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  Calculation and uses of the lithographic aerial image  
   Abstract:   Beginning with the seminal Dill papers of 1975, 

the aerial image has been essential for understanding 

the process of microlithography. From the aerial image, 

we can predict the performance of a given lithographic 

process in terms of depth of focus, exposure latitude, etc. 

As lithographic technologies improved, reaching smaller 

and smaller printed features, the sophistication of aerial 

image calculations has had to increase from simple inco-

herent imaging theory, to partial coherence, polarization 

effects, thin film effects at the resist, thick mask effects, 

and so on. This tutorial provides an overview and semi-

historical development of the aerial image calculation 

and then provides a review of some of the various ways 

in which the aerial image is typically used to estimate the 

performance of the lithographic process.  
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1        Introduction 
 The early days of microlithography developed more as 

an art than a science. Lithographers made do with rudi-

mentary approximations of imaging and an incomplete 

understanding of resist processes. This changed in 1975, 

when Dill ’ s seminal papers  [1 – 5]  ushered in an evolution 

of microlithography as a science  [6, 7] . In these papers, 

a complete theory of resist behavior was developed, new 

instruments were used to characterize the fundamental 

properties of resist, and the beginnings of a more com-

plete imaging theory were created using the modulation 

transfer function (MTF), which would give us what came 

to be known as the aerial image  –  in film, we would call 

this the film image or, in water, the aquarial image. 

 Although the MTF was useful as a first approxima-

tion in some cases, the problems with the MTF were sev-

eralfold. The MTF treats sinusoidal objects, whereas litho-

graphers need to image an array of shapes such as edges, 

lines, spaces, elbows, contact holes, and isolated features. 

Of course, any object can be decomposed into its Fourier 

components, to which the MTF applies  [8, 9] . However, the 

MTF assumes incoherent imaging, whereas lithographers 

never actually use totally incoherent imaging; even a pupil 

filling ratio of  σ   =  1 is not truly incoherent because light from 

outside the aperture is not there to contribute to the dark-

field image. Finally, the MTF provides only modulation, 

whereas lithographers are more concerned with the image 

slope and the resultant size of the pattern in photoresist. 

 Two basic formulations of partially coherent litho-

graphic image simulation emerged: the Abbe formulation 

and the Hopkins formulation. Following the Dill papers, in 

the 1970s and early 1980s, authors such as Kintner  [10] , Sub-

ramanian  [11] , Matsumoto  [12] , Cole  [13] , and others adapted 

the Hopkins formulation  [14] , with computers of that day, 

to the problem of efficiently calculating partially coherent 

aerial images. The central component to this formulation is 

the transmission cross coefficient, which we will see could 

be computed in advance for a specific illumination condi-

tion and used over and over for different mask patterns. The 

Abbe formulation is also included in the popular formula-

tion. While this method has its origins in Abbe ’ s imaging 

theory  [15] , it is really a collection of many separate contri-

butions, including those of Debye  [16]  and Hopkins. This 

formulation is conceptually more tractable and more easily 

programmed; however, the application of the theory to com-

putational algorithms is often computationally demanding.  

2    Computing the aerial image 
 The basic picture of a simple lithographic imaging system 

is illustrated in Figure  1  , where the imaging is projected 

to infinity by a condenser lens, and the reticle image is 

relayed to the wafer telecentrically with an afocal projec-

tion lens having a magnification equal to the ratio of focal 

lengths

   

2

1

f

f
. As is nearly always done, the illumination is 
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considered to be K oe hler so that each point in the illumi-

nation pupil is manifested as a plane wave arriving at the 

reticle. 

