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THEOREM 1

Equation for Describing State Dynamics of RSNN We define the state update equation for the recurrent
spiking neural network is given as:

X(t+ 1) = [A | B] · [X | U]⊤

[A | B] = X(t+ 1) ·
(
[X | U]⊤

)†

Z = W ·X⇒ [A | B] = Z · (X)† (S1)

For brevity and simplicity, in the rest of the paper, we assume the hidden state htj of a LIF neuron model
contains only an activity value vtj that evolves according to the equation

vt+1
j = αvtj +

∑
i̸=j

Ŵjiz
t
i +

∑
i

W in
ji x

t+1
i − ztjvth

ztj = σ
(
vtj − vth

)
(S2)

where σ is the nonlinearity (e.g., the Heaviside step function), vtj is the activity of neuron j at discrete

time t, and vth is the threshold constant. A neuron spikes
(
ztj = 1

)
if its activity reaches the activity

threshold, and remains silent
(
ztj = 0

)
otherwise. W rec

ji is a synapse weight from neuron i to neuron j,
and α is a constant decay factor. The first term in the above equation models the decay of the activity value
over time. The second and third terms model the input of the neuron from other neurons or from the input
to the network, respectively. The fourth term

(
−ztjvth

)
ensures that the activity of the neuron drops when

it spikes. Hence, we can rewrite Eq.S2 as follows:(
αx(t− 1) + σ

(
WinF [u(t),x(t− 1)] + θ + Ŵx(t− 1)

))
(S3)

For this proof, we consider the HRSNN as a networked dynamical system and follow a similar analysis
as done by Tu et al. Tu et al. (2021). Let us consider a networked system consisting of N nodes whose
states x = (x1, . . . , xN )⊤ follow the dynamic equation

dxi
dt

= Fi (xi) +
N∑
j

AijGi (xi, xj) (S4)

where Fi (xi) is the ”local” dynamics at node i (or ”self-dynamics”) and Gi (xi, xj) is the dynamics
expressing the coupling of node i with its neighbors j , according to the adjacency matrix A ∈ RN×N ,
representing the interaction network of the system, with Aij capturing the interaction i ← j. Recently,
Gao et al.Gao et al. (2016) investigated the resilience of this system in the particular case in which the
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functions F and G expressing the self-dynamics and coupling-dynamics are the same at all nodes, i.e.,
∀i, Fi (xi) = F (xi) and ∀i, Gi (xi, xj) = G (xi, xj). We define the mean field operator Gao et al. (2016)

L(x) = 1

N

N∑
j=1

sout
j xj/

1

N

N∑
j=1

sout
j =

⟨sout · x⟩
⟨sout ⟩

where sout =
(
sout
1 , . . . , sout

N

)
is the vector of the out-degree of matrix A; then, we characterize the

effective state of the networked system using the weighted average node state xeff = L(x). If the
network’s degree correlation is low, we can assume that the Hadamard product approximation holds. Then,
applying Chebyshev expansion to approximate Fi (xi) and Gi (xi, xj) with polynomial functions of order
m and n, respectively, Equation S4 can be reduced to

I (d1, . . . , ds, xeff ) =
dxeff

dt
≈

s∑
s=1

ds ∗ xs−1
eff (S5)

where S = max(m,n), ds = {
Bs

eff + Aeff ∗ Cs
eff , s ∈ [1,min(m,n)]

As
eff C

s
eff , s ∈ [m+ 1, n],m < n

Bs
eff , s ∈ [n+ 1,m], n < m

;

Aeff = L
(
sin

)
, Bs

eff = L (Bs) ., and Cs
eff = L (Cs). Bk =

(
b1,k, . . . , bN,k

)⊤ is the column of
the k-th term of the m-order Chebyshev polynomials approximating the self-dynamics Fi (xi), and
C ′ =

(
c1,l, . . . , cN,l

)T is the column of the l-th factor of the n-order Chebyshev polynomials approximating
the coupling-dynamics Gi (xi, xj). Therefore, we map the dynamics of Equation S4 into EquationS5 and
study the resilience of the system through the behavior of xeff at steady state and its response to a
perturbation of one or more of these S parameters. In particular, the conditions for stability of a state x∗eff
of the dynamics can thus be associated with a region expressed by the equation set:{

I
(
d1, . . . , ds, x

∗
eff

)
= 0

dl
dxeff

< 0

where the function I represents the system’s dynamics and d1, . . . , dS are their control parameters.

