
Supplementary Material

This supplementary material is divided into two sections. Section 1 covers details about the genetic
algorithm (GA) used to estimate θ̂(i), and section 2 includes detailed results for the linear mixed-effect
model.

1 GENETIC ALGORITHM
To generate the next generation from the current one, we utilize tournament selection to select parents,
two-point crossover for generating offsprings, and creep mutation for adding genetic variability to the new
generation. The algorithm is dependent on five hyper-parameters, which are functions of the Poincaré
difference ∆P , described in Equation 5 of the main article. Below we give a detailed description of the
procedure and the computation of the hyper-parameters.

The GA starts by initializing the 400 individuals (θ) in the population randomly using a latin hypercube
sampling in the ranges: {RSP

min, R
FP
min} ∈ [150, 650] ms; {∆RSP ,∆RFP} ∈ [0, 700] ms, {τSPR , τFP

R } ∈
[40, 300] ms; {DSP

min, D
FP
min} ∈ [0, 30] ms; {∆DSP ,∆DFP} ∈ [0, 75] ms; {τSPD , τFP

D } ∈ [40, 300] ms.
All 400 individuals are then evaluated by running the model and comparing the model output to the current
data, as explained by Equation 4 in the main article.

Two individuals are selected with uniform probability for all individuals, and the fittest of these two are
picked with a probability of 0.7. This procedure is done again, resulting in a selection of two different
individuals. This is commonly called tournament selection. The two selected individuals are then, with
a probability of PC(∆P ), combined using a two-point crossover, meaning that two crossover points
are picked randomly on the parameter vector and the sections in between the two points are swapped
between the selected individuals to create two new individuals Wahde (2008). Otherwise, the two selected
parameters skip the crossover phase. The two new individuals, either newly created by crossover or the
originally selected individuals, are then with a probability of P Ind

M (∆P ) selected for mutation. Each
parameter for an individual that is selected for mutation will with a probability of PP

M (∆P ) be mutated.
The mutation is created by creep mutation, i.e., by adding a number drawn from a zero-mean normal
distribution with standard deviation r(p)σM (∆P ) to the individual’s parameter, where r(p) is the range
of the selected parameter p, as defined in the main article. This procedure from selection of parents to
the creation of two new individuals is performed until there are 390 new individuals, before the ten most
fit individuals from the previous generation are added. This new population of 400 does then replace the
previous one.

The fitness value of the newly created 400 individuals is then evaluated, before randomly selecting a
number of individuals, NI(∆P ), from the 300 least fit individuals to be replaced by immigrants. One
third of the immigrants are created by latin hypercube sampling, in the same ranges as the initialization.
One third is selected by simultaneously running eight computationally faster GA, with the same structure
and hyper-parameters as the main GA but using only 16 individuals, where the fittest ones are selected
for immigration. The last third of the immigrants are created from a saved-up memory of previously
individuals, where the ten fittest individuals from each generation as well as their model output, λ, and
RRmin are saved. From this memory, the ten previously generations with the most similar λ and RRmin

are first selected, evaluated by the combined difference ∆C(∆λ,∆RRmin) seen in Equation S1,
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∆C(∆λ,∆RRmin) =
|∆λ|
6

+
|∆RRmin|

300
, (S1)

where ∆λ and ∆RRmin are the difference between the current λ and RRmin, respectively, and the ones
saved in the memory. From these ten selected generations, the individuals with the highest fitness computed
using the current RR interval series are used for immigration.

After immigration, which only occurs at the first generation the GA runs for a given data segment,
the process of selection, crossover, and mutation starts over again. The number of generations the GA
runs before switching to the next data segment varies depending on ∆P , from 1 when ∆P < 800; to
2 when 800 ≤ ∆P < 2000; to 3 when ∆P ≥ 2000. Furthermore, the five hyper-parameters H =
{PC , P

Ind
M , PP

M , σM , NI} are also tuned using ∆P , according to Equation S2,

HMin if ∆P < 400,

HMin +
HMean −HMin

1000− 400
(∆P − 400) if 400 < ∆P < 1000,

HMean +
HMax −HMean

5000− 1000
(∆P − 1000) if 1000 < ∆P < 5000,

HMax if 5000 < ∆P.

