figure S5: Map of observed panther centroid locations and FeLV status (red = qPCR positive, 

blue = qPCR negative). The red dashed circle shows the location and size of the top SaTScan 

cluster candidate, though this cluster was not considered statistically significant (p = 0.165).  

 

FeLV simulations 

 Main results of the generalized linear mixed model (GLMM) for FeLV predictive model 

performance (see main text) are given in Table 2 in the main text (homogeneous mixing model 

was reference group; for parameter set random intercepts: variance = 0.90; standard deviation 

= 0.95). While the FIV-based approach did not show statistically significant improvements in 

performance, it did trend toward best performance, having the highest number of “feasible” 

parameter sets (Figures S6, S7). 
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Figure S6: Boxplots of total number of progressive infections from parameter sets classified as 

“feasible.” Results are shown for model types (A) FIV-based network, (B) well-mixed 

compartmental model, (C) random network, and (D) overlap-based network. Parameter set on 

the x-axis represents the unique parameter set drawn from our LHS sampling design; for 

example, set 1 for the FIV-based model type is identical to set 1 for random network model type, 

but feasible sets are not necessarily the same across model types. 
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Figure S7: Boxplots of duration of simulated epidemics from parameter sets classified as 

“feasible.” Results are shown for model types (A) FIV-based network, (B) well-mixed 

compartmental model, (C) random network, and (D) overlap-based network. Parameter set on 

the x-axis represents the unique parameter set drawn from our LHS sampling design; for 

example, set 1 for the random network model type is identical to set 1 for the overlap-based 

network model type, but feasible sets are not necessarily the same across model types. 

 

 SaTScan results for simulated FeLV cases and controls are given in the main text. 

Cuzick and Edward’s tests found evidence of global clustering of simulated FeLV cases with 

both the FIV and overlap-based models. However, for simulations with p-values less than or 

equal to 0.1, the FIV-based model was moderately more likely to capture the strength of global 

clustering (observed/expected test statistic, Tk, ratio) from the empirical FeLV data (Figure S8).  
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Figure S8: Observed/Expected test statistics (Tk) for Cuzick-Edwards tests performed with FIV 

and overlap-based predictions of FeLV transmission. Shown are results from feasible parameter 

set simulations in which Cuzick-Edwards test results had p-values less than or equal to 0.1. 

Plots represent the neighbor levels that demonstrated statistically significant clustering for the 

empirical FeLV data: (A) k = 3; (B) k = 5; (C) k = 7. The red horizontal line in all cases is the 

Observed/Expected Tk ratio for the empirical FeLV data.  

 

Variable importance analysis 

To better understand the importance of FeLV transmission parameters in generating 

“feasible” results, we performed a post hoc random forest analysis for each model type, with 

“feasible” as a binary outcome for each parameter set (as in [22]). Predictors were the FeLV 

transmission transmission parameters, and data were split into 80% training/20% testing data 

sets. Because few parameter sets were categorized as feasible, we tested different resampling 
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strategies for balancing the data. These included no resampling, down sampling, up sampling, 

up/down sampling, and SMOTE sampling (R package DMwR; [23]). The sampling protocol that 

produced the highest balanced accuracy was carried forward for analysis. In addition, we 

optimized hyper-parameters for the final random forest model. All random forests were 

performed using the randomForest package in R (24). Across all model types, final random 

forest results tended to show poor balanced accuracy, low area under the curve (AUC; 

observed as low as AUC of 0.5) results, and were often inconsistent between repetitions (i.e. 

changes to training/testing data sets). Example random forest output for the FIV-based model is 

shown in Figures S9 and S10 for transparency, but should be interpreted with caution. Of 

particular note, however, was that C, the modifier shaping potential transmission from 

regressively infected individuals, had a strong tendency across model types to show best 

performance at C = 0.1 or 0.5 (Figure S11); this would support the possibility of low 

transmissibility of regressively infected individuals. See main text for further discussion of this 

finding.  
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Figure S9: Variable importance plots for the FIV-based model. While AUC was 0.889 for this 

random forest analysis, results were inconsistent between random forests and should be 

interpreted with caution. Variable names are given on the x-axis (see Table S1). Mean decrease 

in accuracy scores is given on the x-axis in the left panel; mean decrease in Gini index on the x-

axis in the right panel.  
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Figure S10: Partial dependence plots for the FIV-based model, ordered based on variable 

importance observable in Figure S9 (according to mean decrease in accuracy scores; highest 

importance in top left). While AUC was 0.889 for this random forest analysis, results were 

inconsistent between random forests and should be interpreted with caution. For example, note 
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that partial dependence results differ quantitatively for the C parameter between this figure and 

Figure S11, though they are qualitatively consistent. Variable names are given in plot titles and 

x-axes (see Table S1).  

 

 

Figure S11: Partial dependence plots for the C parameter, which was a constant multiplier for 

probability of transmission from regressives, given effective contact. Because random forest 

analyses were sensitive to sampling, the plotted results are from random forest models in which 

the area under the curve was greater than or equal to 0.8. All models but homogeneous mixing 

showed at least some support for values of C greater than 0 but less than 1.  
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