 While Figure 1 shows a description of a simple 

optical system used for lithography, the derivations for 

aerial image formulation usually use a  ‘ black-box ’ -type 

of optical system. In both cases, the system is assumed 

to have Koehler illumination with a double telecentric 

imaging system. However, in the  ‘ black-box ’  case, there is 

no lens detail. Instead, the imaging model concentrates 

on conjugate planes given by the reticle/wafer plane and 

entrance/exit pupils combinations. Figure  2   illustrates 

this, where lenses are just given as block components 

without exact ray tracing. The entrance and exit pupils 

are replaced by focal spheres with radii of  f  
1
  and  f  

2
 , respec-

tively. The illumination source is also shown imaged into 

the projection lens. 

 Because the Hopkins and Abbe image formulations 

are equivalent, it is possible to obtain one from the other 

by a change of variables and an order of integration. We 

will start with the more conceptually tractable Abbe for-

mulation and then derive the Hopkins formulation to show 

how they are related. The basic concept behind the Abbe 

formulation is that the image intensity can be thought of 

as the sum of intensities generated by light from inde-

pendent coherent source points. The derivation given here 

is based on previous works  [17, 18]  with scalar imaging 

concepts laid out by Goodman  [19]  combined with a direc-

tion cosine spectrum description of the propagation of the 

scalar field given by Harvey  [20]  and Hopkins. Previously, 

Hopkins showed that the entrance pupil surface exists as 

the far-field distribution of the reticle (the object), while 

the image plane exists as the far-filed distribution of the 

image. Therefore, we can use the techniques of Huygens-

Fresnel diffraction  [21]  and Fourier relationships to model 

the diffraction from the reticle to the entrance pupil and 

the diffraction from the exit pupil to the image plane. The 

propagation from the entrance to the exit pupil is further 

given by a conjugate mapping that represents the action 

of the lens with the appropriate obliquity terms due to the 

conservation of power requirements. 

 We will start with a generalized propagation of any 

point source from the illumination pupil to the reticle and 

then to the entrance pupil of the imaging lens. Let each 

point on the entrance pupil of the projection lens be rep-

resented by a vector in the direction cosine notation, i.e., 

  
ˆ ˆi jρ α β= +�

. For a circular pupil, we can define the object 

space numerical aperture by 
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 Figure 2     ‘ Black-box ’  model of the lithographic imaging system, showing a Koehler illumination of the reticle and the illumination source 

imaged into the entrance pupil of the projection lens. The imaging action of the lens is shown by the entrance and exit pupils.    
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 Figure 1    The lithographic imaging system is generally assumed to consist of a Kohler illumination and a double telecentric projection lens. 

In this way, each point in the illumination pupil can be represented as a plane wave in reticle space, and each plane wave transmitted by the 

reticle can be treated as a point source in the imaging pupil.    
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2 2

max max maxsin ,NA n nθ α β= = +  (1) 

 where  θ  
max

  is the maximum marginal ray angle defined in 

the object or reticle space, and n is the index of refraction, 

which is assumed to be 1. 

 As we have Koehler illumination, where the source is 

imaged into the entrance pupil, and as the source can be 

considered as a distribution of point sources, we define 

an effective source distribution   ( )sJ ρ
�

 in the entrance 

pupil using a vector notation to denote each source point 

as   ˆ ˆ
S S Si jρ α β= +�

. Using the Huygens-Fresnel principle, the 

electric field from the reticle to the entrance pupil can be 

given as, 

   
( )- 2 ( )2 ( )

0 0( ; ) ( ) - .Si ri r
S SA A O r e e dr A Oπ ρπ ρρ ρ γ γ ρ ρ⋅⋅= =∫∫

�� �� ��� � � ��  (2) 

 For simplicity, all spatial coordinates and distances 

are normalized to the vacuum wavelength,  λ . Hence, the 

vector   r
�

 describes the normalized spatial coordinate posi-

tion on the reticle given as   ˆ ˆ( )r xi yj λ= +�
.  γ  is a direction 

cosine defined by   2 21-( ) cosγ α β θ= + =  and can be con-

sidered as an obliquity term.   ( )O r
�

 is the reticle pattern of 

interest. Fourier transform is indicated by a tilde so that 

  
( - )sO ρ ρ
� ��  is the angular spectrum of the object, which is 

shifted by   Sρ
�

, the angular coordinate of the illuminating 

point source. We note that implicit in this description is 

that the imaging system is shift invariant, and the implica-

tions of this will be discussed later in this section. 