Now, for homogeneous and heterogeneous RSNNs, the polynomial approximations using polynomial
chaos are derived by Kubota et al. Kubota et al. (2021).

Theorem 1: Assuming Su is finite and contains s inputs, let rHom, rHet are the ranks of the n× s matrices
consisting of the s vectors xu (t0) for all inputs u in Su for each of Homogeneous and Heterogeneous
RSNNs respectively. Then rHom ≤ rHet.

Proof: To prove that the rank of the Heterogeneous state matrix is greater than the rank of the
homogeneous one, we aim to show that the number of linearly independent vectors for HeNHeS is
greater than or equal to the number of linearly independent vectors for HoNHoS. However, since the
state space of a heterogeneous network is very high-dimensional, we aim to show the results for a low-
dimensional projection of this high-dimensional hyperspace. In other words, we aim to show that the
number of dimensions of a low-rank approximation of the state-space of the HeNHeS model is greater than
the HoNHoS model. For this proof, we treat the HRSNN as a heterogeneous graph and use the network
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representation learning framework to embed the network nodes into a low-dimensional vector space by
preserving network topology structure, node, and edge information.

First, let us consider that the response of neuron i ∈ R is given as

yi = x(1)β1
i + . . . x(N)βN

i + bi + ϵi (S6)

where bi is a constant vector representing a condition-independent mean, and ϵi is noise. The state-space
description of the response is represented by a factorization of the vectors β⊤

i = S⊤wi where, r is the
dimensionality of the subspace for states of the neurons inR. Thus, wi ∈ Rr is a neuron-specific vector of
weights and S is a matrix of rank r. If w⊤

i =
(
w1⊤

i , . . . ,w⊤
i

)
, and S be a block-diagonal matrix given as

follows:

S =

 S1
. . .

SP

 (S7)

then we get
yi =

(
x⊤ ⊗ IT

)
S⊤wi + bi + ϵi (S8)

If yi and x are the observed response and states of the recurrent neurons, then the collection of all
observations for this neuron y⊤

i =
(
y⊤
i,1, . . . ,y

⊤
i,N

)
can be described in terms of all the neuron states inR:

X⊤
i = (x1, . . . ,xN ) by

yi = (Xi ⊗ IT )S⊤wi + 1N ⊗ bi + ϵi (S9)

= Fiwi + b′
i + ϵi (S10)

where Fi =
(
X⊤

i ⊗ IT
)
S⊤,b′

i = 1N ⊗ bi, where ϵ⊤i =
(
ϵ⊤i,1, . . . , ϵ

⊤
i,N

)
.

The model’s rank corresponds to the rank of B. We first estimate the model parameters with rank r = 0
denoting the null model for all elements of B. For the HeNHeS model, the variance of the

Again, let us fix some inputs u1, . . . , ur in Suniv so that the resulting r circuit states xui (t0) are linearly
independent. The rather small rank of the state matrix, especially in the ordered regime, can be partly
explained by the small number of neurons that get activated (i.e., emit at least one spike) for a given input
pattern. For some input pattern u, let the activation vector xact

u ∈ {0, 1}n be the vector with the i th entry
being 1 if neuron i was activated during the presentation of this pattern. Thus, for HRSNN with HeNHeS,
the number of neurons that get activated is higher than in HoNHoS models. Hence rHom ≤ rHet.

