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Supplementary Material

1 ROTATION MATRIX AND ITS DERIVATIVE

The rotation matrix R(0) € R? (8 = On) that rotates an arbitrary vector in three-dimensional space
by an angle 6 (6 = 0) around the rotation axis n = (nl,ng,n3)T €R3 (n| = 1) can be expressed as
follows (Géradin and Cardonal [2007)):

R(0) = cosOI3 + (1 —cos O)nn' +sinH[nl

n%(l—cos0)+cose ning(l——cosf)—ngsinf nsni(l—cosf)+ngsinf (S1)
=| ning9(l—cosB)+ngsinf ng(l—cos9)+cost9 nong(l—cosf)—nisind
ngni(l—cosf)—nosinf ngong(l—cosf)+nqsind n§(1—00s9)+c0s9

If § and n are considered as functions of the vector 0 = (61,605,03)", the following equations hold:

6=106]=1/62+063+063
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n-—---—-—-|—-—m—m————
0 /6% +02+62

Accordingly, defining e; = (1,0,0)T, ey = (0,1,0)T, and e3 = (O,O,l)T, when 0 > 0, the first-order
derivatives of 0 and n with respect to 8; (Il =1,2,3) are calculated as

A/ S— (S2)

91\ /6% +62 +62

on 1 ( 00 00 1
— = =_(e;— S3
30, 67 ( ) p (e —nm) (S3)

00; 00,
Let 61; denote Kronecker delta. The derivatives of ny (k = 1,2,3) with respect to 8; (I =1,2,3) are
calculated as

ony,

1
(5 — S4
36, 9( kl—NEnp) (S4)

In addition, according to Egs. and (S3), the following equations hold:

0 n_l( 1 7 T
6_01 (nn )— 9 (eln +ne; —2nnn ) (S5)
0 1
E[n]x 25([el]x—nl[n]x) (S6)
l
ag;se = —n;sing (S7)
l
0sinf
sul =njcost (S8)
00;
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Therefore, the first- and second-order derivatives of R(0) are calculated as follows:

O0R(0 1-cosf
( ):—nlsint913+nl (sin0—2 cos )nnT
%0 (S9)
sin@ 1-cosf T T\  sin
+n;|cosO— [n]. + (eln +nel)+T[el]X
0°R(0 in6
09k<;91) {nknlcose+(6kl nknl)Sl;1 }13
in 6 1-cosf
+{nknlcose+(5kl 5nknl)su1 —2(0p; —4ngng) ;208 }nnT
6 sinf
+{ npn;sin + (6 — 3nknl)(coes —SIGI; )}[n]x
(S10)
sinf 1 cosH T T
+ 9 {(nkel+nlek)n +n(npe;+n;er) }
—cos0 T T
cosf sinf
il (nplelx +nilegly)
Because these equations are not valid when 6 = 0, the following relations should be utilized:
I 1-—cosf 3
60 0
. sin®
lim =1
6—0 6
. 1-cosf 1
lim =—
-0 02 2
lim (cos@ sin@) 0
1 — =
-0\ 6O 02
Hence, when 6 = 0 the first- and second-order derivatives of R(0) are calculated as follows:
0R(0)
= x S11
30, le;] (511)
0°R(0) 1. 1 T
30,00, =-0p I3+ 3 (ekel + elek) (512)

2 DERIVATIVE OF INCOMPATIBILITY VECTOR

The first- and second-order derivatives of the components of the incompatibility vector C(W) are
derived which are in the compatibility matrix I'(W) = VywC(W) and in the second term of the Hessian
of the augmented Lagrangian Hc(W,A) = Vwy (I‘ (W)TA), respectively. Let £ (k =1,...,nyN) denote the
index of node connecting to the j-th end of member i (i =1,...,ny; J = 1,2). The non-zero first-order
derivatives of the incompatibility vector of translation AU;; defined in Eq. with respect to the
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components of the generalized displacement vector W are calculated as follows for [ = 1,2, 3:

AU,
v & (513)
0AU;; OR(Y;

(zl)] =-Z (l)l)r"j (S14)
ovY: oV
0AU;;

0) = €] (815)
U

Note that the derivatives with respect to @g), on (k=1,...,nN, h =1,...,ny) are equal to zero.
In addition, the derivatives with respect to Vi(,l), ‘I’(if), U ,(el,) (i' #1i, k' # k) are also equal to zero.
Therefore, the second-order derivative of AU;; with respect to each component of W is 0 except for

the following term:
02AU;; 2R(Y;
i ) R(‘Pz)/ v (S16)
ovPop)  apaypl)
15 14 1 1

If the member end is rigidly connected to the node, the non-zero first-order derivatives of the
incompatibility vector of rotation A®;; defined in the first equation of Eq. with respect to the
components of W are calculated as follows:

ON®;;

