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Experimental assays
Compound analysis
BT2 in plasma was extracted by addition of 180 µL ice-cold acetonitrile containing 10 nM verapamil as internal standard, to 50 µL plasma. The samples were mixed at 600 rpm for 5 minutes, followed by centrifugation at 4000 rpm for 20 minutes at 4°C. A one-to-one dilution was subsequently performed by transferring 75 µL of the supernatant to 75 µL MilliQ water, followed by mixing at 600 rpm for 5 minutes. Extraction of BT2 from heart tissue involved an initial tissue homogenization step. 40-50 mg heart tissue was homogenized using 7 volumes (m/V) of Ringer’s Solution at 4°C. The homogenization was performed at 2500 rpm for 2x30s in reinforced 2 mL Precellys tubes containing 6 ceramic beads. 50 µL of the homogenate was then subjected to protein precipitation by addition of 180 µL of ice-cold acetonitrile containing 10 nM verapamil. Measurement of BT2 concentrations in both sample types was performed employing reverse phase ultra-high performance liquid chromatography (RP-UPLC) for sample deconvolution prior to analysis on a Waters TQ-S triple quadrupole mass spectrometer with an electrospray ionization interface. 1 µL sample was injected and subsequently separated over a Waters BEH C18 column (2.1, 50 mm; 1.7µ). Separation was achieved using a 1.7 min gradient starting at 96% H20, 4% acetonitrile, 0.1% formic acid and ending at 4% H20, 96% acetonitrile, 0.1% formic acid. BT2 in study samples was quantified by comparing the relative abundance of a single product ion to a linear regression model from an eight-point calibration curve prepared in parallel in blank matrix (plasma/heart-tissue from control animals), while simultaneous monitoring of two further fragments allowed for increased assay accuracy.
BCAA and BCKA analysis
Plasma samples were extracted with methanol containing deuterated internal standards. After 10 minutes of vortex at 1400 rpm and centrifugation at 4000 rpm, 50µl of the supernatant was evaporated and reconstituted in 250µl water and analyzed. 
Heart tissues (40-50mg) were homogenized in methanol containing deuterated internal standards using a Precellys instrument. The extraction was finalized using a TissueLyzer instrument (25Hz for 5 minutes). After centrifugation the supernatant (50µl) was evaporated. For BCAA analysis the supernatant was reconstituted in water and analyzed. For BCKA analysis the samples were derivatized prior to analysis according to previous work (1). BCAA and BCKA were measured using ultra-high performance liquid chromatography coupled to a Waters TQ-XS triple quadrupole (UPLC-MS/MS). Separation was achieved using a Waters BEH C8 column (2.1, 100mm; 1.7µ) with water (0.1% formic acid) and acetonitrile (0.1% formic acid) as mobile phases. The flow rate was 400µl per minute and the column was kept at 40 degrees. For plasma, detection was made in both positive (BCAA) and negative (BCKA) mode using intra-run polarity switching. For heart, two injections were made. One for the analysis of underivatized BCAA and one for the derivatized BCKA. Quantification was made using external standard curves (made in 20% methanol) that were prepared in parallel with the samples. 