THEOREM 2:

Gaussian processes are used for modeling unknown functions. We study how to extend this model class
to model functions in a Wasserstein metric space. We do so in a manner that is both mathematically
well-posed and constructive enough to allow the kernel to be computed. This allows the said processes to
be trained with standard methods and enables their use in Bayesian optimization of the hyperparameters of
the RSNN.
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Joint Probability Distribution: We consider the Wasserstein Distance between the joint probability
distributions of all the distributions of all the hyperparameters used. The histogram of the hyperparameters,
which has heterogeneity in their parameters, shows a distribution of the parameters. For fixed
hyperparameters also tuned, we consider a Delta Dirac Distribution at the value of the hyperparameters.

Matern Kernel: One of the most widely-used kernels is the Matérn kernel, which is given by

K
(
x, x′

)
= σ2

21−ν

Γ(ν)

(√
2ν
∥x− x′∥

κ

)ν

Kν

(√
2ν
∥x− x′∥

κ

)
where Kν is the modified Bessel function of the second kind, and σ2, κ, ν are the variance, length scale,
and smoothness parameters, respectively.

Wasserstein Metric Space:

Let σ and µ be two probability measures on measurable spaces X and Y and their corresponding
probability density functions I0 and I1, dσ(x) = I0(x)dx and dµ(y) = I1(y)dy.

Definition The p-Wasserstein distance for p ∈ [1,∞) is defined as,

Wp(σ, µ) :=

(
inf

π∈Π(σ,µ)

∫
X×Y

(x− y)pdπ(x, y)
) 1

p

where Π(σ, µ) is the set of all transportation plans, and π ∈ Π(σ, µ) such that π(A× Y ) = σ(A) for any
Borel subset A ⊆ X and, π(X ×B) = µ(B) for any Borel subset B ⊆ Y . Using Brenier’s theorem, for
absolutely continuous probability measures σ and µ with respect to Lebesgue measure, the p-Wasserstein
distance can be derived as,

Wp(σ, µ) =

(
inf

f∈MP (σ,µ)

∫
X
(f(x)− x)pdσ(x)

) 1
p

where, MP (σ, µ) =
{
f : X → Y | f#σ = µ

}
and f#σ represents the pushforward of measure σ and is

characterized as,
∫
f−1(A) dσ =

∫
A dµ for any Borel subset A ⊆ Y

Sliced Wasserstein Distance: We use the sliced Wasserstein distance to represent the family of one-
dimensional distributions for the higher-dimensional probability distribution and then calculate the distance
between two input higher-dimensional distributions as a functional on the Wasserstein distance of their
one-dimensional representations. In this sense, the distance is obtained by solving several one-dimensional
optimal transport problems with closed-form solutions.

Definition Let σ and µ be two continuous probability measures on Rd with corresponding positive
probability density functions I1 and I0. The Sliced Wasserstein distance between µ and σ is defined as,

WS(µ, σ) :=

(∫
Sd−1

W 2
2 (SI1(., θ),SI0(., θ)) dθ

) 1
2

=

(∫
Sd−1

∫
R
(fθ(t)− t)2 SI0(t, θ)dtdθ

) 1
2
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where fθ is the MP map between SI0(., θ) and SI1(., θ) such that,∫ fθ(t)

−∞
SI1(τ, θ)dτ =

∫ t

−∞
SI0(τ, θ)dτ, ∀θ ∈ Sd−1

or equivalently in the differential form,

∂fθ(t)

∂t
SI1 (fθ(t), θ) = SI0(t, θ), ∀θ ∈ Sd−1.

Positive Definite: A positive definite (PD) (resp. conditional negative definite) kernel on a set M is a
symmetric function K :M ×M → R,K (Ii, Ij) = K (Ij , Ii) for all Ii, Ij ∈M , such that for any n ∈ N ,
any elements I1, . . . , In ∈ X , and numbers c1, . . . , cn ∈ R, we have

n∑
i=1

n∑
j=1

cicjK (Ii, Ij) ≥ 0 ( resp. ≤ 0)

with the additional constraint of
∑n

i=1 ci = 0 for the conditionally negative definiteness.

