## Supplementary information

## Compositional effects on the hydrogen storage properties in a series

of refractory high entropy alloys

Claudia Zlotea<sup>1</sup>\*, Anis Bouzidi<sup>1</sup>, Jorge Montero<sup>1</sup>, Gustav Ek<sup>2</sup> and Martin Sahlberg<sup>2</sup>

<sup>1</sup>University Paris Est Créteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320 Thiais,

France

<sup>2</sup>Department of Chemistry – Ångström laboratory, Uppsala University, Uppsala, Sweden

\*Corresponding author: claudia.zlotea@cnrs.fr

Figure SI-1: XRD patterns ( $\lambda$  = 1.5406 Å) of the Ti-V-Zr-Nb-*M* alloys with *M* = Fe, Co, Ni and Cu prepared by arc melting.

Figure SI-2: XRD patterns recorded every 15 minutes during the BM process for the Ti-V-Zr-Nb-Fe alloy.

Figure SI-3: SEM chemical mapping and EDS results for  $Ti_{0.30}V_{0.25}Zr_{0.10}Nb_{0.25}M_{0.10}$  compositions with M = Mg, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and Ta as well as the pristine quaternary alloy  $Ti_{0.325}V_{0.275}Zr_{0.125}Nb_{0.275}$ .

Figure SI-4: XRD patterns ( $\lambda$  = 1.5406 Å) of the Ti-V-Zr-Nb-*M* alloys with *M* = Fe, Co, Ni, Cu and Zn as well as the quaternary Ti-V-Zr-Nb composition prepared by RBM and desorbed following a pre-treatment under dynamic vacuum at 400 °C.

Figure SI-5: Kinetic curves recorded at 25  $^\circ C$  under 25-30 bar  $H_2$  pressure for selected compositions.

Figure SI-6: Attempts to correlate the *bcc* lattice parameters to the VEC and the average atomic radius.

Figure SI-1: XRD patterns ( $\lambda$  = 1.5406 Å) of the Ti-V-Zr-Nb-*M* alloys with *M* = Fe, Co, Ni and Cu prepared by arc melting.



Figure SI-2: XRD patterns recorded every 15 minutes during the BM process for the Ti-V-Zr-Nb-Fe alloy.



Figure SI-3: SEM chemical mapping and EDS results for  $Ti_{0.30}V_{0.25}Zr_{0.10}Nb_{0.25}M_{0.10}$  compositions with M = Mg, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and Ta as well as the pristine quaternary alloy  $Ti_{0.325}V_{0.275}Zr_{0.125}Nb_{0.275}$ .



#### 1) $Ti_{0.325}V_{0.275}Zr_{0.125}Nb_{0.275}$ (AM)

| Region         | Ti (at.%) | V (at.%)  | Zr (at.%) | Nb (at.%) |
|----------------|-----------|-----------|-----------|-----------|
| Dendritic      | 32.1(0.3) | 26.9(0.4) | 10.8(0.8) | 30.2(1.1) |
| Interdendritic | 32.2(0.3) | 25.5(0.4) | 21.8(1.7) | 20.5(1.4) |
| Overall        | 32.4(0.3) | 27.1(0.4) | 13.2(1.7) | 27.3(1.4) |
| Nominal        | 32.5      | 27.5      | 12.5      | 27.5      |

#### 2) Ti<sub>0.30</sub>V<sub>0.25</sub>Zr<sub>0.10</sub>Nb<sub>0.25</sub>Mg<sub>0.10</sub> (RBM)



| Region  | Ti (at.%) | V (at.%)  | Mg (at.%) | Zr (at.%) | Nb (at.%) |
|---------|-----------|-----------|-----------|-----------|-----------|
| Overall | 29.9(0.5) | 24.3(0.8) | 12.1(0.5) | 9.8(0.4)  | 23.9(0.5) |
| Nominal | 30        | 25        | 10        | 10        | 25        |