(S2)

Thus, the hyper-parameters dependence on ∆P are non-linear. The values for HMin, HMean and HMax

for the different hyper-parameters are given in Table S1.

Table S1. Ranges for the hyper-parameters that change depending on ∆P . All ranges are empirically
determined.

Parameter Minimum, HMin Mean, HMean Maximum, HMax

PC 0.4 0.55 0.7
P Ind
M 0.6 0.75 0.9
PP
M

1
12

2
12

5
12

σM 0.025 0.06 0.12
NI 0.10 0.25 0.7

1.1 Simulation study for determining Nsim

To determine the value for the number of simulated RR intervals, Nsim, a simulation study was completed.
A low Nsim would make the simulated RR interval series vary more between realizations due to the
stochastic input sequence from the Poisson process, whereas a high Nsim would increase the computational
complexity. Thus, the simulation study analyses the relation between Nsim and the variation between
realizations by simulating a RR interval series with a fixed θ, λ, and RRmin. By running the model 10000
times using the fixed values and calculating the error ϵ using Equation 4 in the main article, an estimate of
how much the variation between realizations changes depending on Nsim was created. This is visualized in
Figure S1.
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Figure S1. A simulation study of the relation between variation between realizations and Nsim. The red
circle marks 1500 which was used for the bulk of the GA, and the red cross marks 5000 which was used
for the ten best individuals in each generation. The model parameter values used were; RFP

min = 275,
∆RFP = 175, τFP

R = 105, RSP
min = 275, ∆RSP = 175, τSPR = 105, DFP

min = 7.5, ∆DFP = 18.75,
τFP
D = 100, DSP

min = 7.5, ∆DSP = 18.75, and τSPD = 100.

2 DETAILED RESULTS FOR THE LINEAR MIXED-EFFECT MODEL
The fixed-effect for the linear mixed-effect model described in Equations 8, 9, and 10 in the main article are
shown in Table S2, where subscript V indicates verapamil, D indicates diltiazem, M indicates metoprolol,
and C indicates carvedilol. Moreover, boxplots of the random-effects are shown in Figure S2.

Table S2. The estimated fixed effect for the linear mixed-effect model.

Fixed effect RFP
min ∆RFP τFP

R RSP
min ∆RSP τSP

R DFP
min ∆DFP τFP

D DSP
min ∆DSP τSP

D

α(ms) 434 408 172 241 237 180 5.3 19 141 21 26 187
β(ms) 41 88 16 22 69 22 1.1 5.7 15 1.5 6.4 20
αV (ms) 54 67 -4.3 36 28 4.7 0.03 2.9 3.0 0.63 -1.4 -7.3
αD(ms) 85 84 -9.8 45 64 -10 0.29 3.5 4.0 1.5 -6.1 -2.6
αM (ms) 58 81 -8.9 17 73 -3.1 0.59 2.8 7.1 0.90 -2.9 -2.8
αC(ms) 41 71 -4.2 27.5 35.9 -3.8 0.00 2.5 0.6 0.10 -4.4 -7.3
βV (ms) -0.8 -17 4.5 15.6 12.8 -1.2 0.24 -0.70 0.68 0.10 1.9 0.59
βD(ms) 7.1 8.0 5.1 14 28 -0.31 0.62 -0.42 0.46 0.16 1.8 0.06
βM (ms) 0.26 -19 -0.39 6.9 4.2 2.2 0.10 -1.8 -0.69 0.15 -0.80 -3.1
βC(ms) 4.4 -26 3.3 15 1.8 -1.9 0.09 -1.8 0.67 -0.05 -0.27 -2.3
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Figure S2. Boxplots of the random-effect normalized with the range for each parameter r(p), for the the
cosine mean m (left) and the amplitude a (right) in the linear mixed-effect model. On each box, the central
mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers mark the most extreme data points not considered outliers, and the outliers are
plotted with a red ’+’.
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