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1 SUPPLEMENTARY DATA

1.1 APPENDIX A

In this section, we describe in detail certain results about sampling in the main text.

1.1.1 Spectrum with sampling interval k Here we show that S(k)(ω) is given by Eq. (14) in the
main text in which S(ω) is the spectrum for the original time series {X0, X1, X2, · · ·}, k is the
sampling interval length, which is a positive integer, for discrete time series, and S(k)(ω) is the
spectrum for time series {X0, Xk, X2k, · · ·}. By the Wiener-Khinchin theorem, the spectrum of a
time series can be written as the Fourier transform of the covariance series cov(n), i.e., cov(n) ≡
E(Xt, Xt+n), n is an integer, i.e.

S(ω) =
+∞∑

n=−∞
cov(n)einω,

and

S(k)(ω) =
+∞∑

n=−∞
cov(nk)einω.
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Then

1
k

k−1∑
j=0

S(ω

k
+ 2πj

k
) = 1

k

k−1∑
j=0

+∞∑
n=−∞

cov(n)ein( ω
k + 2πj

k ),

= 1
k

+∞∑
n=−∞

cov(n)ei n
k ω

k−1∑
j=0

ei 2πn
k j

 .

For ∑k−1
j=0 ei 2πn

k j , only when n = mk (m is an integer), it does not vanish and it is equal to k. Thus,

1
k

k−1∑
j=0

S(ω

k
+ 2πj

k
) = 1

k

+∞∑
m=−∞

(
cov(mk)ei mk

k ωk
)

,

=
+∞∑

m=−∞
cov(mk)eimω,

= S(k)(ω),
which is Eq. (14) in the main text as we desire to show.

1.1.2 Special bivariate time series yielding F
(k)
x→y ≡ F

(k)
x·y ≡ 0 Here we briefly illustrate that for

discrete time series Xt and Yt, if Yt, t is an integer, is a white noise series and cov(Yt, Xt−i) = 0
for any positive integer i > 0, then F

(k)
x→y ≡ 0. In particular, when cov(Yt, Xt−i) = 0 for any integer

i > 0, F
(k)
x→y ≡ F

(k)
x·y ≡ 0.

Note that the time series with sampling interval k for Xt, Yt, t is an integer, are Xtk and Ytk. Since
Ytk is a white noise series, the auto-regression residual series is Ytk itself. Thus, Γ(k)

1 = var(Ytk) =
var(Yt). Since Ytk is uncorrelated with the set X(t−i)k, Y(t−i)k (integer i > 0), the joint regression
residual series is also Ytk itself. Therefore, Γ(k)

2 = Γ(k)
1 = var(Yt). By definition (6) in the main text,

F
(k)
x→y = ln Γ(k)

1
Γ(k)

2
= 0.

When cov(Yt, Xt−i) = 0 for i > 0, Ytk is uncorrelated with X(t−i)k, i > 0 and Y(t−j)k, j > 0, which
implies that Υ(k)

2 = E(ϵ2(tk), Y2(tk)) = 0 (otherwise Ytk is correlated with X(t−i)k, i > 0). Then, by

definition (7) in the main text, we obtain F
(k)
x·y = ln Γ(k)

2 Σ(k)
2

|Σ(k)| = 0.

1.1.3 Computation of F
(k)
y→x in Case 1.1 We consider the case b(L) = ∑+∞

j=1 e−τdjLj , which has
no oscillations in b(L). From Eq. (12) in the main text, we have

F (k)
y→x = ln C − 1

2π

ˆ π

−π
ln

[
C − b(k)(ω)b(k)(ω)∗

]
dω, (1)

where C = a(ω)a∗(ω)µ + b(ω)b∗(ω), and b(k)(ω) = ∑+∞
j=1 e−τdkje−iωj , which can be simplified as

b(k)(ω) = e−τdke−iω

1 − e−τdke−iω
.
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For C > 1
(eτd−1)2 , we obtain

F (k)
y→x = − ln 1

2

1+(1− 1
C

)e−2τdk+
√(

1 + (1− 1
C

)e−2τdk
)2

−4e−2τdk

 . (2)

Under Approximation I: C ≫ b(k)(ω)b(k)(ω)∗, we have

F (k)
y→x ≈

e−2τdk

C
, (3)

which is Eq. (18) in the main text.

