
   

Transcriptional states of CAR-T infusion relate to neurotoxicity – lessons 

from high-resolution single-cell SOM expression portraying 

Henry Loeffler-Wirth, Michael Rade, Arsen Arakelyan, Markus Kreuz, Markus Loeffler, Ulrike Koehl, 

Kristin Reiche, Hans Binder 

 

 

Supplementary Material 

 

1 Supplementary Methods 

1.1 Preprocessing of scRNA-Seq data 

We applied Seurat R-package (1) for preprocessing of the read count matrix downloaded from Gene 

Expression Omnibus under accession number GSE150992. Parameters were chosen in accordance to 

the original publication (2). 

i) Quality control & filtering: Firstly, cells with less than 200 genes and genes present in less than three 

cells were removed. Secondly, cells with more than 15% of the counts mapping to mitochondrial 

genome were removed too. Finally, cells with more than 7000 genes with non-zero count were also 

discarded. 

ii) Normalization, feature selection & scaling: Log-normalization was applied using a factor of 10,000, 

followed by selection of variable features using variance-stabilizing transformation (vst). Then, linear 

data centering scaling was applied, resulting in genes’ mean expression value of 0 with a variance of 1 

in each gene. 

iii) Dimension reduction and cell clustering: Seurat functionalities were applied to generate t-SNE (3) 

mapping of the cells and subsequent unsupervised cell clustering using 50 principal components. We 

here used more dimensions of the data as we intend to capture also smaller effects in downstream 

analyses. 
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1.2 T cell subpopulation markers 

Marker genes for T cell populations were obtained from previously published signatures (2,4–9). 

Robust consensus markers were selected for major cell type and functional state assignment (Figure S 

1). Essential marker genes are shown in green color and the corresponding read counts in a cell are 

required to be non-zero. Additionally, all absence makers (if any) are required to have no read counts. 

All T cell subpopulations share common presence of CD3. 

Each cell in the data is assigned as CAR-positive or -negative, independent of cellular identity. To 

determine this CAR status, we used the CAR-specific sequence contigs48 (FMC63-CD19scFV, 

GenBank: HM852952.1) (2). 

 

 

 

Figure S 1: Classification of T cell subpopulations using consensus markers. Marker genes in green 

color are essential with read count required to be non-zero, counts of absence markers in red color are 

required to be zero. Non-zero CD3 count applies to all T cell subpopulations. 
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1.3 Downsampling and refinement clustering of meta-cells 

Generation of the meta-cells is a three-step downsampling algorithm (Figure S 2a): 

i) Unsupervised clustering of all single cells is provided by the Seurat workflow. We obtained 30 Seurat 

clusters collecting between 2 and 15,684 cells (on average: 4,447 cells). We rejected 7 virtually patient-

specific clusters, were more than 80% of the included cells originate from only 2 different patients, 

respectively. The removed clusters comprise in total 9,738 cells (=7.3% of all cells). 

ii) The 30 clusters were then subdivided according to patient number, such that each sub-cluster 

includes cells from one particular patient and one particular Seurat cluster solely. In consequence, the 

resulting 523 clusters patient-specifically cover all 23 remaining Seurat clusters and all 24 patients. 

We removed 63 sparse clusters with less than 10 single cells included, respectively, this way discarding 

312 cells (=0.2%). 

iii) The 460 clusters were subdivided depending of the number of single cells contained. For each 

cluster, k-means was applied to cluster the corresponding cells based on their expression data. The 

number of sub-clusters (centers) was thereby chosen depending on the number of cells (k = #cells / 

100), resulting in more sub-clusters for higher numbers of cells. This quantitative sub-clustering finally 

leads to 1,486 clusters called meta-cells, containing 123,355 single cells (=92.3%) which ensures that 

all important expression patterns of the single cells are represented in the meta-cell data. On average, 

83 single cells are contained in each meta-cell (Figure S 2b). 

The 10,050 cells not covered by the meta-cells will not contribute to SOM training, however upscaling 

of module expression data, assignment of module activation patterns (PATs), and generation of 

expression landscape portraits are applied to them as well. 
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Figure S 2: a) The three downsampling steps: i) Seurat unsupervised clustering; ii) patient-specific 

subclusters; iii) refinement k-means clustering providing the meta-cell clusters. b) Distribution of the 

number of single cells contained in the meta-cell clusters. 