We start by proving that for one-dimensional probability density functions, the 2-Wasserstein Matern
kernel is a positive definite kernel. We first demonstrate that the Sliced Wasserstein Matern kernel of
probability measures is a positive definite kernel. We proceed with our argument by showing that there is
an explicit formulation for the nonlinear mapping to the kernel space and define a family of kernels based
on this mapping.

First, we start by proving that for one-dimensional probability density functions, the 2-Wasserstein
Matern kernel is a positive definite kernel.

Theorem : Let M be the set of absolutely continuous one-dimensional positive probability density

functions and define K :M ×M → R to be K (Ii, Ij) := σ2 2
1−ν

Γ(ν)

(√
2ν

W2(Ii,Ij)
κ

)ν

Kν

(√
2ν

W2(Ii,Ij)
κ

)
,

then K(., .) is a positive definite kernel for all γ > 0.

Here, Kν is the modified Bessel function of the second kind, and σ2, κ, ν are the variance, length scale,
and smoothness parameters, respectively.

Proof: In order to be able to show this, we first show that for absolutely continuous one-dimensional
positive probability density functions there exists an inner product space V and a function ψ : M → V
such that W2 (Ii, Ij) = ∥ψ (Ii)− ψ (Ij) ∥V

Let σ, µ, and ν be probability measures on R with corresponding absolutely continuous positive density
functions I0, I1, and I2. Let f, g, h : R → R be transport maps such that f#σ = µ, g#σ = ν, and
h#µ = ν. In the differential form this is equivalent to f ′I1(f) = g′I2(g) = I0 and h′I2(h) = I1 where
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I1(f) represents I1 ◦ f . Then we have,

W2 (I1, I0) =

∫
R
(f(x)− x)I0(x)dx

W2 (I2, I0) =

∫
R
(g(x)− x)I0(x)dx

W2 (I2, I1) =

∫
R
(h(x)− x)I1(x)dx

We follow the work of Wang et al. [45] and Park et al. [31] and define a nonlinear map with respect to a
fixed probability measure, σ with corresponding density I0, that maps an input probability density to a
linear functional on the corresponding transport map. More precisely, ψσ (I1(.)) := (f(.)− id(.))

√
I0(.)

where id(.) is the identity map and f ′I1(f) = I0. Notice that such ψσ maps the fixed probability density I0
to zero, ψσ (I0(.)) = (id(.)− id(.))

√
I0(.) = 0 and it satisfies,

W2 (I1, I0) = ∥ψσ (I1)∥2
W2 (I2, I0) = ∥ψσ (I2)∥2

More importantly, we demonstrate that W2 (I2, I1) = ∥ψσ (I1)− ψσ (I2)∥2. To show this, we can write,

W2 (I2, I1) =

∫
R
(h(x)− x)I1(x)dx

=

∫
R
(h(f(τ))− f(τ))f ′(τ)I1(f(τ))dτ

=

∫
R
(g(τ)− f(τ))I0(τ)dτ

=

∫
R
((g(τ)− τ)− (f(τ)− τ))I0(τ)dτ

= ∥ψσ (I1)− ψσ (I2)∥2

Finally, we know that the one-dimensional transport maps are unique, therefore if (h ◦ f)#σ = ν and
g#σ = ν then h ◦ f = g.

We showed that there exists a nonlinear map ψσ :M → V for which W2 (Ii, Ij) = ∥ψσ (Ii)− ψσ (Ij)∥2
and as shown by Jayasumana et al. Jayasumana et al. (2015) and Kolouri et al. Kolouri et al. (2016), we
can conclude that, K (Ii, Ij) is a positive definite kernel.