### 3) $Ti_{0.30}V_{0.25}Zr_{0.10}Nb_{0.25}AI_{0.10}$ (AM)

| 50 µm BSE | ті (К) | V (К)  |
|-----------|--------|--------|
| ALIS      | Zr (L) | Nb (L) |

| Region        | Al (at.%) | Ti (at.%) | V (at.%)  | Zr (at.%) | Nb (at.%) |
|---------------|-----------|-----------|-----------|-----------|-----------|
| Dendritic     | 9.2(0.4)  | 29.8(0.6) | 24.7(0.7) | 8.3(0.6)  | 28.0(0.5) |
| Interdendriti | 12.1(0.6) | 28.7(0.9) | 22.6(1.2) | 17.5(2.5) | 19.1(1.6) |
| Overall       | 10.0(0.6) | 29.5(0.9) | 24.6(1.2) | 10.8(2.5) | 25.1(1.6) |
| Nominal       | 10        | 30        | 25        | 10        | 25        |

# 4) $Ti_{0.30}V_{0.25}Zr_{0.10}Nb_{0.25}Cr_{0.10}$ (AM)

| <u>50 µт</u> | ті (К) | V (K)  |
|--------------|--------|--------|
| NB (L)       | zr (L) | cr (K) |

| Region         | Ti (at.%) | V (at.%)  | Cr (at.%) | Zr (at.%) | Nb (at.%) |
|----------------|-----------|-----------|-----------|-----------|-----------|
| Dendritic      | 30.2(0.5) | 25.1(0.4) | 8.1(0.4)  | 5.8(0.5)  | 30.8(1.2) |
| Interdendritic | 29.9(1.1) | 23.4(0.7) | 11.1(0.8) | 18.5(1.5) | 17.1(1.8) |
| Overall        | 30.5(1.1) | 25.4(0.7) | 9.5(0.8)  | 10.3(1.5) | 24.3(1.8) |
| Nominal        | 30        | 25        | 10        | 25        | 10        |

# 5) $Ti_{0.30}V_{0.25}Zr_{0.10}Nb_{0.25}Mn_{0.10}$ (AM)



| Region         | Ti (at.%) | V (at.%)  | Mn (at.%) | Zr (at.%) | Nb (at.%) |
|----------------|-----------|-----------|-----------|-----------|-----------|
| Dendritic      | 31.3(1.3) | 26.3(0.5) | 7.2(1.8)  | 8.3(0.8)  | 26.9(0.5) |
| Interdendritic | 27.2(0.8) | 24.3(0.7) | 12.7(1.0) | 15.9(1.5) | 19.9(1.3) |
| Overall        | 30.6(1.3) | 25.8(0.7) | 9.1(1.8)  | 10.2(1.5) | 24.4(1.3) |
| Nominal        | 30        | 25        | 10        | 10        | 25        |

### 6) Ti<sub>0.30</sub>V<sub>0.25</sub>Zr<sub>0.10</sub>Nb<sub>0.25</sub>Fe<sub>0.10</sub> (RBM)

| 10 µm  | Ті (К) | V (K)  |
|--------|--------|--------|
| A A A  |        |        |
| C Car  |        |        |
| A CAR  | A Che  | 1 CAR  |
| Nb (L) | Zr (L) | Fe (K) |

| Region  | Ti (at.%) | V (at.%)  | Fe (at.%) | Zr (at.%) | Nb (at.%) |
|---------|-----------|-----------|-----------|-----------|-----------|
| Overall | 30.1(1.0) | 24.2(1.3) | 11.9(1.0) | 9.4(0.4)  | 24.4(1.0) |
| Nominal | 30        | 25        | 10        | 10        | 25        |

#### 7) $Ti_{0.30}V_{0.25}Zr_{0.10}Nb_{0.25}Co_{0.10}$ (RBM)



| Region  | Ti (at.%) | V (at.%)  | Co (at.%) | Zr (at.%) | Nb (at.%) |
|---------|-----------|-----------|-----------|-----------|-----------|
| Overall | 29.9(0.7) | 25.7(0.6) | 9.6(0.4)  | 9.6(0.7)  | 25.2(0.7) |
| Nominal | 30        | 25        | 10        | 10        | 25        |