1.1.4 Computation of F
(k)
y→x in Case 1.2 We consider b(L) = ∑+∞

j=1 e−τdjcos(βj)Lj to examine
whether oscillations in the coupling b(L) may induce oscillations in the GC sampling structure.

For this case, we have

b(k)(ω) =
+∞∑
j=1

e−τdkjcos(βkj)e−iωj ,

= e−τdke−iω −e−τdke−iω + cosβk

(1 − e−τdke−iωeiβk)(1 − e−τdke−iωe−iβk)
. (4)

Under Approximation I: C ≫ b(k)(ω)b(k)(ω)∗, we have

F (k)
y→x = e−2τdk(1 − 3e−2τdk)cos2βk + e−4τdk + e−6τdk

C(1 − e−2τdk)(1 + e−2τdk − 2e−τdkcosβk)(1 + e−2τdk + 2e−τdkcosβk)
.

(5)
Under Approximation II, i.e., large τd and k, we can obtain a simplified approximate expression of
Eq. (5)

F (k)
y→x ≈

1
C

(e−4τdk + e−2τdkcos2βk), (6)

which is Eq. (19) in the main text.

1.1.5 Computation of F
(k)
y→x in Case 1.3 We consider oscillations with phase ϕ in b(L), that is,

b(L) = ∑+∞
j=1 e−τdjcos(βj + ϕ)Lj . Under Approximation I, we have

F (k)
y→x ≈ 1

2π

ˆ π

−π

b(k)(ω)b(k)(ω)∗

C
dω,

=
e−2τdkcos2(βk + ϕ) − 1

2e−4τdk(2cos2βk + cos2ϕ + cos2(βk + ϕ)) + e−6τdkcos2ϕ

C(1 + e−2τdk − 2e−τdkcosβk)(1 + e−2τdk + 2e−τdkcosβk)(1 − e−2τdk)
,

(7)

where the dominant oscillation term is e−2τdkcos2(βk +ϕ). Under this approximation, the following
approximation is obtained

F (k)
y→x ≈ 1

C
e−2τdkcos2(βk + ϕ), (8)
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which is Eq. (20) in the main text. For a special case, when ϕ = −π
2 , from Eq. (7), we obtain

F (k)
y→x ≈ e−2τdk(1 + e−2τdk)sin2βk

C(1 + e−2τdk − 2e−τdkcosβk)(1 + e−2τdk + 2e−τdkcosβk)(1 − e−2τdk)
,

(9)

which can be further approximated by

F (k)
y→x ≈ 1

C
e−2τdksin2βk, (10)

which is Eq. (21) in the main text.

1.2 APPENDIX B

1.2.1 Spectral matrix S(τ)(ω) as τ → 0 The covariance matrix G(nτ) for Xnτ , Ynτ is a sampling
of covariance matrix G(s) for Xt, Yt, where s is a real value. G(s) is defined as

G(s) =
[ cov(Xt, Xt−s) cov(Xt, Yt−s)

cov(Yt, Xt−s) cov(Yt, Yt−s)

]
. (11)

By the Wiener-Khinchin theorem Chatfield (2003), spectral matrix S(τ)(ω) is the Fourier
transform of covariance matrix G(nτ), that is, S(τ)(ω) = ∑+∞

n=−∞ G(nτ)e−inω. The relation between
real frequency f for continuous-time processes and ω in the discrete time is ω = 2πτf. Then,

S(τ)(ω) =
+∞∑

n=−∞
G(nτ)e−inτ2πf . (12)

By fixing the frequency f and taking the limit of τ → 0, replacing the summation in Eq. (12) by
integration, we have