Additional information on BT2 treatment effect on left ventricular ejection fraction (LVEF) has been collected from study by Chen et al. (2). In the considered experiment C57BL/6N mice were subjected to TAC; once daily administration of vehicle or 40 mg/kg BT2 via oral gavage was initiated 2 weeks after the surgery and continued for 6 weeks. At the end of the experiment heart tissue was collected and BCAA and BCKA were measured as described in the paper (2).
Model structure
The model captures dynamics of individual BCAA – leucine, isoleucine, valine (Leu, Ile, Val,) and BCKA - alpha-ketoisocaproic acid, alpha-ketoisovaleric, alpha-keto-beta-methylvaleric (KIC, KIV, KMV) species in the blood plasma and cardiac tissue. All rates are reported in concentration units.
ODE system, capturing BCAA metabolism and exchange between the organs
Level of individual BCAA in plasma depends on the BCAA consumption with food (), tissue BCAA deamination () and BCAA to protein disposal rates ( (eq. 1):
								(eq. 1)
Dynamics of individual BCKA in plasma depends on the balance between BCAA deamination rate () and BCKA oxidative decarboxylation rate () (eq. 2):
 									(eq. 2)
Cardiac BCAA level depends on the transport from the plasma () and deamination rates (); minor BCAA fraction is used for the protein synthesis in the heart tissue (3) and therefore this process was not taken into account in the model (eq.3):
								(eq. 3)
BCKA dynamics in heart depends on the balance between BCAA deamination (), BCKA oxidative decarboxylation () and BCKA release to the systemic circulation () rates (eq.4): 	
 						(eq. 4)
It should be stated that the proposed ODE system assumes no impact of cardiac BCAA catabolism on the systemic BCAA or BCKA levels as  is not a component of BCAA ODE; this assumption enables stepwise parameter estimation as described in ‘Methods’ section and is based on relatively low levels of BCKA in the cardiac tissue vs systemic circulation.
Reaction rates 
BCAA consumption and disposal in protein
Placebo-adjusted BCAA and BCKA levels were considered in the model to take into account circadian variation in their plasma levels, resulted from the daily variation in BCAA uptake. Constant BCAA consumption therefore was considered in the model and described as a zero-order process (eq.5).
									(eq.5)
Where  is a daily food amount,  – percent of each BCAA in the diet,  – BCAA molecular weight,  – volume of BCAA distribution.
BCAA disposal into proteins was set as a first order process which can be expressed from the eq. 1 using steady-state plasma BCAA levels  and other model parameters (eq. 6):
								(eq.6)
Where  are steady-state levels of individual BCAA,  is a BCAA fraction used for protein synthesis, known from the experimental data (3).
Cardiac BCAA and BCKA uptake
Reversible influx of BCAA and BCKA from plasma to cardiac tissue was considered in the model. Experimental data indicated rapid equilibration of BCAA and BCKA in plasma and tissues following intravenous BCAA bolus (3) (eq. 7, 8). 
 							(eq.7)
 							(eq.8)
Where  is a transport rate constant.
Protein synthesis in cardiac tissue
BCAA expenditure on protein synthesis is considered for the systemic but not for the cardiac compartment for healthy mice based on the data from (3). Reaction of BCAA conversion into the protein was introduced for the TAC state (eq. 9)(4):
 								(eq.9)
BCAA deamination rate
BCAA deamination rates for the individual BCAA in the systemic and cardiac compartments were described using similar equation structures but different parameter values. Enzyme concentrations were assumed to be different between the compartments; biochemical parameters were set for each individual BCAA and BCKA based on the experimental data. Co-substrate levels were assumed to be the same across the compartments due to limited experimental data. 
BCAA deamination is a reversible process, catalyzed by BCAT, involving transfer of the BCAA amino group to α-ketoglutarate and formation glutamate (5). A reaction rate equation was derived assuming a ping-pong mechanism (Fig. S1).
 				(eq. 10)
where  is a concentration of BCAT,  and  are levels of individual BCAA (Val, Leu, Ile) and BCKA (KIC, KMV, KIV) in the systemic circulation or cardiac tissue.  and  are concentrations of KG and GLU, assumed to be constant over time. , ,  are catalytic, equilibrium and dissociation constants for individual BCAA,  reflects dissociation constants for BCKA. Denominator is represented by eq. 11.
 								(eq. 11)
Literature data indicate BCAT reaction is near equilibrium (5); to satisfy this observation in the model the following condition, derived from eq. 10, should be fulfilled:
								(eq. 12)
From this equation level of the co-substrate (KG or GLU) can be expressed:
							(eq. 13)
Leu and KIC steady-state levels were used to derive glutamate concentration. 
BCKA oxidation rate
BCKA oxidation rate equation is similar across the organs and individual BCKA and is represented by irreversible rate (eq. 14):
							(eq. 14)
Where  and  are catalytic and dissociation constants, different across individual BCKA.  
BCKD phosphorylation and dephosphorylation rate
Balance between active (dephosphorylated) and inactive (phosphorylated) BCKD forms depends on the activities of BCKD kinase (BCKDK) and protein phosphatase 2Cm (PP2Cm) and can be characterized using ODE eq. 15 and 16:
 									(eq. 15)
 									(eq. 16)
BCKD phosphorylation is a bisubstrate reaction, which can be inhibited by BCKA (mainly, KIC) (6) as well as pharmacological agents such as BT2 (Fig. S2 eq. 17):
 							(eq.17)
Where  
BCKDK dephosphorylation is described using eq. 18:
 						(eq.18)
Assuming fast equilibrium between phosphorylated and active BCKD form in case of no KIC and BT2 inhibition we can express BCKD level via other parameters (eq. 19):
 			 (eq.19)
Let’s introduce following notations:
  
