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Data analysis for the Generalized Linear Models 

 

The Generalized Linear Models (GLM) were implemented to explain distribution patterns 

(density and mean size) according to environmental factos, considered two response variables: 

1) density and 2) mean size, both per replicate. Mean sizes of transects had a positive tail and, 

for this response variable, the analyses (partial and multiple regressions) were ran with a 

gamma distribution and a logarithmic link function. Density presented a zero-inflated 

distribution, typical of fisheries data, with unbalanced CPUE records depicting a point-mass at 

zero, a positive tail and non-negative values (Figure S1). 

 
Figure S1. Data distribution of two response variables with a point-mass at zero: density and proportion of 

individuals on sand substrate, considering the two sample substrates (sand and rock) 

 

For this response variable, a Tweedie distribution was used, which can deal with excessive 

zeroes (Tweedie, 1984; Shono, 2008). The Tweedie distribution is part of the exponential 

family of distributions and is defined by a mean (μ) and a variance (φμp), in which φ is the 

dispersion parameter and p is an index parameter (Tweedie, 1984). It can express the Poisson, 

Gamma or inverse Gaussian distributions if the power-parameter (p) is adjusted to 1, 2, or 3, 

respectively (Shono, 2008; Ma et al., 2018). For the present case, using abundance data based 

on non-negative values with a probability mass at zero and highly right-skewed, the power-

parameter must be greater than 1 and less than 2 (Wood et al., 2016). The R package mgcv 



implements the Tweedie family directly into a gam() function that was implemented without 

smooth terms, via the maximum likelihood method and with a log-link function. For mean size 

a GLM function was implemented with the same predictor variables, using a Gamma 

distribution and a log-link function. For both response variables, after fitting the full models, 

including all variables, a model selection was conducted based on a set of functions from the 

package MuMIn (Bartoń, 2020): i) run all possible models with the different combinations of 

predictor variables via dredge() function ; ii) rank models according to the corresponding AIC 

values (Akaike Information Criterion); iii) models meeting the condition ∆AIC<2 were 

considered for further inference (Burnham and Anderson, 2002). At this point, either one model 

is selected, with a ∆AIC higher than two regarding the model of the following position or 

several models are considered to have similar explanation power; iv) for the latter case model 

averaged inferences via model.avg() provided the model-averaged coefficients, for a full and a 

conditional average. The full model coefficients set terms to zero when they are not included 

in a given model while averaging, whereas the conditional coefficients ignore the predictors 

whenever they are not included in a model and only considers them in the models where they 

are represented. Thus, the full model coefficients are more conservative (Burnham and 

Anderson, 2002; Nakagawa and Freckleton, 2011). However, this does not mean that the non-

significant variables in the full model coefficient output are irrelevant. Although both 

coefficients often render similar results, there may be relevant variables in the conditional 

model that are below the nominal significance level in the full model. This means that those 

particular variables have a lower influence in explaining the response variation. Thus, model 

averaging makes interpretation using p-values to test the significance of a particular variable 

more difficult (Grueber et al., 2011). Hence, when full and conditional coefficient outputs show 

different significant predictors, two additional methods of validation were performed: a) 

considering the sum of weights of the average model, with the importance() function of the 

MuMIn R package, which vary according to the Akaike weights a variable sums up from each 

selected model, indicating how many models the variable was considered relevant in explaining 

the variance of the response; together with the b) confidence intervals of each variable, 

depending on its range and value, i.e. a variable whose confidence interval includes zero can 

be deemed less informative, whereas those not including zero can be said to have a noticeable 

effect on the response variable (Grueber et al., 2011). Significant interactions were assessed to 

determine its type (additive, synergistic or antagonistic) and behaviour (how one predictor 

responds along the gradient of the other). This evaluation was done considering the signs of 

the coefficients for the interaction and individual variables and with surface plots. The latter 



are two-dimensional contour plots showing the fitted response values (isolines and colour 

gradient) against a surface defined by both variables of the interaction (Feld et al., 2016). These 

were plotted using the curve3d() function from the emdbook R package (Bolker, 2008). 
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