
Schneider et al. Mathematical appendix

1 MATHEMATICAL APPENDIX

1.1 Distribution of distinct haplotypes within infections

Denote the number of distinct haplotype in an infection by the random variable C. Assuming the statistical
model outlined in the main text, the probability distribution of C can be derived.

Remember H is the number of possible haplotypes. First, for subset of possible haplotypes A ⊆
{1, . . . , H} we define the set of all MOI vectors mmm with exactly the haplotypes in A infecting by

MA :={mmm ∈ NH |mh > 0 ⇔ h ∈ A} (A.1)

and the set of all MOI vectors mmm with not necessarily all haplotypes in A infecting by

M̃A :={mmm ∈ NH |mh = 0 for h ̸∈ A}. (A.2)

Assuming c > 0, the probability of an infection with exactly c distinct haplotypes is calculated to be

P[C = c] =
∞∑

m=c

κm
∑

A⊆{1,...,H}:
|A|=c

∑
mmm∈MA

(
m

mmm

)
pppmmm. (A.3)

Using the inclusion-exclusion principle, followed by the binomial theorem, an interchange of the
summation, and the definition of the modification of the probability generating function (10) (see also
Table 1) this becomes

P[C = c] =
∞∑

m=1

κm
∑

A⊆{1,...,H}:
|A|=c

∑
B⊆A

(−1)|A|−|B|
∑

mmm∈M̃B

(
m

mmm

)
pppmmm

=
∞∑

m=1

κm
∑

A⊆{1,...,H}:
|A|=c

∑
B⊆A

(−1)|A|−|B|
(∑

h∈B
ph

)m

=
∑

A⊆{1,...,H}:
|A|=c

∑
B⊆A

(−1)|A|−|B|G

(∑
h∈B

ph

)
.

(A.4)

Note that the last step holds also in the case in which disease-free samples are considered (κ0 > 0).
Moreover, the disease free case, i.e., c = 0, occurs if and only if MOI = 0, which occurs with probability
κ0, i.e., we obtain

P[C = 0] =κ0. (A.5)
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1.2 Distribution of the maximum number of alleles across markers

In the absence of phased haplotype information, an observation xxx provides in general only ambiguous
information about the haplotypes being actually present in the corresponding infection (compare
‘absence/presence’ with ‘infecting haplotypes’ in Figure 4). On the one hand, if a haplotype hhh carries an
allele which is not observed in xxx, it cannot be present in the infection, i.e. it is incompatible with the
observation. On the other hand, we say that a haplotype hhh is compatible if all the alleles of which it is
comprised are observed, i.e., it cannot be ruled out that hhh is actually present in the infection.

To calculate the distribution of the maximum number of alleles observed across the L loci (K), let us
define the set of all observations xxx for which this number is exactly k. Namely,

Uk := {xxx = (xxx1, . . . ,xxxL) | ∀l : |xxxl| ≤ k ∧ ∃l : |xxxl| = k}. (A.6)

Then, the probability of such an observation is

P[K = k] =
∑
xxx∈Uk

P[xxx]. (A.7)

This equation involves the probabilities to observe xxx, i.e., P[xxx], which we need to derive in a more explicit
form.

First, let the set of all possible disease-positive observations be denoted

O :=
L∏
l=1

(
P
(
{1, . . . , nl}) \ ∅

)
. (A.8)

In case also disease-negative samples are included, the observation 000 = (∅, . . . , ∅) is possible, hence O has
to be replaced by O ∪ {000}. Clearly,

P[000] = κ0. (A.9)

We can say an observation yyy = (yyy1, . . . , yyyL) is subsumed by an observation xxx = (xxx1, . . . ,xxxL) if at each
locus all alleles which occur in observation yyy also occur in observation xxx, we write

yyy ⪯ xxx :⇔ yyyl ⊆ xxxl for all l. (A.10a)

Further define the set of all observations subsumed by xxx as

Axxx := {yyy ∈ O |yyy ⪯ xxx}. (A.10b)
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Let the set of all haplotypes hhh, which are compatible with observation xxx, be denoted by

Axxx := {hhh = (h1, . . . , hL) ∈ H |hl ∈ xxxl for all l}. (A.10c)

The set of all MOI vectors mmm which are compatible with observation xxx are denoted by

Mxxx = {mmm ∈ NH
∣∣mmm → xxx}

=
{
mmm ∈ NH

∣∣∣ ∀l : xxxl = {hl ∣∣∀hhh = (h1, . . . , hL) ∈ H with mhhh > 0
}}

.
(A.10d)