τS(τ)(ω) →
+∞ˆ

−∞

G(s)e−is2πf ds (13)

as τ → 0. Defining

P(f) =
+∞ˆ

−∞

G(s)e−is2πf ds, (14)

which is the power spectral density Rieke et al. (1999) of continuous process Xt, Yt, i.e.,
τS(τ)(ω) → P(f) as τ → 0. Rewrite this equation in terms of all the components of the matrix, we
obtain

τ

 S
(τ)
xx (ω) S

(τ)
xy (ω)

S
(τ)
yx (ω) S

(τ)
yy (ω)

 →
[

Pxx(f) Pxy(f)
Pyx(f) Pyy(f)

]
(15)

as τ → 0, which is the limiting behavior of spectrum matrix S(τ)(ω) as sampling interval length τ
approaches 0.
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1.2.2 GC as τ → 0 For spectral matrix S(τ)(ω), we have the following factorization Wilson
(1972)

S(τ)(ω) = A(τ)(eiω)A(τ)(eiω)∗, (16)

where ∗ denotes matrix adjoint. The factorization is unique if A(τ)(z) and A(τ)(z)−1 are analytic
inside the unit disk and A(τ)(0) is real, upper triangular with positive diagonal coefficients
Wilson (1972). Set Σ(τ) = A(τ)(0)A(τ)(0)∗, H(τ)(ω) = A(τ)(eiω)A(τ)(0)−1, then S(τ)(ω) can
be decomposed as

S(τ)(ω) = H(τ)(ω)Σ(τ)H(τ)(ω)∗, (17)

where H(τ)(ω) =

 H
(τ)
xx (ω) H

(τ)
xy (ω)

H
(τ)
yx (ω) H

(τ)
yy (ω)

. By the mean value property of an analytic function,

one has 1
2π

´ π
−π H(τ)(ω)dω = I (I is the identity matrix). The relation between real frequency

f for continuous-time processes and ω in the discrete time is ω = 2πτf . Then, we obtain´ 1
2τ

− 1
2τ

τH(τ)(2πτf)df = I, which implies that H
(τ)
xx , H

(τ)
xy and H

(τ)
yy are scaled as 1

τ as τ → 0 as
confirmed in Supplementary Fig. 1 for time series obtained for the neuronal network reconstruction.
Combining the scaling of S(τ) and H(τ), one can see that Σ(τ) is scaled as τ as τ → 0. This scaling
is confirmed in Supplementary Fig. 1a.

Supplementary Figures 1b and c display the convergence properties of H’s, in which we verify
that τH(τ) converges to a limit as the sampling interval length τ approaches 0.

Defining Ĥ(f) = limτ→0 τH(τ)(2πτf), Σ̂ = limτ→0
1
τ Σ(τ), we can show that P(f) can be

factorized as
P(f) = Ĥ(f)Σ̂Ĥ(f)∗, (18)

where
´ +∞

−∞ Ĥ(f)df = I. Using the components in the factorization (17), the sampled Granger
causalities using the frequency domain decomposition Geweke (1982); Ding et al. (2006), as
τ → 0, become Eqs. (26) (27) and (28) in the main text.

Note that F
(τ)
x,y is the sum of its positive components F

(τ)
x→y, F

(τ)
y→x and F

(τ)
x·y , therefore F

(τ)
x,y is larger

than any of its components. If
´ +∞

−∞ ln [1 − C(f)] df is finite, then we can easily show that 1
τ F

(τ)
x,y ,

1
τ F

(τ)
x→y, 1

τ F
(τ)
y→x and 1

τ F
(τ)
x·y all approach finite values in the limit of τ → 0. As mentioned in the

main text, these limits are related to intrinsic properties of continuous time processes. Therefore,
the Granger causality is linearly proportional to the sampling interval length τ for small τ .