### 8) $Ti_{0.30}V_{0.25}Zr_{0.10}Nb_{0.25}Ni_{0.10}$ (RBM)



| Region  | Ti (at.%) | V (at.%)  | Ni (at.%) | Zr (at.%) | Nb (at.%) |
|---------|-----------|-----------|-----------|-----------|-----------|
| Overall | 29.2(0.4) | 24.1(0.7) | 9.3(1.0)  | 10.6(0.4) | 26.8(1.2) |
| Nominal | 30        | 25        | 10        | 10        | 25        |

#### 9) Ti<sub>0.30</sub>V<sub>0.25</sub>Zr<sub>0.10</sub>Nb<sub>0.25</sub>Cu<sub>0.10</sub> (RBM)



#### 10) $Ti_{0.30}V_{0.25}Zr_{0.10}Nb_{0.25}Zn_{0.10}$ (RBM)



| Region  | Ti (at.%) | V (at.%)  | Zn (at.%) | Zr (at.%) | Nb (at.%) |
|---------|-----------|-----------|-----------|-----------|-----------|
| Overall | 30.1(0.3) | 24.7(0.6) | 9.9(0.3)  | 9.8(0.3)  | 25.5(0.6) |
| Nominal | 30        | 25        | 10        | 10        | 25        |

#### 11) $Ti_{0.30}V_{0.25}Zr_{0.10}Nb_{0.25}Mo_{0.10}$ (AM)



| Region         | Ti (at.%) | V (at.%)  | Zr (at.%) | Nb (at.%) | Mo (at.%) |
|----------------|-----------|-----------|-----------|-----------|-----------|
| Dendritic      | 28.2(0.5) | 22.9(0.2) | 6.2(0.4)  | 29.8(0.7) | 12.9(0.4) |
| Interdendritic | 30.4(0.3) | 25.5(0.4) | 23.6(1.7) | 15.9(2.4) | 4.9(1.2)  |
| Overall        | 30.1(0.5) | 24.8(0.5) | 10.3(1.7) | 25.1(2.4) | 9.7(1.2)  |
| Nominal        | 30        | 25        | 10        | 25        | 10        |

### 12) $Ti_{0.30}V_{0.25}Zr_{0.10}Nb_{0.25}Ta_{0.10}$ (AM)



| Region         | Ti (at.%) | V (at.%)  | Zr (at.%) | Nb (at.%) | Ta (at.%) |
|----------------|-----------|-----------|-----------|-----------|-----------|
| Dendritic      | 25.9(1.0) | 20.3(0.7) | 5.6(0.3)  | 32.2(0.7) | 16(0.9)   |
| Interdendritic | 30.8(0.6) | 25.6(1.1) | 21.1(2.9) | 17.9(1.3) | 4.6(0.8)  |
| Overall        | 28.5(1.0) | 24.3(1.1) | 9.7(2.9)  | 26.0(1.3) | 11.5(0.9) |
| Nominal        | 30        | 25        | 10        | 25        | 10        |

Figure SI-4: XRD patterns ( $\lambda$  = 1.5406 Å) of the Ti-V-Zr-Nb-*M* alloys with *M* = Fe, Co, Ni, Cu and Zn as well as the quaternary Ti-V-Zr-Nb composition prepared by reactive ball milling and desorbed following a pre-treatment under dynamic vacuum at 400 °C.



Figure SI-5: Kinetic curves recorded under 25-30 bar H<sub>2</sub> pressure at 25 °C for selected compositions:  $Ti_{0.30}V_{0.25}Zr_{0.10}Nb_{0.25}M_{0.10}$  with M = Mg, Al, Cr, Mo and Ta.



Figure SI-6: Attempts to correlate the *bcc* lattice parameters to the VEC and the average atomic radius.