Furthermore, the set of all MOI vectors mmm which are compatible with an observation subsumed by xxx, i.e.,
with an observation in Axxx, is denoted by

M̃xxx =
{
mmm ∈ NH

∣∣∣ ∀hhh ̸∈ Axxx : mhhh = 0
}
. (A.10e)

Using the definition of the set Mxxx, the probability of observing xxx can be rewritten as

P[xxx] =
∞∑

m=0

κm
∑
mmm:

|mmm|=m
mmm→xxx

(
m

mmm

)
pppmmm =

∑
mmm∈Mxxx

κ|mmm|

(
|mmm|
mmm

)
pppmmm. (A.11)

By an inclusion-exclusion argument the above becomes

P[xxx] =
∑
yyy∈Axxx

(−1)

L∑
l=1

|xxxl|−|yyyl| ∑
mmm∈M̃yyy

κ|mmm|

(
|mmm|
mmm

)
pppmmm.

In the case that yyy = 000, the above equation needs some adjustment, namely the power
L∑
l=1

|xxxl| − |yyyl| has to

be replaced by L− 1 +
L∑
l=1

|xxxl| − |yyyl|. Therefore, we define

d(xxx,yyy) :=


L− 1 +

L∑
l=1

|xxxl| − |yyyl| for xxx ̸= 000 and yyy = 000,

L∑
l=1

|xxxl| − |yyyl| else.
(A.12)
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Using the theorem of total probability, then the binomial theorem and finally the definition of the generating
functions (10) leads to

P[xxx] =
∑
yyy∈Axxx

(−1)d(xxx,yyy)
∞∑

m=1

κm
∑

mmm∈M̃yyy

|mmm|=m

(
m

mmm

)
pppmmm

=
∑
yyy∈Axxx

(−1)d(xxx,yyy)
∞∑

m=1

κm

( ∑
hhh∈Ayyy

phhh

)m

=
∑
yyy∈Axxx

(−1)d(xxx,yyy)G

( ∑
hhh∈Ayyy

phhh

)
.

(A.13)

Hence, the distribution of the maximum number of alleles across loci is

P[K = k] =
∑
xxx∈Uk

∑
yyy∈Axxx

(−1)d(xxx,yyy)G

( ∑
hhh∈Ayyy

phhh

)
. (A.14)

1.3 Distribution of the average number of alleles across markers

Here, the distribution of the average number of alleles across markers is derived. For this purpose define
the set of all observations in which the number of observed alleles across the loci sum up to k by

Vk :=

{
xxx = (xxx1, . . . ,xxxL)

∣∣∣∣ L∑
l=1

|xxxl| = k

}
. (A.15)

The distribution of the average number of alleles, K, hence becomes

P

[
K =

k

L

]
=
∑
xxx∈Vk

P[xxx]. (A.16)

Using the expression (A.13) for P[xxx], one obtains

P

[
K =

k

L

]
=
∑
xxx∈Vk

∑
yyy∈Axxx

(−1)d(xxx,yyy)G

( ∑
hhh∈Ayyy

phhh

)
. (A.17)
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1.4 Prevalence

The prevalence of haplotype hhh is the probability that it occurs in an infection. To derive this we use the
index notation h rather than the vector notation hhh, which yields

P[Mh > 0] =
∞∑

m=0

P[M = m] P[Mh > 0|M = m] =
∞∑

m=0

κm
∑
mmm:

mh>0

(
m

mmm

)
pppmmm

=
∞∑

m=0

κm

(∑
mmm

(
m

mmm

)
pppmmm −

∑
mmm:

mh=0

(
m

mmm

)
pppmmm

)

=
∞∑

m=0

κm

(( H∑
g=1

pg

)m

−
( H∑

g=1
g ̸=h

pg

)m
)

=
∞∑

m=0

κm

(
1− (1− ph)

m
)
.

Using the definition of the generation function (10) this becomes

P[Mh > 0] = 1−G(1− ph).

This formula, translated into the vector notation of haplotypes becomes

P[Mhhh > 0] = 1−G(1− phhh).