Theorem 2: The modified Matern function on the Wasserstein metric spaceW is a valid kernel function

Proof: To show that the above function is a kernel function, we need to prove that Mercer’s theorem
holds. i.e., (i) the function is symmetric and (ii) in finite input space, the Gram matrix of the kernel function
is positive semi-definite. The Sliced Wasserstein distance, as defined above, is symmetric, and it satisfies
subadditivity and coincidence axioms; hence it is a true metric. Kolouri et al. (2015).

First note that for an absolutely continuous positive probability density function, I ∈M , each hyperplane
integral, SI(., θ),∀θ ∈ Sd−1 is a one dimensional absolutely continuous positive probability density
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function. Therefore,
N∑
i=1

N∑
j=1

cicjW
2
2 (SIi(., θ),SIj(., θ)) ≤ 0,∀θ ∈ Sd−1

where
∑N

i=1 ci = 0. Integrating the left-hand side of the above inequality over θ leads to,

∫
Sd−1

 N∑
i=1

N∑
j=1

cicjW
2
2 (SIi(., θ),SIj(., θ)) dθ

 ≤ 0⇒

N∑
i=1

N∑
j=1

cicj

(∫
Sd−1

W 2
2 (SIi(., θ),SIj(., θ)) dθ

)
≤ 0⇒

N∑
i=1

N∑
j=1

cicjW
2
S (Ii, Ij) ≤ 0

Therefore W 2
S(., .) is conditionally negative definite, and hence from the previous theorem, we have that

K (Ii, Ij) is a positive definite kernel for γ > 0.

BAYESIAN OPTIMIZATION

Brain-Inspired Initialization

Mejias et al. Mejias and Longtin (2014) showed that in real cortical populations, excitatory and inhibitory
subpopulations of neurons exhibit different cell-to-cell heterogeneities for each type of subpopulation in
the system. The authors discussed the highly differentiated roles for heterogeneity, depending on excitatory
or inhibitory neuron subpopulation. For example, heterogeneity among excitatory neurons non-linearly
increases the mean firing rate and linearizes the f-I curves, while heterogeneity among inhibitory neurons
decreases the network activity level and induces divisive gain effects in the f-I curves of the excitatory cells,
providing an effective gain control mechanism to influence information flow. We use the Allen human
brain-based initialization using separate distributions for the excitatory and inhibitory neuron populations.
A gamma distribution is fitted using the Kernel Density Estimation Method on the data for the membrane
timescales, which is used to sample the values of all the membrane time constants of the recurrent neurons
in the HRSNN model. The fitted distribution is shown in Fig. S1

Initialization Distributions

Notation Full Form Notation Full Form
SNN Spiking Neural Network I Input Layer

RSNN Recurrent SNN R Recurrent Layer
HRSNN Heterogeneous RSNN O Output Layer
STDP Spike Timing Dependent Plasticity SXY Connections between layers X and Y
LIF Leaky Integrate and Fire N Number of neurons

HoNHoS Homogeneous LIF, Homogeneous STDP HeNHeS Heterogeneous LIF, Heterogeneous STDP
HeNHeS Heterogeneous LIF, Homogeneous STDP HoNHeS Homogeneous LIF, Heterogeneous STDP

Table S1: Table showing the notations used in the paper
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Figure S1: The fitted gamma distribution to the Allen Human brain atlas-based distribution for membrane
time constants

Figure S2: Figure (a) shows the initialization and the final distributions of τ+ (STDP Parameter). We can
observe a similar behavior on optimizing τ−, η±. Fig. (b) shows the initialization and the final distributions
of τ (e)m (Excitatory Membrane Potential of LIF Neuron). We can observe a similar behavior on optimizing
τ
(i)
m

We plot the initial and the final distributions for Bayesian Optimization. We randomly initialize the
distribution parameters within some certain range for each iteration of the Bayesian Optimization. An
example initialization of normal distributions for τ+ of the STDP parameters and the final distributions
for each of the 5 cases are shown in Fig. S2(a). Similarly, Fig. S2(b) shows the 5 random initial and the
subsequent final distributions output of the Bayesian Optimization for τ (e)m . Similar results can be seen
for the other hyperparameters which are optimized. The average of the parameters for the final optimal
distributions are summarized in Table S3.

