

Supplementary Material

High Selectivity of Photocatalytic Reduction of CO₂ to CO based on Terpyridine Ligand Supported Cu^I Metal Organic Framework

Wen-Dong Zhang¹, Yun Wang^{2†}, Yi Liang^{2†}, Ai-Lin Jiang^{2†}, Hao Gong¹, Xiao-Ying Tian¹, Yi Wang¹, Wen-Sheng Fu^{1*}, Jia-Zhen Liao³, Peng Chen^{2*}, Ying-Zhao Ma^{1*}

¹ Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University, Chongqing, China

² Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, China

³ Chongqing College of Electronic Engineering, Chongqing, China

⁴ Research Center for Environmental Science & Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China

* Correspondence:

Ying-Zhao Ma yzma@cqnu.edu.cn Wen-Sheng Fu fuwensheng@cqnu.edu.cn Peng Chen ctbupengchen@126.com

[†]These authors have contributed equally to this work and share first authorship

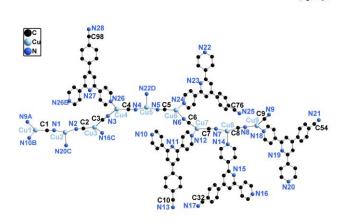
1 Crystallographic appendix

Crystallographic data sets were collected with either Mo K_{α} radiation (0.71073 Å) .Suitable single crystals were covered in parabar oil, placed on a nylon loop mounted in a CrystalCap MagneticTM holder (Hampton Research) and immediately transferred to the diffractometer. Data were corrected for Lorentz and polarization effects, as well as for absorption (numerical integration using a Gaussian grid, including beam profile effects). The program suite CrysAlisPRO (Rigaku Oxford Diffraction) was used for data collection, multi-scan absorption correction and data reduction. Each structure was solved by intrinsic phasing using SHELXT-2016 (Sheldrick, 2015b) and refined by full-matrix least-squares methods on F^2 with SHELXL2016 (Sheldrick, 2015a) in the software OLEX2. The structures were checked for higher symmetry with the help of the program PLATON (Spek, 2003). After anisotropic refinement of the non-H atoms, hydrogens were placed in geometrically calculated positions and each was assigned a fixed isotropic displacement parameter with a value equal to 1.2Uiso of its parent C atom (1.5Uiso for methyl groups) and refined with a riding model.

Compound	Cu ^I MOF
Formula	$C_{108}H_{63}Cu_9N_{27}$
μ/mm^{-1}	2.683
Formula weight	2310.81
Color	Yellow
Shape	Block
Size/mm ³	$0.04 \times 0.03 \times 0.01$
T/K	100(2)
Crystal system	orthorhombic
Space group	Pbcn
a/Å	20.6917(6)
b/Å	14.3705(3)
c/Å	64.916(2)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	19302.9(9)
Z	2
Wavelength/Å	1.54184

Table S1. Crystallographic table

Radiation type	Cu K α (λ = 1.54184)
$\Theta_{min}/^{\circ}$	5.064
$\Theta_{max}/^{\circ}$	140.432
Measured Refl.	62989
Independent Refl.	16600
Reflections Used	18248
Rint	0.01221
Parameters	1300
Restraints	72
Largest Peak	1.29
Deepest Hole	-1.14
GooF	1.438
wR_2 (all data)	0.3927
wR ₂	0.3265
R_1 (all data)	0.1647
R_1	0.1158
$\rho_{calc}g/cm^3$	1.590
μ/mm^{-1}	2.638
F(000)	9288.0


Radiation	Cu Ka (λ = 1.54184)			
2Θ range for data collection/° 5.064 to 140.432				
Index ranges	$-21 \le h \le 24, -16 \le k \le 16, -76 \le l \le 74$			
Reflections collected	62989			
Independent reflections	16600 [$R_{int} = 0.1221, R_{sigma} = 0.0678$]			
Data/restraints/parameters	16600/72/1300			
Goodness-of-fit on F ²	1.438			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1158, wR_2 = 0.3265$			
Final R indexes [all data]	$R_1 = 0.1647, wR_2 = 0.3927$			
Largest diff. peak/hole / e Å ⁻³ 1.29/-1.14				

