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1 Appendices

1.1 Proof: The Even-Power Loss
Function Modulates Weights Con-
tinuously

Now we consider the equation (4) case
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for m,n both even. In this case, the convergence
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and therefore
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(We do not need to worry about encountering com-
plex numbers here; since we stipulated n must be
even, n − 1 must be odd, and the n − 1th root of a
negative number is real and negative.) Again we use
a self-consistency argument to relate wijks and yi:
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In the case m = n = 2, we have
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and so
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In the limit β → 0, L →
∑
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ijks = −4αβL, so L =

L0e
−4αβt, and the loss decays exponentially in both

limits, though faster with increasing β, the trade-
off for that, of course, is that yi is decreased away
from y′i. We can also say that the error produced is
‘bounded’, since we have 0 < yi <= y′i for y

′
i > 0 and

0 > yi >= y′i for y
′
i < 0.

In the more general case where m = n, the conver-
gence equation becomes
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and therefore we have equation (9).
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1.2 Proof: Activation Functions Pre-
vent Convergence Entirely For
Some Input Ranges

Now we consider the inclusion of activation functions.
To reiterate: we have two inputs, xi and xj , which are
fed into a hidden layer of nodes. The node indexed by
k within this layer has output vk = akixi+akjxj+bk,
and our final guess y is made by combining the out-
puts of the hidden layer, each fed through an activa-
tion function, such that y =

∑
k ckϕ (vk)+δ. Our loss

function is L = (y − y′)
2
+β

∑
k a

2
ki+a2kj+b2k+c2k+δ2.

Taking the derivative with respect to each weight and
setting them to zero at convergence, we have
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β
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where θ(νk) denotes the Heaviside step function.
Substituting these values into our expression for νk,
we obtain
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since the form of the activation function absorbs
the Heaviside function. This has two solutions: either
vk = 0 or, for vk > 0, |y − y′| = β√

x2
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. Here we

return to self-consistency arguments. Using the defi-
nition y =
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k ckϕ (vk) + δ, we substitute in conver-
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least one node has a nonzero output); so to avoid a
contradiction, we must have y′ < − β+1√
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turning to our expression for |y − y′| and choosing
the negative configuration y − y′ = − β√
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x2
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we cannot have convergence if at least one node has
a nonzero output (which it must in order for the net-
work to be ‘working’ at all).

1.3 Aside: Hyperparameters in Elas-
tic Regularisation Can Have Un-
bounded Effects

Now we turn to the case of elastic regularisation,
given by the loss function
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∑
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Taking the derivative with respect to any given
weight, we have
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If wijks is non-negative, we have at convergence
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We assume that, by construction, β1, β2 ≥ 0, since
if one or both were negative the regularisation term
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would either be minimised as wijks → ∞ or have a
minimum for some wijks > 0. So to place a limit
on yi, we must consider two further sub-cases: where
the term xk

i x
s
j > 0 and so we have
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i x

s
j = 0, no associated weight can exist; firstly

for the practical reason that the term adds nothing
to our description of the system and so we should not
include it, and secondly because we then either have
wijks = − β1

2β2
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< 0, both of which

are contradictions since β1, β2 ≥ 0.)
An identical series of arguments leads us to the
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It is worth standing back here and considering
what we have found. For every weight wijks and term
xk
i x

s
j contributing to yi, one of the above conditions

must apply, depending on the relative sign of the de-
scriptors. But these are not independent conditions:
two of them, for the weight and term having the same
sign, fix yi > y′i, and the other two, for weight and
term having the opposite sign, fix yi < y′i. So we
must identify two ‘regimes’ for the value of yi. In
one, yi < y′i, and every weight contributing to it
has the same sign as its corresponding term; then
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which rearranges to give
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Similarly, there is a solution in the ‘opposite-sign
scheme’ where yi < y′i:

yi =
y′i +

β1
∑

jks|xk
i x

s
j |

2
∑

jks x2k
i x2s

j

1 + β2∑
jks x2k

i x2s
j

(25)

Here, β2 plays the role of the hyperparameter β
in the m=2, n=2 single-regulariser loss function dis-
cussed above. β1, however, has a very different ef-
fect. Instead of pushing the ratio yi

y′
i
between zero

and unity, it defines a ‘distance of closest approach’,
a minimum difference between yi and y′i which cannot
be overcome by setting β2 to a particular value. Un-
like β2; it has an unbounded effect on yi; as β1 → ∞,
yi is pushed away from y′i and towards an infinity. Be-
cause it can force the output guesses, and therefore
the weights, to be of unlimited magnitude, it does not
follow that β1 makes the system uniformly ‘simpler’
by any definition. There is also a stronger condition
on convergence: for the solution where yi < y′i, then
yi ≤ y′i −

β1

2|xk
i x

s
j |

for all contributing terms, and for

yi ≥ y′i, we must have yi ≥ y′i +
β1

2|xk
i x

s
j |

for all terms;

so the mere inclusion of terms with very small mag-
nitude can wreck our accuracy at convergence.

1.4 Aside: Cost Analysis and Suit-
ability Metrics for White-Box Al-
gorithm

If we decide to represent our system using a polyno-
mial of Mi terms, and we allow the exponents kim
and sim in zim = xkim

i xsim
jim

to take each of K possi-

ble values, then we have Qi =
(NK2)!

Mi!(NK2−Mi)!
possible

terms for the description of output guess yi, for a
system of N nodes. We fit coefficients for each set of
terms sequentially.

We can place limits on the cost of running this
algorithm. To find the best Mi-term description of
an output guess, we must find Qi(Mi) sets of co-
efficients using Cramer’s rule, which can be evalu-
ated in O(M3

i ) time [12]. In the case where there
are many more possible terms than we are seeking to

use, Mi ≪ NK2, this has cost Ci ≈
(NK2)

MiM3
i

Mi!
; in
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the worst case, where 2Mi = NK2, the cost becomes

Ci ≈
(
NK2

)3
2NK2−3, though it is difficult to imag-

ine what the utility of such a long description might
be to any modellers of very large systems.
The simple L2 loss function allows us to easily

choose the most suitable Mi-term polynomial de-
scription of the guess yi(t). In order to choose the
best overall value of Mi, we must develop a new met-
ric: generalisability. Our aim is to develop the most
accurate possible description of the system using the
fewest possible terms; as we increase Mi to infinity,
the terms we add will become spurious overfits, in-
creasing the ‘accuracy’ of the system according to the
loss function but failing to actually describe the laws
obeyed by the system. We therefore define the gen-
eralisability metric: having calculated the best set of
coefficients for a givenMi, {fim(Mi)}, we re-compute
them R times and denote these guesses {fim(Mi)}r.
Each re-computation will involve randomly choos-
ing Mi timepoints; if Mi is large enough to produce
an overfit, then the coefficients we generate will be
highly dependent on the chosen timepoints, and we
will be unable to generate the same values R times.
The generalisability for a set of guesses {yi} and poly-
nomial lengths {Mi} is defined

G ({Mi}) =
∑
i,m

√∑
r

(
fimr (Mi)− fim (Mi)

)2∣∣f im (Mi)
∣∣

(26)
i.e. the ratio of the standard deviation of recompu-
tations of a weight to the magnitude of its average,
summed over all coefficients in the system.
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