Hyperparameters Optimized

The list of the hyperparameters optimized using the Bayesian Optimization technique is shown in
Table S2. We also show the average parameter values of the distributions searched using the Bayesian
Optimization process. The results are shown in Table S3 and illustrated in Fig. S2, as discussed before.
It must be noted here that for simplicity, we consider a simple distribution (normal or gamma) for the
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Parameter Initial Value Range
η 10 (0,50)
γ 5 (0,10)
ζ 2.5 (0,10)
η∗ 1 (0,3)
g 2 (0,10)
ω 0.5 (0,1)
k 50 (0,100)

λ (KTH, DVS) 1 (0,2)
λ (UCF) 1.5 (0,4)
PIR 0.05 (0,0.1)

τn−E , τn−I (KTH, DVS) 50ms (0ms, 100ms)
τn−E , τn−I (UCF) 100ms (0ms, 300ms)

Aen−R, AEE , AEI , AIE , AII 30 (0,60)

Table S2: The list of parameter settings for the Bayesian Optimization-based hyperparameter search

Parameter Distribution

STDP
Parameter

τ+ Normal µ̄ = 18.235
σ̄ = 1.522

τ− Normal µ̄ = 22.382
σ̄ = 1.768

η+ Normal µ̄ = 0.516
σ̄ = 0.0055

η− Normal µ̄ = 0.448
σ̄ = 0.0057

LIF
Parameter

τ
(e)
m Gamma

ᾱ = 2.89
1/β̄ = 0.248

τ
(i)
m Gamma

ᾱ = 5.14
1/β̄ = 0.313

Table S3: Table showing the average final distributions of the hyperparameters

hyperparameter optimization in this paper. In reality, for optimal optimization performance, one might use
a non-parametric distribution which might be a good future work for this paper.

VARIATION OF RANK WITH SPARSITY AND WEIGHT SCALE

Here, we show the variation of the rank with the network sparsity factor λ and the synaptic weight scale
factor Wscale. The figure is shown in Fig. S3. From the figure we observe the variation of the rank of the
matrix with the network sparsity. This also supports our intial claim that the rank of the final state matrix
can be used as a measure for the linear separation property of the HRSNN model. Comparing Figs.S3(a)
and (b) we also see that the performance of the model is the highest near the regions between the chaos and
order. This is built on the works done by Legenstein et al. Legenstein and Maass (2007).

GENERALIZATION AND OVERFITTING

To study the generalizability of the HRSNN models, we look into the difference between the training and
testing accuracies of the models. We see that heterogeneity in just LIF neurons has the worst generalization
ability despite giving good test accuracy scores. On the other hand, heterogeneity in STDP parameters
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Figure S3: Change in the effective ranks of the final state matrix of HRSNN with 2000 neurons with
network sparsity λ and weight variance Wscale, for (a)HoNHoS and (b)HeNHeS. The plot is obtained by
interpolating 81 points, and each point is calculated by averaging the results from 5 randomly initialized
HRSNNs.

shows the best generalization results. HeNHeS model shows the best case where we have good testing
accuracy and good generalization error. Hence, these results prove that heterogeneity in both LIF neurons
and STDP parameters is needed for a model to perform well.

RESULTS WITH LIMITED TRAINING DATA

In this section, we plot the stacked bar graph for the results obtained from the DVS gesture dataset trained
with limited training data. The results show a similar trend to the KTH dataset results shown in the paper.

