
Supplementary Material

1 CONVEXITY PROOF

Consider a negative monotonic function f : IR+ → IR+ which relates signal strength s to a parameter
credible interval σ. We assume that for strong signals a further improvement in signal strength should result
in a smaller decrease of the credible interval than for a weak signal. This means that the rate by which the
absolute derivative of f changes d

ds |
df
ds | must be negative. We can write

d

ds

∣∣∣∣ df

ds︸︷︷︸
<0

∣∣∣∣ < 0

⇔ −d2f

ds2
< 0

⇔ d2f

ds2
> 0

(S1)

which proves that f must be convex.

2 SUPPLEMENTARY FIGURES

Figure S1. Evaluation of the GAM fit and prediction accuracy for the in-plane angle uncertainty σϕ for
different sample sizes (200, 400, and 800). Top row: training data and GAM fit. Bottom row: prediction
error map.

1



Supplementary Material

Figure S2. Evaluation of the GAM fit and prediction accuracy for the rel. thickness uncertainty σt for
different sample sizes (200, 400, and 800). Top row: GAM fits for one brain section with N = 200, 400,
and 800 samples. Top row: training data and GAM fit. Bottom row: prediction error map.

2



Supplementary Material

Figure S3. Cumulative histograms of the absolute prediction errors of one exemplary brain section for
different training sample sizes.

Frontiers 3



Supplementary Material

selected sections
0.960

0.965

0.970

0.975

0.980

0.985
ex

p
la

in
ed

d
ev

ia
n

ce

σϕ

selected sections

9

10

11

12

13

14

15

d
eg

re
es

of
fr

ee
d

om
(D

oF
)

σϕ

selected sections

0.982

0.984

0.986

0.988

0.990

0.992

0.994

ex
p

la
in

ed
d

ev
ia

n
ce

σα

selected sections

8

9

10

11

12

13

14
d

eg
re

es
of

fr
ee

d
om

(D
oF

)

σα

selected sections

0.95

0.96

0.97

ex
p

la
in

ed
d

ev
ia

n
ce

σt

selected sections

7

8

9

10

d
eg

re
es

of
fr

ee
d

om
(D

oF
)

σt

Figure S4. Statistical measures of the fitted GAM for sample sizeN = 800. Top row: Explained Deviance.
Bottom row: Degrees of freedom (DoF).

3 COMPUTATIONAL DETAILS

In this section details regarding the implementation of MCMC sampling and GAM fitting which are
relevant for the reported runtimes are presented. All processing was done in Python 3.6 using double
floating point precision.

3.1 Hardware

The MCMC sampling was computed on JURECA [1], a modular supercomputer which consists of 1872
nodes with Two Intel Xeon E5-2680 v3 Haswell CPUs per node and 128 GiB, 256 GiB, and 512 GiB
DDR4 memory (2133 MHz). Each processor has 12 cores at 2.5 GHz which support Intel Hyperthreading
Technology (Simultaneous Multithreading) and offers AVX 2.0 ISA extensions.

3.2 MCMC sampling

For MCMC sampling, the emcee implementation of the ensemble sampler was utilized [2, 3]. The
sampling parameters were set as 100 parallel chains and 500 sampling steps each resulting in 50.000
samples [4]. As the computational bottleneck of MCMC algorithms is the computation of the posterior
probability, the posterior calculation was accelerated using the numba just-in-time compiler which achieves
similar computation times as code written in compiled languages [5]. The runtime amounts to about 1.07 s
per pixel. Computations were pixelwise parallelized using mpi4py [6].

4



Supplementary Material

3.3 Generalized Additive Model implementation

The GAM model is fitted using pygam’s gridsearch function. The parameter optimization via penalized
iteratively reweighted least squares dominantly relies on linear algebra operations operating on sparse
matrices. pygam implements these via numpy and scipy functions which call highly optimized Basic
Linear Algebra Subroutines (BLAS) routines [7, 8, 9].

REFERENCES

[1]Dorian Krause and Philipp Thörnig. Jureca: Modular supercomputer at jülich supercomputing centre.
Journal of large-scale research facilities JLSRF, 4, 07 2018.

[2]D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman. emcee: The mcmc hammer. PASP,
125:306–312, 2013.

[3]Jonathan Goodman and Jonathan Weare. Ensemble samplers with affine invariance. Commun. Appl.
Math. Comput. Sci., 5(1):65–80, 2010.

[4]Daniel Schmitz, Thomas Lippert, Katrin Amunts, and Markus Axer. Quantification of fiber orientation
uncertainty in polarized light imaging of the human brain. In Guang-Hong Chen and Hilde Bosmans,
editors, Medical Imaging 2020: Physics of Medical Imaging, volume 11312, pages 781 – 789.
International Society for Optics and Photonics, SPIE, 2020.

[5]Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit compiler. In
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15, pages
7:1–7:6, New York, NY, USA, 2015. ACM.

[6]Lisandro Dalcı́n, Rodrigo Paz, and Mario Storti. Mpi for python. Journal of Parallel and Distributed
Computing, 65(9):1108 – 1115, 2005.

[7]Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The numpy array: A structure for efficient
numerical computation. Computing in Science & Engineering, 13(2):22–30, 2011.

[8]P. Virtanen et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020.

[9]L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint Whaley, James Demmel,
Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry, et al. An updated set of basic linear algebra
subprograms (blas). ACM Transactions on Mathematical Software, 28(2):135–151, 2002.

Frontiers 5


	Convexity Proof
	Supplementary figures
	Computational details
	Hardware
	MCMC sampling
	Generalized Additive Model implementation