 The field at the image is given by the propagation of 

the field distribution at the exit pupil. Modifying a pre-

vious work  [17]  to include a general source point and an 

image side index of refraction results in, 

    

- 2
1

0

( ; )
( ; , ) ,

i n z
S

S

A e
U r z U F

n

π γρ ρ
ρ

γ

′ ′ ′
− ⎧ ⎫′ ′ ′′=′ ′ ′ ′ ⎨ ⎬′ ′⎩ ⎭

� �� �  (3) 

 where the term in the brackets is an inverse Fourier 

transform. The primed notation denotes either the image 

(wafer) region or the exit pupil region. The phase term in 

 n ′ z ′   has been added as a wafer focus term, with the con-

vergence of the amplitude at  z  ′   =  0. 

 From the entrance pupil, the field is mapped to the 

exit pupil via the operation of the lens, which truncates, 

scales, and modifies the field (such as in the case of aber-

rations and/or apodization). The image side numerical 

aperture is defined by, 

    
2 2

max max maxsin ,NA n nθ α β= = +′ ′ ′ ′ ′ ′  (4) 

 Typically, in lithography,  n  ′  is either 1 or approxi-

mately 1.44 for water at a vacuum wavelength of 193 nm. 

The system magnification can be defined, using the Abbe 

sine condition, as 

   
,

h NA
m

h NA

′= =
′  (5) 

 Where  h  and  h  ′  are the object and image heights, 

respectively, and with the sine condition being defined by, 

   nh  sin   θ    =   n  ′  h  ′  sin   θ   ′ .  (6) 

 Rosenbluth  [22]  has detailed a complete discussion 

of the radiometric terms and subsequent obliquity factors 

that are necessary in a treatment of image simulation. 

Radiometric consistency must be insured when mapping 

from the entrance to the exit pupils, i.e., power conserva-

tion must be ensured between the differential areas from 

the entrance to the exit pupil. Therefore, the following 

condition must be met, 

   

2 2
( ; ) ( - ) ,S SA da A daρ ρ ρ ρ=′ ′ ′ ′� � � �

 (7) 

 and the differential areas are given as, 

   

2 2

1 2  and  ,
d d d d

da f da f n
α β α β
γ γ

′ ′= =′ ′
′

 (8) 

 where we have assumed that the object side refractive 

index is 1. The complete exit pupil distribution is obtained 

by using a lens pupil function to represent the action of 

the lens. For perfect circularly symmetric lenses, this is 

a circular top-hat function with a maximum diameter of 

2 NA′  .  Hence, when magnification scaling is also consi-

dered in conjunction with the power conservation condi-

tion, the exit pupil distribution can be shown to be, 

   

( )
( ) ( )0

( ; ) ( - )

- .

S S

S

A n A m m P

A n O m m P

ρ ρ γ γ ρ ρ ρ

γ γ ρ ρ ρ

= ⋅ ⋅′ ′ ′ ′ ′ ′ ′ ′

= ⋅′ ′ ′ ′ ′ ′

�� � � �

� � ��  (9) 

 Substituting this into Eq. (3) gives the final field at the 

wafer for one general source point, 

   

( ) ( )1 - 2

0( ; , ) - i n z
S SU r z U F O m m P e

n

π γγ
ρ ρ ρ ρ

γ
− ′ ′ ′⎧ ⎫⎪ ⎪= ⋅ ⋅′ ′ ′ ′ ′ ′ ′⎨ ⎬′ ′⎪ ⎪⎩ ⎭

� � � � �� . (10) 