 

1.4 Self-organizing map training 

The self-organizing map (SOM) algorithm realizes three main analysis tasks (10): 

i) Dimension reduction: The SOM is constituted of 1,600 so-called meta-gene entities arranged in a 

two-dimensional 40 x 40 grid. Each meta-gene represents a cluster of genes and is characterized by an 

average gene expression profile of the corresponding single-cells. The term ‘profile’ hereby denotes 

the vector of expression values across the meta-cells used as input data. In the iterative SOM training 

process, meta-gene profiles are gradually updated to optimize coverage of the data space as seen by 

the expression profiles of all genes. After the training algorithm converges, the original expression data 

matrix consisting of 20,629 gene profiles is transferred into a dimension reduced matrix of 1,600 meta-

gene profiles. 

ii) Clustering: For each gene profile, the best matching meta-gene profile is determined using Euclidian 

distance between the expression profiles as similarity measure. In turn, this gene to meta-gene 

association realizes a clustering of gene profiles to the corresponding meta-genes. The number of gene 

profiles collected in each individual meta-gene cluster thereby usually varies between only few to 

several hundreds of genes with very similar expression profiles.  

iii) Multi-dimensional scaling: as the meta-genes are arranged in a square grid, the association of single 

genes to the corresponding best matching meta-gene implies a mapping of the genes into a discrete and 

non-linear two-dimensional space (10). Thereby the training algorithm ensures that genes with similar 

expression profiles cluster are mapped into the same or in closely located meta-genes.  
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The size of the map, i.e. the number of meta-genes, was chosen in accordance to recent studies (11–

15) to allow robust definition of expression modules. These sets of meta-genes typically comprise 

dozens to few hundreds of single genes with similar expression profiles and concerted involvement in 

cellular functions.  

We used a parallelized SOM training algorithm implemented in Bioconductor R-package ‘oposSOM’ 

(16). 

 

1.5 Upscaling of meta-gene expression data to single cell level 

The meta-gene expression matrix obtained from SOM training is based on the meta-cells used as 

training data. For the purpose of generating expression portraits of single cells and cell subpopulations, 

we use a SVM-based approach to compute meta-gene expression given the full set of single gene 

expression values for any interesting cell or subset (17). 

Our approach uses 1,600 individual support-vector machines (SVMs) (18). Each one represents one 

meta-gene and is trained using single gene expression profiles along the meta-cells as independent 

variables and the corresponding meta-gene profile as depended variable. Thereby, only genes 

associated to the particular meta-gene or to one of the adjacent meta-genes are considered as predictors. 

After the SVM model is trained, it is capable to predict the 1,600 meta-gene expression values for any 

input of 20,649 (single gene) expression values. We used the expression values of a single cell, or the 

mean expression per gene averaged over all cells of a subpopulation to visualize the corresponding 

expression landscape portraits.  

Note that the SVM upscaling is used only for the visualization of expression portraits. Single-cell 

module expression is directly calculated as the mean expression value averaged over all corresponding 

module genes. 

 

1.6 Differential PAT enrichment and virtual PAT flow graph 

Enrichment of PATs in a cell subset is calculated using Fisher’s exact test based on the PAT 

frequencies. When two disjoint subsets are assessed, the difference of the PAT frequencies (percent of 

cells assigned to the PAT in the respective subset) can be further utilized to create a virtual flow graph 

under the assumption that cells in a PAT in the one subset correspond to cells with a similar PAT 

classification in the other subset. This graph visualizes mutually corresponding cell populations in the 

PAT map.  

At first, the algorithm to create the flow graph initializes differential (d)-scores for each of the PATs 

as the difference of frequency proportion in the two subgroups (Figure S 3b). Then all branch mergings 

of the PAT hierarchical clustering dendrogram are visited with increasing height (major and minor 

PATs are summarized; see Figure S 3a). In each iteration, the algorithm evaluates if a flow between 

the respective two sub-branches is possible: This is the case if the corresponding sub-branch sums of 

d-scores have differing signs, i.e. if the PATs of one sub-branch are over-represented in one subgroup 

and the PATs of the other branch over-represented in the other subgroup (Figure S 3b). Then a flow is 

defined from positive to negative d-scores as the maximum absolute value of the sums of d-scores of 

the sub-branches, and the d-scores are accordingly updated: PATs with positive d-scores act as sources 
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of the flow (flow is subtracted from d-score), and the corresponding most similar PAT with negative 

d-score as sink (flow is added to d-score). The algorithm finally terminates with the merging of the two 

main branches, eventually balancing all d-scores to 0.  

In result, the flow graph comprises the PATs as nodes and all flows as weighted edges. The graph 

layout (i.e. position of the nodes) is determined by the PAT map as provided by PAT expression tSNE 

analysis. 

