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In this appendix, a Darcy-type equation, which describes the boundary conditions of
the experimental set-up, is derived. First, the Darcy Law and continuity equations are
presented. Then, the physics of flow towards a well is introduced. After this necessary
background information, the model to calculate the hydraulic conductivity with the new
set-up is presented. This model is derived step by step by increasing the complexity.
First, the radius of the experimental columns is assumed to be equal to infinity and the
case is studied for the situation without internal sinks and with internal sinks. Then, the
equation is adjusted for a column with finite radius. This situation, with finite radius and
internal sinks, represents the conditions of the performed experiment.

1.1. BACKGROUND: DARCY LAW AND CONTINUITY EQUATION
In a general form, Darcy equation can be written as:

Jw =−K

µ
∇P (1.1)

where Jw (m/s) is the water flux as measured in the laboratory, K (m2) is the intrinsic
permeability (Fredlund et al., 2012), µ (kg/ms) is the viscosity of the suspending fluid (i.e.,
water from lake Markermeer) and ∇P is the applied gradient pressure. In soil mechanics,
it is common to use the hydraulic conductivity k in m/s (Terzaghi and Peck, 1967), which
in the present paper is defined as:

k = K
ρg

µ
(1.2)

The gradient in pressure is a vector that is opposite to the vector of the water flow, as
the flow of water goes from regions of high pressure Phi g h to regions of low pressure Plow .
To ensure that we have K > 0 a minus sign in front of K is necessary. For unidirectional
flows, as studied by Darcy, one gets:

Jw = K

µ

Phi g h −Plow

L
(1.3)

where the pressure gradient (Phi g h −Plow )/L is the applied (macroscopic) pressure gradi-
ent on the sample of length L.

Figure 1.1: Water, under a pressure gradient ∇P , is forced into a porous medium. Jw (m/s) is the measured flux
of water coming out of the porous medium, where vw is the velocity of water inside the soil pores.

The flux Jw represents a macroscopic flux and is defined as the volume of water
exiting the porous medium per unit of surface (see Figure 1.1). Its units are therefore
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(m3/s)/m2 = m/s. It can be linked to the microscopic flux of water vw that flows inside
the incompressible soil pores by realising that:

Jw = dVw

dV
vw =φw vw = (1−φs )vw (1.4)

where dVw is the small element of volume of water at a height z, dV a little element
of the total volume and φw and φs are the volumetric concentrations of water and soil
respectively. By the definition of hydrostatic pressure, one can write:

P (z) = ρw g z +Patm (1.5)

where z is the distance between free water and the point where the pressure is measured.
The pressure Patm is the atmospheric pressure.

1.2. BACKGROUND: THE CONTINUITY EQUATION AND FLOW

TOWARDS A WELL
The local form of the continuity equation (valid for a position (r, z) in cylindrical coordi-
nates or (x, y, z) in Cartesian coordinates) is given by:

∂ρ

∂t
+∇· (ρ · v) = ρ · (qsour ce −qsi nk ) (1.6)

where ρ is the density of the medium. The velocity of the fluid is given by v = J . Note that
the dimensions of qsour ce ; qsi nk are in (1/s) and that they represent microscopic flows as
they are defined at a given position (r, z). One can therefore see these sinks and sources
as flows per (microscopic) volume, i.e. (m3/s)/m3 = 1/s. It may be assumed that, inside
the volume element considered, sources and sinks (qsour ce ; qsi nk ) exist. In these sources
and sinks, matter (and mass) can be appearing or disappearing: for instance, roots that
can take up water, or a leaking pipe can release water. The first term of this continuity
equation accounts for a compressible medium.

However, for the case vertical well is placed in the soil (Figure 1.2), having an uptake
rate of Q0 (m3/s) over the height H , the general continuity equation cannot be used and
adaptations are needed. The volume element is defined as the tube of height H and
thickness (R − r0) where r0 is the radius of the well.

The continuity equation in cylindrical coordinates gives:

∇· v =−qsi nk (1.7)

and therefore:
Jr

r
+ ∂Jr

∂r
=−qsi nk (1.8)

Here, Jr is the flux of water in the radial direction. The general solution to Equation 1.8 is:

Jr = A(z)

r
−qsi nk

r

2
(1.9)

where A(z) is an integration constant that only depends on z and represents the initial
boundary conditions. In the following, it assumed that A does not depend on z and
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Figure 1.2: Schematic representation of the volume element (grey): it is a porous tube in which water flows
radially towards the well that is placed in its centre. The tube is in contact with water at z = H , and the air/water
interface is at z = h0. This water level in the drainage pipe is kept constant.

the flows are identical at each height z in the column. This is a necessary hypothesis
since in the experiment only the flow over the whole length of the column was measured.
Therefore, there is no measured information about the flow at a given layer, only the flow
integrated over H (the height of the column). Thus, it is not know how A varies over z in
reality.