 The partially coherent aerial image at a given focus 

is then found by summing all the intensities across the 

effective source and is given by, 

   

2
( ; ) ( ) ( ; , ) .S S SI r z J U r z dρ ρ ρ=′ ′ ′ ′ ′ ′ ′ ′∫∫� �� � �

 (11) 

 The Hopkins formulation is found by expanding this 

equation and rearranging the order of integration. We 
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simplify the procedure by dropping the leading  constant 

complex factor   0U ′  in Eq. (10), which has no conse-

quence in the intensity calculation. We also let  m   =  1. The 

 magnification (or reduction) and the subsequent obliquity 

factors are easily brought in as scaling and pupil apodi-

zation factors during the computational implementations 

of either the Abbe or Hopkins formalisms. Hence, Eq. (11) 

becomes, 

   

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
1

2

2

2
-1

- 2 ( )

1 1 1

2 ( )

2 2 2

( ) ( ) ( ; )

( ) -

( ) -

- .

S S S

S S S

i r
S S

i r
S S

I r J U r d

J F O P d

J O P e d

O P e d d

π ρ

π ρ

ρ ρ ρ

ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

⋅′ ′

∗ ∗ ⋅′ ′

=′ ′ ′ ′ ′ ′

= ⋅′ ′ ′ ′ ′

= ⋅′ ′ ′ ′ ′

× ⋅′ ′ ′ ′ ′

∫∫
∫∫
∫∫ ∫∫
∫∫

� �

� �

� �� � �

� � � � ��

� � � � ��

� � � � ��  (12) 

 By a change of variables, the form of the integral 

terms in curly brackets can be written as, 

   

( ) ( )
( ) ( )

1

1

- 2 ( )

- 2 ( )

-

.

i r
n S n n

i r
n n S n

O P e d

O P e d

π ρ

π ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

⋅′ ′

⋅′ ′

⋅′ ′ ′ ′

= ⋅ +′ ′ ′ ′

∫∫
∫∫

� �

� �

� � � ��

� � � ��  (13) 

 Using the form of Eq. (13) into Eq. (12) gives the 

Hopkins formulation, 
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1
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r

C d d
π ρ ρ ρ ρ ρ ρ⋅′ ′ ′ ′ ′ ′ ′∫∫ ∫∫
� � � � � � ��  (14) 

 The last term is called the  C-function   [23]  or the  trans-

mission cross coefficient  and is given as, 

   
( ) ( )1 2 1 2( , ) ( ) .S S S SC P P J dρ ρ ρ ρ ρ ρ ρ ρ∗= + +′ ′ ′ ′ ′ ′ ′ ′∫∫� � � � � � � ��

 
(15)

 

 The transmission cross coefficient, or just TCC, can 

be considered the hallmark of the Hopkins formulation. 

The TCC is a cross correlation between the imaging pupil 

 P , its complex conjugate  P *, and the effective source  J , 

and as such, it is a four-dimensional function of two 

positions within the pupil. The integrand of the TCC is 

commonly described with a diagram such as that shown 

in Figure  3   where the integrand is nonzero only in the 

region of overlap between the three functions. In some 

simple cases, the TCC can have a closed form that can be 

derived geometrically. In other cases, it can be computed 

1

P

J

P*

–ρ′ 2
–ρ′

 Figure 3    This is a graphical representation of the TCC in the 

plane of   ρ
�

. The effective source  J  is represented in red as a dipole 

illumination pattern bordered by a dashed circle. The pupil 

function  P  and its complex conjugate  P * are represented by two 

closed circles in black offset by   ρ′�
1
 and   2ρ′�

, respectively. The integral 

is then performed over the entire plane, but the integrand in 

nonzero only in the region of overlap between all three functions.    

numerically and stored in memory for latter calculations 

of the aerial image. 

