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1 MORE ON KNOWLEDGE GRAPHS AND THEIR EMBEDDING TECHNIQUES
1.1 Knowledge Graphs

The term Knowledge Graph emerged to describe a new Google search technology in 2012 Paulheim
(2017). The term has expanded to describe any form of a knowledge base represented using a graph
structure J1 et al.| (2020). Knowledge graphs are data models used to represent structured and unstructured
knowledge in triples [Mount Fuji, isLocatedIn, Japan] J1 et al.| (2020). The triples represent a semantic
relationship between two objects following language semantics written in first-order logic such as [subject,
verb, object]. Hence, a knowledge graph represents interrelated and semantically connected descriptions of
real-world entities and relationships Ji et al.| (2020). The definitions of a knowledge graph vary widely L1
et al.| (2020)). Here I assume the definition described in |[Paulheim|(2017). In [Paulheim| (2017), the authors
identified a set of properties that pertains to a knowledge graph that is:

e They describe real-world phenomena in the form of entities and relationships.

e The entities and relationships are represented in a graph structure using vertices and edges.

The graph structure containing the knowledge graph can be described mathematically and represented
computationally using graph theory norms.

e The entities’ metadata and relationships do not necessarily adhere to a schema or an ontology.
e Entities of different types could be linked with multiple edges.
e It could cover multiple domains of knowledge.

Knowledge graph construction can vary from manual to automatic curation by extracting entities and
relations from unstructured text Paulheim| (2017). Knowledge graphs can be represented using the property
graph model Angles (2018)). Knowledge graphs can also be represented using the Resources Descriptors
Framework [Lassila et al.|(1998), a semantic representation language with a graph data model defined by the
World Wide Web Consortium. A relationship is defined between two connected entities or nodes, such as
our previous example [Mount Fuji, isLocatedIn, Japan]. In that example [Mount Fuji] and [Japan] are two
unique nodes, vertices or entities in a graph, while [isLocatedIn] is the relationship or edge label connecting
them. The RDF standard requires storing node names using a Unique Resource Identifier (URI) format.
Knowledge graphs can be constructed and curated under two assumptions: open-world or closed-world
assumptions [Cai et al. (2018)). In the open-world assumption, information outside the knowledge graph is
assumed to be unknown, and the knowledge graph itself is considered incomplete, such as DBpedia Bizer
et al. (2009). In a closed world assumption, information outside the knowledge graph is false. The data
model in the closed-world assumption can be defined in a schema or ontology described using the RDFS
language or the Resource Descriptor Framework Schema Lassila et al.| (1998)). A schema is a concept map
or ontology describing entities in the knowledge graph and their relationships.

Like relational databases, knowledge graphs are graph databases queried using query languages Hogan
et al.| (2021)). For example, SPARQL F_-I and Cypher EI are two popular graph query languages like the
Structured Query Language (SQL). SPARQL was developed as part of the semantic web technology stack

'https://www.w3.0org/TR/spargqlll-query/
2 https://neo4;j.com/developer/cypher/
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to query RDF triple stores and knowledge graphs, while Cypher is a property graph query language Hogan
et al. (2021). However, due to the unconventional structure of the graph model and the fact that knowledge
graphs can be multigraphs with attributes and edges that could be weighted or labeled, graph query
languages are difficult and impractical for the complex analysis of knowledge graphs. Those limitations
have led to the emergence of knowledge graph mining methods and algorithms especially embedding
models borrowing from graph theory, complex networks, machine learning, and deep learning to adapt
approaches developed in those fields to mine knowledge graphs more flexibly and extract deeper insights
Wang et al. (2017)).

1.2 Knowledge Graph Embedding and Similarity

Knowledge graph embedding models automatically extract latent feature vectors from data without relying
on stochastic and heuristic metrics and measures Bengio et al. (2013)). All representation learning algorithms
on graphs ultimately produce node embedding vectors in low-dimensional vector space Hamilton et al.
(2017). The minimal constraint on the learned representations is that they preserve the graph’s structure
in the Euclidean vector space [Hamilton et al. (2017). The node embedding vectors learned can be passed
to downstream machine learning models for classification, regression, or clustering. For example, cosine
distance could be applied to the learned vectors to rank the nodes compared to a query node. Alternatively,
they can be used directly in the learning process in a semi-supervised end-to-end fashion as in the Graph
Neural Network (GNN) model Wu et al.| (2020). They can also be transductive, as in learned from the
structure of the graph itself Perozzi et al.|(2014) [Tang et al. (2015) Grover and Leskovec (2016), or distance
based by forcing a scoring function to evaluate the plausibility of the triples in the knowledge graph Lin
et al.[|(2015).

The Skip-gram model described in Mikolov et al.| (2013b) is an unsupervised language model aiming at
learning discrete vectors of unique words given a corpus of text. The Skip-gram model has been adapted to
learn vectors for individual nodes on a corpus of sampled nodes from the graph in unsupervised network
and graph embedding algorithms. In DeepWalk |Perozzi et al. (2014)), the authors first proposed using the
Skip-gram model on a corpus of sampled nodes from a given graph using a random walk strategy to sample
the graph. Since it was observed that the distribution of words in any corpus of text followed Zipf’s law, it
was also observed that the frequency distribution of node degrees in a graph follows Zipf’s law |Perozzi
et al. (2014)). The random walk algorithm aims at sampling chains of nodes from the graph controlled by
the walk length. Sampled chains are then treated as sentences in a text corpus fed to a Skip-gram variant of
Word2vec Mikolov et al.| (2013a)).
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2 ILLUSTRATIVE EXAMPLE SUPPLEMENTAL TO FIGURE 1
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Figure S1. The figure shows in an illustrative way the content of the pipeline in figure 1. The first input
database contains abstracts and other metadata for each article. Second an index is created from the
recognized entities from abstracts. Then a knowledge graph is created based on the co-occurrence of the
unique entities in the articles and the citation network. Next the integrated knowledge graph is embedded.
Then articles embeddings are created using mean pooling. On the query size at the bottom of the image first
the input query is tokenized then expanded then matched with the index. Then a query vector is created.
Following a cosine distance is computed between the query vector and the article vectors producing the
ranked articles.
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