1.3. VERTICAL WELL, RADIUS R IS INFINITY AND WITHOUT IN-
TERNAL SINKS IN THE SEDIMENT

In this section, an equation for the simplest case of a vertical well placed in the soil with
and the radius R is infinity and no internal sinks (no roots or other uptakes) is derived. In
this case, only the measured total Q0 (m3/s) in the drainage pipe over the height H (see
Figure 1.2) is accounted and qsi nk =0. Because there is no sink term within the sediment:

Jr = A(z)

r
(1.10)

By integration of Jr over z, one finds (note that Q0 is defined in the opposite direction
of the unit vector): ∫ H

0
Jr (r )2πr d z =−Q0 (1.11)

A2πH =−Q0 (1.12)

which implies:

A = −Q0

2πH
(1.13)

and

Jr = −Q0

2πHr
(1.14)
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From the Darcy equation,

Jr = −K

µ

(
dP

dr

)
= −Q0

2πHr
;

dP

dr
= −µQ0

K 2πHr
(1.15)

Integrating P in the r direction yields:

P (r, z) = −Aµ

K
ln

(
r

r0

)
+B(z) (1.16)

where B(z) is an integration constant that only depends on z. The last boundary condition
is: P (r = r0, z) = P0, where P0 is a given hydrostatic pressure, and therefore:

P (r ) = P0 + Q0µ

2πK H
ln

(
r

r0

)
(1.17)

Note that the logarithm is always positive when r > r0 which indicates that the pres-
sures becomes lower towards to centre of the circle – which is in agreement with the fact
that water always flows from regions of high pressures to regions of low pressures. This
yields:

∆P = P (r = R)−P (r = r0) = µQ0

2πK H
ln

(
R

r0

)
(1.18)

This last equation agrees with literature studying the flow towards wells (e.g Todd
and Mays, 2005). Equation 1.18 is obtained with no restriction about the water flow at R.
Indeed, the flow of water is then non-zero:

Jr = Q0

2πR
(1.19)

However, for large R the flux goes to zero.

1.3.1. VERTICAL WELL, RADIUS R IS INFINITY AND UPTAKE OF WATER BY

INTERNAL SINKS
In this section, Equation 1.18 is adapted for the case that there are both a well and
internal sinks. Examples of an internal sink are the roots of plants, that are assumed to be
homogeneously distributed in the soil. Evaporation is accounted for as an internal sink,
which is a simplification. The total water that is taken up by evaporation (in the control
column) and by the roots and evaporation (in the sediment column with plants) is Qsi nk

(m3/s). Qsi nk is linked to qsi nk (1/s) by dividing by the volume V=π(R2-r 2
0 )H :

qsi nk = Qsi nk

π(R2 − r 2
0 )H

(1.20)

The sink term only works within the soil: the water taken by the plants will not flow in
the inner column. Therefore at the inner column one has:

H∫
0

A

r0
2πr0d z =−Q0 (1.21)
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which, from the continuity Equation 1.9, yields:

Jr = −Q0

2πr H
− Qsi nk

π(R2 − r0
2)H

r

2
(1.22)

1.3.2. VERTICAL WELL, FINITE SIZE COLUMN AND UPTAKE OF WATER BY

INTERNAL SINKS
This is the case of the experiment performed. In this case, the problem is similar to the
one discussed above, except that the boundary condition at the exterior r=R is changed.
For the column, the boundary becomes that there is no flow through the column wall, i.e.
an outer impervious boundary condition, hence:

Jr (r = R) = 0 (1.23)

Therefore, from Equation 1.22:

Q0 =− R2

(R2 − r 2
0 )

Qsi nk (1.24)

which gives:

Jr = Qsi nk

2πr H

R2(
R2 − r 2

0

) − Qsi nk

π
(
R2 − r 2

0

)
H

r

2
(1.25)

Jr = Qsi nk r

2π
(
R2 − r 2

0

)
H

(
R2

r 2 −1

)
(1.26)

The associated pressure gradient can be found using Darcy:

Jr = −K

µ

∂P

∂r
(1.27)

which gives:

P (r ) = µQsi nk

2πK
(
R2 − r 2

0

)
H

(
R2 ln(r )− r 2

2

)
+C (1.28)

where C is an integration constant. The water inside the inner well is kept at constant
height h0. This implies that

P (r = r0) = Patm +ρw g (h0 − z) (1.29)

Therefore the integration constant is found and:

P (r, z) = µQsi nk

2πK
(
R2 − r 2

0

)
H

(
R2 ln

(
r

r0

)
− r 2

2
+ r 2

0

2

)
+Patm +ρw g (h0 − z) (1.30)

yielding
∆P = P (R, z)−P (r = r0, z) (1.31)
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∆P = µQsi nk

2πK
(
R2 − r 2

0

)
H

(
R2 ln

(
R

r0

)
− R2

2
+ r 2

0

2

)
(1.32)

and

∆P = µQsi nk R2

2πK (R2 − r0
2)H

(
ln

(
R

r0

)
− 1

2
+ r0

2

2R2

)
(1.33)

The term between brackets is always positive, and in the limit of large R one finds:

∆P = µQsi nk

2πK H
ln

(
R

r0

)
(1.34)

which corresponds to the general case (i.e. Equation 1.18) except that here the flow is
generated by the Qsi nk .

Finally, from Equation 1.33 and the correlation between the intrinsic permeability K
(m2) and hydraulic conductivity k (m/s) (see Equation 1.2), the equation used to calculate
the hydraulic conductivity in the present paper is obtained:

k = ρgQsi nk R2

2π∆P (R2 − r0
2)H

(
ln

(
R

r0

)
− 1

2
+ r0

2

2R2

)
(1.35)

The results are presented in the main body of the paper, see Figure 6 "Depth-averaged
conductivity for the control and vegetated column". Note that, with the data measured
(total flow in/out of the column), only the average hydraulic conductivity of the whole
column can be calculated. In order to calculate vertical hydraulic conductivity profiles of
presented in the other supplementary materials, the assumption that the flow is equally
distributed over the whole length was made. This is a bigger assumption for the col-
umn with plants, since where the plants are more active the flows may be larger. In the
same way, for the uppermost layers of the column without plants, the flows induced by
evaporation are underestimated.
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