 The key difference between the Hopkins and Abbe 

formulations is the order in which the integrals are per-

formed. In the Hopkins formulation, the integral over the 

source and the pupil are performed first through the TCC. 

The Abbe formulation, also known as the  ‘ sum of sources ’  

approach, takes the integral over the source last. Another 

viewpoint is that the Abbe formulation presents a lens 

pupil-centered approach, while the Hopkins mathema-

tics derives an illumination source-centered approach. 

Because of these differences, the formulations are well 

suited to different applications. 

 Whenever imaging is desired with fixed source and 

fixed pupil constraints, the Hopkins formulation can be 

more efficient. This occurs because the TCC can be pre-

calculated. This is commonly done in optical proximity 

correction (OPC) and mask optimization today. However, 

when the source constraints need to be variable, as in a 

source optimization (SO) procedure or a simultaneous 

source mask optimization (SMO), the Abbe formulation 

is often used. Also, many consider the Abbe formulation 

easier to understand and implement. This formulation is 

usually used when a general purpose algorithm is needed 

for aerial image simulation. 

 Until the numerical aperture (NA) of the imaging 

system reached the range of 0.5 – 0.6, the basic scalar for-

mulations of Hopkins or Abbe imaging outlined above 

worked very well and made excellent predictions of aerial 

images. The propagation of the aerial image field into the 

photoresist and subsequent films was often approximated 

using a simple Beer ’ s law  [24] , 
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-( ; ) ( ) ,z

resistI z I T e αρ ρ ⋅=′ ′
� �

 (16) 

 where  α  is the photoresist absorption and  T   
resist

   is the 

transmission of the photoresist/air interface. The equa-

tion here only assumes one photoresist film with no 

reflection; however, more elaborate approximations, such 

as Mack  [25] , were able to predict film images with effects 

such as standing waves. 

 In the drive to smaller feature sizes, larger NAs forced 

us to include the effect of polarization and the vector 

nature of light. Flagello  [17, 18]  showed how to combine 

the Hopkins and Abbe theories with the thin film theory 

 [26]  and polarization decomposition  [27]  to obtain a vector 

theory of image formation in thin films such as photo-

resist. The basic idea is that the field in the image space is 

decomposed into plane wave components when the illu-

mination source is polarized. These field components can 

be treated separately using the classic thin film theory to 

determine the fields at any position within the resist by 

deriving a film term as a function of   ρ′
�

 and  z . The field 

components are added vectorally to produce the irradi-

ance within the film or the so-called  film image . Unfortu-

nately, the term  aerial image  is still being used today for 

reference to the  aquarial image  or the  film image . 

 Another assumption implicit in the above develop-

ment is that the mask is a so-called thin mask or that the 

Kirchhoff approximation holds  [19] . This assumption 

came into a serious question with the advent of phase 

shifting masks. For the features at the wafer plane with 

dimensions   <   λ /2, the Kirchhoff approximation must be 

treated carefully to avoid substantial errors. To include 

the effects of the thick mask, electromagnetic magnetic 

field (EMF) treatments, such as finite difference time 

domain (FDTD)  [28] , finite element methods  [29] , wave-

guide methods  [30] , or rigorous coupled wave analysis 

(RCWA)  [31]  have been used to estimate the transmit-

ted near field, which can then be decomposed into a 

spectrum of plane waves and propagated to the wafer 

by the Abbe formulation. Unfortunately, the EMF treat-

ments can be very costly computationally, so care must 

be taken with respect to how many times the thick-mask 

transmitted field is computed. For cases where the 

shift invariance can be invoked, we can compute the 

object spectrum using rigorous EMF methods with 

only one angle of illumination and obtain the others 

by a simple shift of its spectrum around in the pupil. 

However, when the transmitted field varies signifi-

cantly over the range of illumination, and there is shift-

invariance, then, the rigorous mask transmittance must 

be computed for a larger subset and then interpolated 

to a finer pupil grid. 