1.5 Distribution of MOI conditional on a particular observation

Using the parameter estimates θ̂θθ as a plug-in for the true parameters, and denoting the generating function
based on the estimates by Ĝ, the estimated probability of MOI = m given observation xxx is calculated to be

P[MOI = m|xxx] = P[xxx,m]

P[xxx]
=

κ̂m
∑
mmm:

|mmm|=m
mmm→xxx

(m
mmm

)
p̂ppmmm

∑
yyy∈Axxx

(−1)d(xxx,yyy)Ĝ

( ∑
hhh∈Ayyy

p̂hhh

) . (A.18)

By using an inclusion-exclusion argument in the numerator, the above becomes

P[MOI = m|xxx] = P[xxx,m]

P[xxx]
=

κ̂m
∑

yyy∈Axxx

(−1)d(xxx,yyy)
( ∑

hhh∈Ayyy

p̂hhh

)m

∑
yyy∈Axxx

(−1)d(xxx,yyy)Ĝ

( ∑
hhh∈Ayyy

p̂hhh

) . (A.19)
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The true probability of MOI = m given observation xxx is obtained from (A.19) by substituting the true
parameters θθθ (and the generating function G) for the plug-in parameters θ̂θθ.

1.6 Distribution of the number of haplotypes given a particular observation

Let the set of all possible ensembles (sets) of exactly c haplotypes which together can create observation
xxx by

B
(c)
xxx :=

{
{hhh1, . . . ,hhhc}⊆ H

∣∣ |{hhh1, . . . ,hhhc}| = c, xl = {(hhhk)l | k = 1, . . . , c} for l = 1, . . . , L
}
. (A.20)

For simplicity of notation we denote elements of the set B(c)
xxx , i.e., ensembles of c haplotypes leading to

observation xxx by A, without reference to c and xxx.

For c haplotypes A = {hhh1, . . . ,hhhc} leading to observation xxx, we define the set of all possible super-
infections with exactly the haplotypes in A as

MA =
{
mmm ∈ NH

∣∣∣mhhh > 0 ⇔ hhh ∈ A
}
. (A.21)

The probability of an infection with an ensemble A of c haplotypes leading to observation xxx, i.e., for
A ∈ B

(c)
xxx we have

P
[
xxx,A

]
=

∞∑
m=0

κ̂m
∑

mmm∈MA:
|mmm|=m

(
m

mmm

)
p̂ppmmm. (A.22)

Assume A ∈ B
(c)
xxx , i.e., A contains exactly c haplotypes and leads to observation xxx. Then a proper subset

B ⊊ A contains less than c haplotypes and does not necessarily lead to observation xxx. For a set of arbitrary
many haplotypes B, we denote the set of all possible super-infections with (not necessarily all) haplotypes
in B by

M̃B =
{
mmm ∈ NH

∣∣∣mhhh = 0 if hhh ̸∈ B
}
. (A.23)

By an inclusion-exclusion argument, (A.20) can be rewritten as

P
[
xxx,A

]
=
∑
B⊆A

(−1)|A|−|B|
∞∑

m=0

κ̂m
∑

mmm∈M̃B :
|mmm|=m

(
m

mmm

)
p̂ppmmm. (A.24)
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By the binomial theorem, the fact that |A| = c, and the definition of the generating function we obtain

P
[
xxx,A

]
=

∞∑
m=0

κ̂m
∑
B⊆A

(−1)c−|B|
(∑

hhh∈B
p̂hhh

)m

=
∑
B⊆A

(−1)c−|B|Ĝ

(∑
hhh∈B

p̂hhh

)
.

(A.25)

Clearly, a super-infection with exactly the haplotypes in a set A ∈ B
(c)
xxx cannot be a super-infection with

exactly the haplotypes in a different set Ã ∈ B
(c)
xxx . In other words, super-infections with exactly the

haplotypes in a set A ∈ B
(c)
xxx and in a set A′ ∈ B

(c)
xxx are disjoint events, or if A ̸= A′, then MA ∩MA′ = ∅.

Consequently, the probability of an infection with exactly c haplotypes leading to observation xxx is

P
[
xxx,C = c

]
=

∑
A∈B(c)

xxx

P
[
xxx,A

]
=

∑
A∈B(c)

xxx

∑
B⊆A

(−1)c−|B|Ĝ

(∑
hhh∈B

p̂hhh

)
.

(A.26)

Therefore, given the observation xxx, the probability that exactly C = c different haplotypes were infecting
becomes

P[C = c|xxx] = P[xxx,C = c]

P[xxx]
=

∑
A∈B(c)

xxx

∑
B⊆A

(−1)c−|B|Ĝ

( ∑
hhh∈B

p̂hhh

)
∑

yyy∈Axxx

(−1)d(xxx,yyy)Ĝ

( ∑
hhh∈Ayyy

p̂hhh

) . (A.27)
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