	
	
)

The eq. 19 then can be re-written (eq. 20):
							     (eq.20)
Eq. 19 can be re-written as a quadratic equation (eq. 21):
 
     (eq.21)   
Active BCKD level can be expressed from the eq. 21:
									     (eq. 22)
Where ,  and .
Cardiac BCAA effect on LVEF
A simple disease progression model was used to characterize LVEF dynamics following TAC surgery. LVEF change from baseline  was described using time-dependent function (eq. 23):
 									    (eq. 23)
Where  is a parameter, characterizing BCAA-independent LVEF decrease in time,  represents BCAA-mediated LVEF decrease (eq. 24): 
				   		    (eq. 24)
Where  and  are parameters, characterizing magnitude and delay of BCAA impact on LVEF, respectively.
BT2 pharmacokinetic model
A simple one-compartment model with linear absorption and elimination rates was set up (eq. 25, 26):
								    	   (eq. 25)
								   (eq. 26)
Plasma BT2 concentration was calculated using eq. 27:
 							   (eq. 27)
Supplementary figures
[image: Diagram

Description automatically generated]
Figure S1. Reversible BCAA deamination reaction schematics.
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Figure S2. BCKD activity regulation by different enzymes.
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Figure S3. BT2 PK data reproduction. Data from individual animals are shown by thin lines, model-based simulations are represented by thick lines.
[image: ]Figure S4. Comparison of BCAA catabolism in normal and TAC states in the model. BCAT and PP2Cm activities were set 14% and 30% from normal based on (4), protein synthesis from BCAA in cardiac tissue was introduced. (A) Steady-state metabolite levels and enzyme activities in cardiac tissue. (B) BT2 effect on cardiac BCAA and BCKA levels
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Figure S4S5. BT2 treatment impact on cardiac biomarkers in case when systemic BT2 effects are nullified. A. Change in cardiac BCAA and BCKA catabolic rates; B. Change in cardiac BCAA and BCKA levels.
Supplementary tables
Table S1. Summary of the experimental data
	Experiment
	Dosing regimen
	Measurements
	Sampling

	BS001805-57
	40 mg/kg at time 0 and 24 hours
	BT2, BCAA, BCKA in plasma (healthy mice)
	0, 4, 24, 48 hours

	BS001805-66
	40 mg/kg at time 0 hours
	
	0, 20 min, 1, 4, 7, 24, 48 hours

	BS001805-67
	15 and 120 mg/kg at time 0 hours
	
	0, 1, 7, 24 hours

	BS001805-57
	Vehicle 
	BCAA and BCKA in cardiac tissue (healthy mice)
	0 hours

	(4)
	Vehicle
	BCAA and BCKA in cardiac tissue (TAC mice)
	0 hours

	(2)
	0 or 40 mg/kg starting 2 weeks after TAC, once daily for 6 weeks
	LVEF dynamics (TAC mice)
	At the end of the experiment (6 weeks of BT2 dosing) 



Table S2. Parameter values
	Parameter
	Unit
	Description
	Value (RSE)*
	Estimation
	Source

	Biochemical parameters (BCAA deamination)

	
	1/s
	Catalytic constant
	337
	Fixed
	(7)

	
	1/s
	Catalytic constant
	371
	Fixed 
	

	
	1/s
	Catalytic constant
	290
	Fixed 
	

	
	uM
	Dissociation constant
	1600
	Fixed 
	

	
	uM
	Dissociation constant
	1300
	Fixed 
	

	
	uM
	Dissociation constant
	1600
	Assumed same as for Leu
	

	
	uM
	Dissociation constant
	300
	Fixed 
	

	
	uM
	Dissociation constant
	200
	Fixed 
	

	
	uM
	Dissociation constant
	300
	Assumed same as for KIC
	

	
	uM
	Dissociation constant
	8300
	Fixed 
	

	
	uM
	Dissociation constant
	22700
	Fixed 
	

	
	uM
	Equilibrium constant
	1500
	Fixed 
	

	
	uM
	Equilibrium constant
	1020
	Fixed 
	

	
	uM
	Equilibrium constant
	1500
	Fixed 
	

	Biochemical parameters (BCKA oxidative decarboxylation)

