## Supplementary Information

#### Supplementary tables

#### Table S1. Information for primary and secondary antibodies

| Name                             | Cat number | Supplier                     | Application                       |
|----------------------------------|------------|------------------------------|-----------------------------------|
| Rabbit anti-Bcl-2                | 12789-1-AP | Proteintech                  | WB:1:1000                         |
| Mouse anti β-actin               | sc-70319   | Santa Cruz                   | WB:1:1000                         |
| Rabbit anti-COX-2                | Ab15191    | Abcam                        | WB:1:1000                         |
| Mouse anti-NF-KB p65             | sc-8008    | Santa Cruz Biotechnology     | WB:1:1000                         |
| Rabbit anti-phospho-NFκB p65     | 3033       | Cell Signaling<br>Technology | WB:1:1000                         |
| Rabbit anti-Sirt1 antibody       | 07-131     | Millipore                    | WB:1:500                          |
| Rabbit phospho-AMPKα (Thr172)    | 2535       | Cell Signaling<br>Technology | WB:1:500                          |
| Rabbit anti-p16                  | 211542     | Abcam                        | WB:1:800                          |
| mouse anti -p53                  | 2524       | Cell Signaling<br>Technology | WB:1:800                          |
| IRDye®R680LT Goat Anti-Mouse     | 92668070   | LI-COR                       | WB:1:10000                        |
| IRDye®R800CW Goat Anti-Rabbit    | 92632211   | LI-COR                       | WB:1:10000                        |
| Mouse anti-tyrosine hydroxylase  | T2928      | Sigma                        | IHC:1:1000 IF:1:500<br>WB:1:1000  |
| Rabbit anti-GFAP                 | 16825-1-AP | Proteintech                  | IHC:1:1000 IF:1:1000<br>WB:1:1000 |
| Rabbit anti-Iba1                 | 019-19741  | Wako                         | IHC:1:500 IF:1:500                |
| Goat anti-mouse Alexa Fluor 594  | A11032     | Invitrogen                   | IF:1:1000                         |
| Goat anti-rabbit Alexa Fluor 488 | A32731     | Invitrogen                   | IF:1:1000                         |

| Goat anti-mouse Alexa Fluor 647             | A32728  | Invitrogen          | IF:1:1000 |
|---------------------------------------------|---------|---------------------|-----------|
| Biotinylated anti-mouse secondary antibody  | PK-6102 | Vector Laboratories | IHC:1:200 |
| Biotinylated anti-rabbit secondary antibody | PK-6101 | Vector Laboratories | IHC:1:200 |

Supplementary figures and legends



Figure S1. The strategy of *miR-29a/b1* knockout in mice and identification of 29a KO mice.



Figure S2. The expression of aging marker genes in the hippocampus and cortex of WT and miR-29a/b1 KO mice at 6 months old. (A) qPCR analysis of p21 and p53 transcripts in the hippocampus. Differences were analyzed by Student-T-test. n=3-5. \*p < 0.05. (B) Western blot analysis of p53 and p16 protein expression in the hippocampus. Quantification of relative p53 and p16 expression levels are shown in the right panel. n=4-7. (C) qPCR analysis of p21 and p53 transcripts in the cortex. n=3-7.



Figure S3. The concentration of MPP<sup>+</sup> in the striatum 90 min after the last MPTP injection. n=3.



**Figure S4. The expression levels of aging marker genes in the striatum of miR-29a/b1 KO mice.** qPCR analysis of *p21*, *p53*, and *Pail-1* transcripts in the striatum of WT and 29a KO mice. n=3.



Figure S5. The expression levels of miR-29s in the ventral midbrain (MB) (A), striatum (B) and hippocampus (C) of mice at 3 days after MPTP administration. n=5.



Figure S6. Cytokines IL-1 $\beta$ , IL-6 and IFN- $\gamma$  in the striatum of WT and *miR-29a/b1* KO mice at 3 days after MPTP administration. n=3-5.



Figure S7. Nissl staining of the cortex, hippocampus and substantia nigra of 8month-old WT and *miR-29a/b1* KO mice. Scale bar: 50 μm.



Figure S8. Western blot analysis of striatal TH and GFAP proteins in 8-month-old WT and *miR-29a/b1* KO mice at 3 days after a subacute regimen of MPTP intoxication. Quantification of relative TH and GFAP protein levels was shown at the bottom. n=3. Differences were analyzed by two-way ANOVA followed by LSD multiple comparison tests. \*\*p < 0.01, vs normal saline control. ##p < 0.01, vs WT group.



Figure S9. miR-29s levels in neurotoxin-treated primary midbrain neurons and microglial cells. (A) Expression of miR-29s in primary midbrain neurons treated with PBS or MPP<sup>+</sup> at 15  $\mu$ M for 24 h and 48 h. n=4-5. (B) Expression of miR-29s in primary microglia treated with PBS or LPS at 100 ng/mL for 24 h. Scale bar: 100  $\mu$ m. n=5. Differences were analyzed by Student-T-test. \*p < 0.05, \*\*p < 0.01 and \*\*\*p < 0.001.



Figure S10. (A) qPCR analysis of *BDNF* and *IGF-1* transcripts and (B) *IL-1*  $\beta$ , *IL-6*, *TNF-* $\alpha$ , *iNOS* and *C3* in WT and miR-29a/b1 KO primary astrocytes treated with PBS or 1 mM MPP<sup>+</sup> for 24 h. n=3. \*p<0.05, \*\*p<0.01 and \*\*\*p<0.001, vs PBS control.



Figure S11. (A) qPCR analysis of aging markers  $p19^{Arf}$ , p21, p16 and Pai1 transcripts in WT and miR-29a/b1 KO primary astrocytes treated with PBS or 1 mM MPP<sup>+</sup> for 24 h. n=3-5. Differences were analyzed by two-way ANOVA followed by LSD multiple comparison tests. \*p < 0.05, \*\*p < 0.01 and \*\*\*p < 0.001, vs PBS control. # p < 0.05, vs WT group. (B) Western blot analysis of Bcl-2 protein expression in WT and 29a KO primary astrocytes treated with PBS or 1 mM MPP<sup>+</sup> for 6 h and 12 h. Quantification of relative Bcl-2 protein level is shown in the right panel. n=4.



Figure S12. Diagram of effects of *miR-29a/b1* deficiency in Parkinson's disease.

## The original membranes

**1.** Original image for Figure **3**C



## 2. Original image for Figure 5H



3. Original images for Figure 6G



# 4. Original images for Figure 6H



## 5. Original image for Figure 7D



## 6. Original images for Figure S2B



7. Original image for Figure S8



8. Original image for Figure S11B

