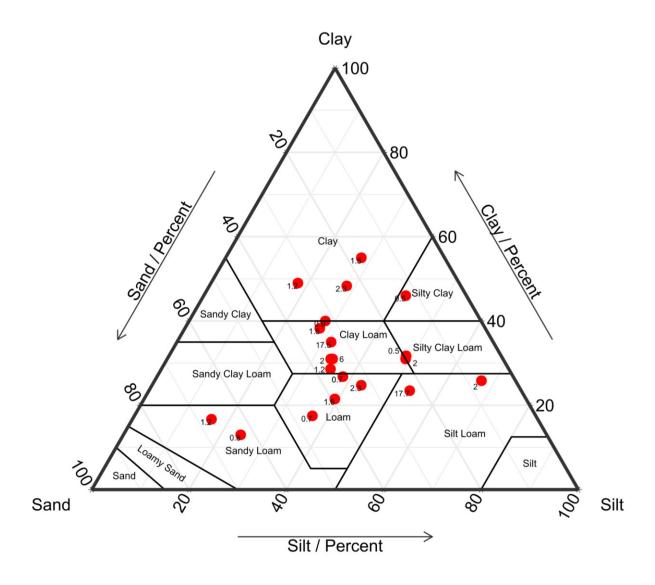
Optimizing water and nitrogen productivity of wheat and triticale across diverse production environments to improve the sustainability of baked products

Santiago Tamagno¹, Cameron M. Pittelkow¹, George Fohner², Taylor S. Nelsen¹, Joshua M. Hegarty¹, Claudia E. Carter³, Teng Vang³ and Mark E. Lundy^{1,4}

Corresponding authors: stamagno@ucdavis.edu; melundy@ucdavis.edu; melundy@ucdavis.edu;


Supplementary material

¹ Department of Plant Sciences, University of California, Davis, CA 95616, USA

² California Grain Foundation, Woodland, CA 95776, USA

³ California Wheat Commission, Woodland, CA 95776, USA

⁴ Division of Agriculture and Natural Resources, University of California, Davis, CA 95618

Supplementary Figure S1: Soil texture variability in the database, textural groups and organic matter. Each data point represents a site-year in the database. Numbers indicate the organic matter content (%).