	
	1/s
	Catalytic constant
	3.3
	Fixed 

	(8)

	
	1/s
	Catalytic constant
	3.3
	
	

	
	1/s
	Catalytic constant
	5.5
	
	

	
	uM
	Dissociation constant
	50
	
	

	
	uM
	Dissociation constant
	37
	
	

	
	uM
	Dissociation constant
	55
	
	

	Biochemical parameters (BCKD phosphorylation/dephosphorylation)

	
	uM
	Dissociation constant
	33
	Fixed 
	(6)

	
	uM
	Dissociation constant
	10
	
	

	
	uM
	Inhibition constant BCKDK by KIC
	14
	
	

	
	uM
	Dissociation constant
	57.8
	Fixed 
	(9)

	Diet-related parameters

	
	g/day
	Daily food consumption
	5
	-
	-

	
	%
	Leu percentage in food
	0.9
	Fixed (R70 Growth and maintenance feed for rat and mouse)
	(12)

	
	%
	Ile percentage in food
	0.6
	
	

	
	%
	Val percentage in food
	0.6
	
	

	Organism specific parameters (systemic)

	
	-
	BCAA fraction, disposed in protein
	0.5
	Assumed based on the experimental data
	(3)

	
	uM
	Steady-state level
	129.6
	Mean observed baseline values
	Table S1

	
	uM
	Steady-state level
	86.9
	
	

	
	uM
	Steady-state level
	215.8
	
	

	
	uM
	Steady-state level
	19.0
	
	

	
	uM
	Steady-state level
	21.2
	
	

	
	uM
	Steady-state level
	16.9
	
	

	
	uM
	Co-substrate level
	2.158
	Calculated
	(10)

	
	uM
	Co-substrate level
	32.37
	
	

	
	L
	BCAA volume of distribution
	0.675 (19.2)
	Estimated based on the data
	Table S1

	
	uM
	BCAT level
	0.765 (18.3)
	
	

	
	uM
	Total BCKD level
	20 (fixed)
	
	

	
	-
	BCKDK to PP2Cm activity ratio
	4590 (18.7)
	
	

	Organism-specific parameters (heart, healthy mice)

	
	L
	Cardiac tissue volume
	9e-5
	Fixed
	PK-Sim® software

	
	1/hour
	BCAA and BCKA plasma to heart rate constant
	21
	Assumed based BCAA and BCKA dynamics in plasma and tissues following intravenous BCAA bolus
	(3)

	
	uM
	BCAT level
	217 (0.0425)
	Estimated based on cardiac BCAA and BCKA levels and BCAA percentage, being oxidized in the heart
	(3)

	
	uM
	Total BCKD level
	367 (2.52)
	
	

	 
	-
	BCKDK to PP2Cm activity ratio
	1.8
	Fixed to have 30% BCKD active fraction
	(3,11)

	
	1/hour
	TAC-induced LVEF decline rate constant
	0.010375 (12.9)
	Estimated based on the data
	(2)

	
	-
	BCAA effect on LVEF decline
	31.3 (13.8)
	
	

	
	1/hour
	Delay in BCAA effect on LVEF decline
	0.00432 (29.7)
	
	

	
	1/hour
	BCAA conversion into protein
	0
	Set based on the data
	(3)

	Organism-specific parameters (heart, TAC mice)

	
	uM
	BCAT level
	30.37
	Set based on the data
	(4)

	 
	-
	BCKDK to PP2Cm activity ratio
	2.57
	Set based on the data
	

	
	1/hour
	BCAA conversion into protein
	15
	Set to have 50% increase in cardiac BCKA
	

	BT2-specific parameters

	
	1/hour
	Absorption constant
	3.4 (17.5)
	Estimated based on BT2 PK data
	-

	
	Mg
	Drug dose, associated with 50% bioavailability
	95.8 (16.3)
	
	

	
	ml/hour/kg
	Clearance
	3.24 (6.95)
	
	

	
	ml/kg
	Volume of distribution
	112 (6.61)
	
	

	
	g/mol
	Molecular weight
	247.1
	Fixed
	(12)

	
	nM
	BCKDK inhibition by BT2: dissociation constant
	406 (6.57)
	Estimated based on the data
	-

	
	-
	BCKDK inhibition by BT2: Hill coefficient
	2.11 (8.96)
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