 

 

Figure S 3: Illustration of the PAT flow algorithm: a) The algorithm successively visits all mergings 

of the hierarchical clustering dendrogram with increasing height. The flow intends to balance over- 

and under-represented PATs in the corresponding sub-branches. b) Each leaf of the dendrogram obtains 

a d-score, which is initialized as the difference of frequency proportion in the ICANS 0-2 and 3-4 

subgroups. A flow between any two sub-branches is possible, if the corresponding sums of d-scores 

has differing signs (e.g. merging of HEG* and G*/HG* with +0.3 and -3.0, respectively). Then a flow 

is calculated from positive to negative d-score (e.g. a flow of 0.3 from HEG* to HG*), adding the 

resulting flow to the flow graph and updating the respective d-scores prior to the next iteration. 
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2 Supplementary Figures  

 

 

Figure S 4: Proportion of CAR-positive cells and total number of T cells in each of the participants 

with increasing ICANS grade. a) The percentage of CART+ cells decays, on the average, with ICANS 

grade. We stratified them into grade 0-2 and grade 3-4 for further analysis (see main paper). Proportion 

of men is lower in the latter group. b) We found no association of total T cell number and ICANS grade 

(p=0.51 in linear model). 
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Figure S 5: Flow chart of the CAR-T single cell data portraying workflow: The left column depicts the 

three different data levels, the right one the methods and algorithms applied. Details are given in the 

methods section of the main article and the supplementary methods. 
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Figure S 6: CD4 and CAR expression characteristics in CD3+ T cells: Expression of CD4 gene and 

CAR (FMC63-CD19scFV marker) in each cell are used as x- and y-coordinates, respectively. 

Proportions given in the figure relate to the total number of 132,236 CD3+ T cells in the data set. It 

shows that CAR gene transfer is measurable in about 34% of CD4+ T cells. 

 

 

 

Figure S 7: Gallery of expression portraits of the T cell subpopulations: Meta-genes over-expressed in 

a subpopulation are shown in red, indifferent ones in green and under-expressed meta-genes in blue 

colors. Note that the expression portraits can be directly compared as the mapping of the genes to the 

meta-genes is fixed in all portraits. 
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Figure S 8: Mean module overall expression level averaged over all T cells, and grouped by 

subpopulation (right part), respectively. Blue and red dots represent lowest and highest expression 

levels, respectively. 

 

 

Figure S 9: Expression of module B in single cells: Cells are grouped according to the three major 

subpopulations and to cell cycle phase. Mean expression value and corresponding standard deviation 

are given for each of the groups in the header of the figure. Standard deviations exceed differences 

between the subpopulations by about one order of magnitude. 
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Figure S 10: Comparison of infusion product composition and single cell expression patterns between 

female and male patients: a) Total number of cells per patient contained in the data set, grouped by 

sex. P-values are derived from Wilcoxon rank-sum test throughout this figure. b) Relative amount of 

CD4+ Treg, Th1, and CD8+ Tc cells. c) Relative amount of CAR+ cells. d) Relative amount of cycling 

genes. e) Relative amount of CAR+ cells in the CD4+ Treg, Th1, and CD8+ Tc subpopulations. f) 

Mean module expression averaged over all cells derived from male and female patients, respectively. 

Note that no module was found significantly differential (all p-values > 0.1). g) Relative frequency of 

the PATs (only PATs with p-value <0.1 are shown). Bar lengths represent the mean percentage for the 

sexes, the dots represent the individual patients. h) Maps of enriched PATs in cells grouped by sex. T 

cell subpopulations are highlighted in agreement to the figures in the main article. 
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Figure S 11: LAG3-exhaustion score (module J) as a function of the cell-cycle score (module B): a) 

Mean expression averaged over each T cell type shows positive correlation between the exhaustion 

and the cell cycle score with highest values for CD8+Tem and Tc cells and lowest values for myeloid 

and CD4+Tcm cells. b) – d) Distribution of single cells of different T cell types was counted in each 

of the quadrants (thin crosshair; see fractions of cells in the quadrants), and further stratified according 

to cell cycle, CAR, and ICANS status (see legend in b). The size of the circles scales with the number 

of cells in the respective quadrant. In general, T-cell states distribute over the four quadrants, indicating 

that all four combinations of module J/module B expression (low/low, low/high, high/low, high/high) 

are high in number. Along the B-axis (left versus right), resting (G1) cells (orange-colored circles) are 

replaced by cycling (S/G2M) cells (green circles), paralleled by an increased amount of CAR+ cells 

(purple) and ICANS 0-2 associated cells (light green) in CD4+ and CD8+Treg subpopulations as 

described in the main manuscript. Along the exhaustion axis (from below to top), one finds an 

increasing fraction of ICANS 0-2 CD8+Tcm and Tem cycling cells. The majority of myeloid cells 

(panel c) associate high ICANS with resting and low LAG3-exhaustion. 
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3 Supplementary tables 

Table S 1: Patient characteristics. 