Figure S4: Figure showing the input processing and model training for the different models
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Neurons Models KTH DVS Gesture 128
Training Accuracy Testing Accuracy Generalization Error Training Accuracy Testing Accuracy Generalization Error

100
HoNHoS 75.94 63.38 12.56 87.83 68.38 19.45
HeNHoS 88.34 68.89 19.45 97.24 72.89 24.35
HoNHeS 78.78 68.22 10.56 87.67 72.22 15.45
HeNHeS 88.92 77.43 11.49 98.4 81.43 16.97

2000
HoNHoS 94.1 88.33 5.77 96.16 90.33 5.83
HeNHoS 98.69 92.16 6.53 99.07 92.16 6.91
HoNHeS 95.4 91.37 4.03 96.5 93.37 3.13
HeNHeS 98.85 94.32 4.53 99.75 96.54 3.21

Table S4: Table showing the generalization performance of the ablation HRSNN and MRSNN models.

Figure S5: Bar graph showing the difference in performance for the different models with increasing
training data for the DVS dataset.

CONFUSION MATRIX

We present an example confusion matrix for each KTH, UCF11, and the DVS128 dataset. We see that
in the KTH dataset, the model struggles the most in the classification of jogging, where it is mostly
misclassified as running. A similar trend for running could be observed, which was sometimes confused by
the model as jogging. In the UCF11 dataset, the model performed the poorest in classifying basketball
and walking dog. For the first case, the model confused basketball with tennis the most. For the second
case, the model mistook it for biking and horse riding the most number of times. We also see the model
performs much better on the DVS128 Gesture dataset, where the maximum error source was attributed to
the misclassification of hand clap as air drums.

COMPUTATIONAL COST:

To estimate the efficiency of BP-SNNs and compare them with DNNs, we calculate the number of
computations required in terms of accumulation (AC) and multiply-accumulation (MAC) operations Wong
et al. (2020). In DNNs, the contribution from one neuron to another requires a MAC for every timestep,
where each input activation is multiplied by the respective weight before it is added to the internal sum.
On the other hand, for a spiking neuron, a transmitted spike requires only an accumulation at the target
neuron, adding weight to the potential, where spikes may be quite sparse. As it is much more energetically
expensive to calculate MACs than ACs (on a 45nm 0.9V chip, a 32-bit floating-point (FL) MAC operation
consumes 4.6 pJ and 0.9 pJ for an AC operation Chakraborty et al. (2021), Panda and Srinivasa (2018)),
the relative efficiency of SNNs is determined by the number of connections multiplied by activity sparsity
and the spiking neuron model complexity.
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Figure S6: Figure showing the confusion matrices for (a) KTH dataset (b) UCF11 dataset and (c)DVS128
Gesture dataset

Figure S7: Figure showing the increase in the number of parameters with the increase in the number of
neurons

NUMBER OF SYNAPTIC CONNECTIONS

We plot the number of synaptic connections of the recurrent layer in the HRSNN/MRSNN models as a
function of the number of neurons. The number of synaptic connections is enumerated for the network with
the least sparsity λ, keeping the weight scaling factor Wscale = 1. The hypothesis is that results can be
observed on fixing other constants for Wscale. We know that increasing the number of synaptic connections
exponentially increases the number of trainable parameters of the network. We plot the observed number
of synaptic connections in the RSNN model with respect to the number of neurons in the recurrent layer.
The results are plotted in Fig. S7. We see that for HoNHoS, the number of synaptic connections increases
exponentially. However, introducing heterogeneity (either in neuronal or synaptic dynamics) helps us
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decrease the number of synaptic connections. We observe that the number of synaptic connections for
the HoNHoS model increases exponentially. It might be interpreted as if we aim to generate a complete
graph, we model this as a random graph process. As shown by Frieze et al. Frieze and Karoński (2016),
for a network of size N , the expected number of edges to get a complete graph is given by O(N2 logN).
HoNHoS models follow this complexity order. However, introducing heterogeneity significantly decreases
the required number of synaptic connections.
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