=-e] (S17)
O]
v,
0AQ;;
= el (818)
06y

Therefore, if the j-th end of member i is rigidly connected to the node, the second-order derivative
of A®;; with respect to any component of W is zero. According to Eqs. (4), (7), and (9), if the j-th
end of member i is connected to node & via hinge A, the non-zero first-order derivatives of the
incompatibility vector of rotation A®;; = ®,;(¥;,0;,¢p) with respect to the components of W are
calculated as follows:

(1)
0P;;  (9R(¥;) Re

- . (2)
a\I,(il) - 6\1’2” h (R(@k)th ) (S19)
io_ i) ). 3)
50 = | g0 (R@©E) (S20)
4D AR(¥,)
Jj 1/ ,(2) . . (2) (3)
) = 90 t, {sm(ph (R(@k)th )+cos<ph (R(@)k)th )} (S21)
13 13

ool OR(O})

o = (R ) | =t (S22)
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o DY k) (3)
200 = (Rewoty”) 300 ¢ ) (S23)
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o JR(O
o 42 . k) (2) 0R(0O;) (3)
a@g) —(R(‘I’l)th )-{sm(ph( 6@5@1) t, )+cos<ph( 300 t, (S24)
k
¥
O(p: = (R(‘I’i)t;?) . {cos on (R(@)k )t;lm) —singy, (R(G)k )t;l?’))} (S25)
ij

Therefore, the second-order derivatives of ®@;; are 0 except for the following terms:

A i (2)
v v® ~ | gplay® [R©0E?) (526)
A ZapReva (3
v Doy | guDapl [R©0t?] (527)
13 l 13 l
ij i) @ S @) (3)
STy = | agaym | 15001 (ROVGT) +eoso (R@E?)} (528)
13 14 13 1
0P 9?R(O})
200 6(;(1') - (R(‘Pi)t;zn) ' ( 26 a&zutg)) (S29)
E 9% r 9%
2o® °R(O,)
0 U(l'>:(R(\Pi)t§ll>)'( B Iiz')tf’)) (S30)
00700 00700
r 9% k%%
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2, (1)
0 q)ij _ 6R(‘Pi)t<1> ) aR(@)k)t@) (S33)
avrPoe!” | aw® ] | a0l "
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25,2
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t,” |- 1cos@p |R(Op)L,” | —singy |R(O)t (S36)
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6@2)6(,0 —(R(‘I’z)th ) {cos(l)h( 6®§f) t, ) sm(Ph( a@g,) t, (S37)




Supplementary Material

3 AUGMENTED LAGRANGIAN METHOD

Let W%, A%, and s;, denote the values of the generalized displacement W, the Lagrange multiplier
A, and the penalty parameter s in the k-th iteration of the process of the augmented Lagrangian
method, respectively. The function G(W*) is defined as

GW") = %C(Wk )TC(WF)

In addition, the binary function O(W*, A*) that indicates convergence of the optimization problem
(21) with sufficient accuracy is defined as

1 (Optimization process is converged)

O(Wk %) = { _
0 (Otherwise)

Algorithm [1| presents the process of obtaining the solution W* and the corresponding Lagrange
multiplier A* of problem (15)), using the augmented Lagrangian method (Birgin and Martinez,
2012). The load factor A is given, and the process terminates when the largest absolute value in
the components of the incompatibility vector C(W), represented as follows, is less than or equal to
€01 > 0:

|C(W)lloo = max|C;(W*))

where C;(W) (i = 1,...,n¢) is the i-th component of C(W). In the numerical examples of this
study, the parameters in Algorithm [1| for updating the penalty parameter are set as § = 1 x 10%,
Smin=1x10716 s .. =1x10% y=1.2, and a =0.5.
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Algorithm 1 Augmented Lagrangian method

Input: WOEQ,Al,etol>O,§>O,0<smin<smax,y> 1,0sa<1
Output: W* =Wk A* =A%

1 k—1,8, 0,

. _max{1,TI(W°
Sk <—m1n{max{smm, s%}, max}

2. while O(W* A%) =0 and |C(W*)|o > €101 do

3 Solve Problem with A = A%, and let the solution be W,

& AL AR 45, C(WF)

5. if k=1 then

6: Pr+1 < Pk, .

. _max41,I[I(W")
Sk+1 <— Imin {max {Smin, SW} > max}

7. else if |[C(WF)| o < €101 then

8 if £ =3 and |C(W*1)||o < €01 and O(WE—1 A%~1) = O(WE A*) = 0 then

9: Pr+1— Pr+1,

8q — min{yP*smin, 1}, sp — max{y Prspay, 11,

m.n{m { _max{l,H(Wk)}} }
Sk+1 1 ax sa’smax{l,G(Wk)} »Sb, Sk

10: else

11: Pr+1 < Pr, Sk+1 < Ck

12: end if

13:  else

14: Br+1— Pr

15: if |C(W?)| < a||C(W*1)|| then
16: Sk+1 < Sk

17: else

18: Sk+1 = max{ysg, yﬁksmin}
19: end if

20 end if

2. k—Fk+1

22: end while




	Rotation matrix and its derivative
	Derivative of incompatibility vector
	Augmented Lagrangian method