Patient  

ID 

Histolog.  

diagnosis 

Sex ECOG  

status 

Stage IPI 

score 
therapy  

lines 

refractory ICANS 

grade 

CRS  

grade 

ac01 DLBCL female 1 III/IV 2 2 yes 3 2 

ac02 DLBCL male 1 III/IV 1 11 yes 0 2 

ac03 DLBCL female 1 III/IV 2 3 yes 4 4 

ac04 DLBCL male 1 III/IV 4 9 yes 3 3 

ac05 tFL male 1 III/IV 1 5 yes 0 1 

ac06 PMBCL female 1 III/IV 3 4 yes 4 2 

ac07 DLBCL female 1 III/IV 2 4 no 3 1 

ac08 PMBCL male 0 I/II 1 6 yes 0 2 

ac09 DLBCL female 0 III/IV 2 4 yes 3 2 

ac10 tFL male 1 III/IV 3 15 yes 0 2 

ac11 tFL male 1 III/IV 3 7 yes 3 2 

ac12 DLBCL female 1 I/II 1 5 yes 3 3 

ac13 DLBCL male 1 I/II 1 4 yes 0 1 

ac14 DLBCL male 1 III/IV 4 2 yes 2 2 

ac15 DLBCL female 1 I/II 2 4 yes 3 2 

ac16 DLBCL male 1 III/IV 2 4 yes 1 2 

ac17 tFL male 0 III/IV 4 6 yes 0 1 

ac18 DLBCL male 1 III/IV 3 5 yes 2 1 
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ac19 tFL female 0 III/IV 4 6 yes 2 1 

ac20 DLBCL male 0 III/IV 3 6 yes 0 1 

ac21 DLBCL male 3 III/IV 3 3 yes 3 3 

ac22 DLBCL male 4 III/IV 3 5 yes 3 1 

ac23 tFL male 0 III/IV 3 4 yes 3 2 

ac24 DLBCL male 0 III/IV 1 2 yes 0 2 

 

Table S 2: Number of genes associated to the expression modules and number of cells with module 

expression exceeding one standard deviation. 

Module # genes # cells 

A 89 20,499 ( ≙ 15.4 % of all cells ) 

B 339 50,666  ( 38.0 % ) 

C 401 26,951 ( 20.2 % ) 

D 172 24,173 ( 18.1 % ) 

E 152 13,754 ( 10.3 % ) 

F 159 96 ( 0.1 % ) 

G 266 10,478 ( 7.9 % ) 

H 325 20,812 ( 15.6 % ) 

I 192 9,437 ( 7.1 % ) 

J 123 23,406 ( 17.5 % ) 

K 182 1,457 ( 1.1 % ) 
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Table S 3: T cell subpopulations assigned using the consensus marker scheme. Poly-functional cells 

are counted multiply.  

T cell subpopulation # cells 

CD4+ cells 43,111 (≙ 32% ) 

-  naïve CD4+ cells 131 ( < 1% ) 

-  CD4+ Tcm cells 1,275 ( < 1% ) 

-  CD4+ Tem cells 2,023 ( 2% ) 

-  CD4+ Treg cells 7,036 ( 5% ) 

-  Th1 cells 6,386 ( 5% ) 

-  Th2 cells 1,373 ( 1% ) 

-  Th9 cells 19 ( < 1% ) 

-  Th17 cells 1,046 ( < 1% ) 

CD8+ cells 69,976 ( 52% ) 

-  naïve CD8+ cells 393 ( < 1% ) 

-  CD8+ Tcm cells 1,571 ( 1% ) 

-  CD8+ Tem cells 4,917 ( 4% ) 

-  CD8+ Treg cells 3,333 ( 2% ) 

-  CD8+ Tc cells 39,414 ( 30% ) 

CD4+ CD8+ cells 8,003 ( 6% ) 
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Table S 4: Regression analysis of ICANS grade depending on the proportion of CAR+ cells in the 

subpopulations adjusted for gender. Models are trained for all patients adjusted for gender, and 

separately for male and female patients, respectively. In all models, higher CAR+ proportion is 

associated with lower ICANS grade. 

T cell subpopulation all patients a, b male only b female only b 

CD4+ cells -6.11    *** ** * 

- naïve CD4+ cells -0.27   

- CD4+ Tcm cells -5.51    *** **  

- CD4+ Tem cells -5.12    ** **  

- CD4+ Treg cells -5.72    *** *** * 

- Th1 cells -3.54    ** *  

- Th2 cells -4.58    *** *** *** 

- Th9 cells -1.01   

- Th17 cells -1.13   

CD8+ cells -6.61    *** * *** 

- naïve CD8+ cells -0.25   

- CD8+ Tcm cells -2.42   

- CD8+ Tem cells -3.74  *** 

- CD8+ Treg cells -3.81    ** * * 

- CD8+ Tc cells -6.23    ** * ** 

a Coefficient (slope) of ICANS grade variable in linear regression model 

b Significance level derived from linear regression model. *: p<0.1; **: p<0.05; ***: p<0.01 
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