1.3 APPENDIX C

From our observation, the GC values are very small as sampling interval length τ → 0. Under this
condition, we should consider the estimator bias of GC in order to precisely recover the limit GC
sampling structure as τ → 0 through numerical approach. From Ref. Geweke (1982), for bivariate
time series Xt, Yt, if the true GC value Fx→y, Fy→x, Fx·y and Fx,y are 0, then, nF̂x→y ∼ χ2(p),
nF̂y→x ∼ χ2(p), nF̂x·y ∼ χ2(1), nF̂x,y ∼ χ2(2p + 1), where p is the regression order, n is the
length of time series, the caret symbol denotes the sample estimate. If Fx→y, Fy→x, Fx·y and
Fx,y are positive, then nF̂x→y ∼ χ′2(p, nFx→y), nF̂y→x ∼ χ′2(p, nFy→x), nF̂x·y ∼ χ′2(1, nFx·y),
nF̂x,y ∼ χ′2(2p + 1, nFx,y), where χ′ is the noncentral chi-square distribution. Therefore, the
estimate biases of GC values are ∆Fx→y = E(F̂x→y − Fx→y) = p

n , ∆Fy→x = E(F̂y→x − Fy→x) = p
n ,

Frontiers in Computational Neuroscience 5



Zhou et al. Supplementary Material

0 0.2 0.4
0

0.02

0.04

τ (ms)

co
v
a
ri
a
n
c
e

0 100 200 300 400 500
0

20

40

60

f (Hz)
|H

xx
|

0 100 200 300 400 500
0

1

2

3

f (Hz)

τ
|H

xx
|

0 100 200 300 400 500
0

1

2

3

4

f (Hz)

|H
x
y|

0 100 200 300 400 500
0

0.1

0.2

0.3

f (Hz)

τ
|H

xy
|

(a) (b)  (b)

Supplementary Figure 1.(a) The covariance Σ(τ)
2 (red), Γ(τ)

2 (cyan) and Υ(τ)
2 (dash red) as

a function of the sampling interval τ . (b)
∣∣∣∣H(τ)

xx

∣∣∣∣. Inset: τ
∣∣∣∣H(τ)

xx

∣∣∣∣. (c)
∣∣∣∣H(τ)

xy

∣∣∣∣. Inset: τ
∣∣∣∣H(τ)

xy

∣∣∣∣.
Sampling interval lengths are 0.0625 ms (cyan star), 0.125 ms (dash red), 0.25 ms (dash cyan),
0.5 ms (red), 1 ms (cyan) respectively. The time series are generated by a two-neuron I&F network
with parameters ν = 1 ms−1, λ = 0.0177, sxy = 0, syx = 0.02.

∆Fx·y = E(F̂x·y − Fx·y) = 1
n , ∆Fx,y = E(F̂x,y − Fx,y) = 2p+1

n regardless of whether the true value of
GC vanishes or not. We can faithfully recover the limit GC sampling structure by subtracting the
estimator biases from the numerical estimators of GC values. Note that this approach may lead to
slightly negative numerical GC values due to statistical fluctuations if the theoretical value of GC
vanishes originally.
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Supplementary Figure 2.The GC sampling structure for the bidirectional two-neuron network.
Parameters of the network are ν = 1ms−1, λ = 0.0177, sxy = 0.015 and syx = 0.02. (a) GC vs.
sampling interval length: Fx→y (red), Fy→x (cyan) obtained from voltage time series and Fx→y

(red dash), Fy→x (cyan dash) obtained from spike train time series with sampling interval τ . (b)
The corresponding spectra of the voltage time series for (a): Sxx (cyan), Syy (red), |Sxy| (black).
(c) The GC sampling structure as sampling interval length tends to zero. Fx→y (red), Fy→x (cyan)
obtained from voltage time series and Fx→y (red dash), Fy→x (cyan dash) obtained from spike train
time series with sampling interval length τ . (d) 1

τ F
(τ)
x→y (red), 1

τ F
(τ)
y→x (cyan) for voltage time series

and 1
τ F

(τ)
x→y (red dash), 1

τ F
(τ)
y→x (cyan dash) for spike train time series vs. sampling interval length

τ . Note that we have subtracted the estimation bias of GC from the estimate of GC values for (c)
and (d). The procedure of removing biases is described in Appendix C.
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