Cu ^I MOF					
Cu1-N9 ²	1.949(11)	Cu4-N3	1.951(12)	Cu6-N24	2.018(7)
Cu1-N10 ¹	2.029(8)	Cu4-N26	2.030(8)	Cu7-N12	2.047(9)
Cu2-N1	1.881(8)	Cu5-N4	1.877(8)	Cu8-N7	1.892(9)
Cu2-N2	1.890(8)	Cu5-N5	1.885(7)	Cu8-N14	2.114(7)
Cu2-N20 ³	2.095(7)	Cu5-N22 ⁴	2.109(7)	Cu9-N8	1.896(10)
Cu3-N16 ³	2.035(7)	Cu6-N6	1.968(10)	Cu9-N18	2.030(7
C1-Cı	11-N92	127.3(3)	N5-C	u5-N224	102.2(3)
C1-Cu	1-N101	125.7(3)	C5-0	Cu6-N6	125.6(3)
N92-Cı	11-N101	107.0(3)	C5-C	u6-N24	133.8(3)
N1-C	u2-N2	154.3(3)	N6-C	Cu6-N24	100.3(3)
N1-Cu	2-N203	103.6(3)	C6-0	Cu7-C7	134.2(4)
N2-Cu	2-N203	102.0(3)	C6-C	u7-N12	110.2(4)
C2-C	u3-C3	131.3(4)	С7-С	u7-N12	115.6(4)
C2-Cu	3-N163	127.8(3)	C8-0	Cu8-N7	153.9(4)
C3-Cu	3-N163	100.7(3)	C8-C	u8-N14	104.0(3)
C4-C	u4-N3	129.4(4)	N7-C	Cu8-N14	102.1(3)
C4-Cı	14-N26	127.4(4)	C9-Cu9-N18		106.5(3)
N3-Cı	14-N26	103.1(3)	N8-0	Cu9-C9	131.2(4)

Table S2. Selected Bond Distances (Å) and angles (°) for $Cu^{I}\,MOF$

N4-Cu5-N5	156.5(3)	N8-Cu9-N18	122.3(3)
N4-Cu5-N224	101.2(3)		

Symmetry code for 1: ¹1-x,+Y,3/2-z; ²-1+x,1-Y,1/2+z; ³1-x,-Y,1-z; ⁴1-x,2-Y,1-z;

Figure S1. View of the coordination environments of compound 1. All H atoms and lattice water molecules are omitted for clarity. Symmetry codes: A (-1+x, 1-y, 1/2+z); B (1-x, y, 3/2-z); C (1-x, -y, 1-z); D (1-x, 2-y, 1-z)

2 Photocatalytic stability of Cu^I MOF

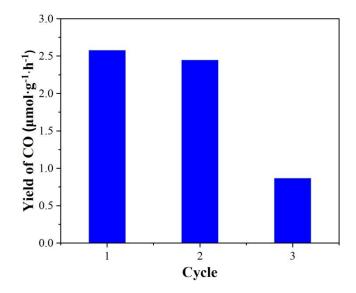


Figure S2. The cycling activity test of Cu¹ MOF

3 The band structure of Cu^I MOF

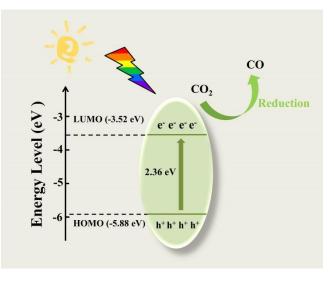


Figure S3. The diagram of band structure for Cu^I MOF

References

- SHELDRICK, G. 2015a. Crystal structure refinement with SHELXL. Acta Crystallographica Section *C*, 71, 3-8.
- SHELDRICK, G. 2015b. SHELXT Integrated space-group and crystal-structure determination. *Acta Crystallographica Section A*, 71, 3-8.
- SPEK, A. 2003. Single-crystal structure validation with the program PLATON. *Journal of Applied Crystallography*, 36, 7-13.