 The Abbe formulation shown here assumes a gen-

eralized form for the index of refraction of the imaging 

medium. Specifically, the direction cosine vector in the 

image/exit pupil space must be defined by, 

    
ˆ ˆn i n iρ α β= +′ ′ ′ ′ ′�

 and 
  ( )2 21- .n nγ α β= +′ ′ ′ ′ ′  (17) 

 Historically, the aerial image formulations for litho-

graphic applications were derived assuming both image 

and object spaces had an index of refraction of unity. 

As such, many of the available aerial image simulators 

did not use a definition such as Eq. (17) nor could they 

handle indices other than 1 for the medium between the 

lens and the wafer. This seriously impacted the ability to 

obtain a valid film image. Also, water immersion litho-

graphy required that the aerial image algorithms had to 

be  modified because the incident medium had changed. 

The procedure was outlined by Mulkens  [32]  in 2004, 

where three variable substitutions in a pure aerial image 

algorithm allowed for accurate aquarial and film image 

formation, where in this case the  ‘ hat ’  indicates a normal-

ized quantity rather than the usual unit vector as was used 

above: 

 –  Change the numerical aperture to ensure that the 

values are greater than 1 using   ˆ NANA n= ′ . 
 –  Create an effective wavelength that scales with the 

index of refraction, i.e.,   ˆ
n

λλ= ′ . 
 –  The refractive index of each film,  n   

j
  , on the wafer, 

including the photoresist film, is normalized to the 

index of refraction of the immersion medium. Hence, 

  = ′
ˆ

ˆ j
j

n
n n . 

 While current commercial simulators have corrected 

their algorithms, these scaling substitutions give some 

insight into some of the advantages of immersion. From 

(1) we see that the increase in  NA  is directly proportional 

to the index. From (2), we notice that the effective wave-

length for a 193-nm lithographic immersion exposure tool 

will have   λ̂   =  193 nm/1.44  =  134 nm. Therefore, the use of 

immersion is similar to a decrease in wavelength. This is 

significant, as decreasing the wavelength below 193 nm 

requires substantial development costs, while the use of 

water with existing systems has proven a cost-effective 

solution for resolution improvement. Finally, from (3), we 

see that the ratio of indices will get smaller with immer-

sion. The implication of this is that the top surface of the 

photoresist/water interface will have a much lower reflec-

tivity. This can result in more power transmitted into the 

photoresist resulting in a faster exposure throughput 

and lower, probably, for scattered radiation to affect the 

image.  
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3    Making use of the aerial image 
 Aerial images must have a medium to interact with to 

be utilized. By themselves, they are only a mathemati-

cal construct, as the physical act of measuring the aerial 

image, whether it is a sensor, a photosensitive medium, 

or even the human eye, will interact with its properties. 

However, the creation of aerial images into a photoresist 

is necessary to create a pattern or stencil after a chemical 

development. Optical lithography uses two basic com-

ponents for imaging: a lens system and the photo resist. 

Although, it is the final film image that is used by the pho-

toresist, we can gain some understanding of the many 

interacted imaging mechanisms if we consider the lens 

system as  ‘ presenting ’  the aerial image (or aquarial image 

for immersion) to the photoresist. This is then modified 

to form a film image that is subsequently used for further 

processing such as post exposure baking and chemical 

development. In this section, we attempt to examine some 

of these interactions with the photoresist, which requires 

the creation of models for the photoresist response to the 

image and to understand the metrics ne cessary to predict 

the performance of the developed image in a photoresist 

film. 

3.1     Normalization and bulk photoresist 
response 

 One of the critical aspects in understanding how the aerial 

image interacts with the photoresist is to understand the 

initial exposure normalization and response. Exposure 

(often called dose or exposure dose) into a photoresist is 

defined as, 

   E   =   I  ·  t , (18) 

 where  t  is the exposure time in seconds, and  I  is the irra-

diance in mW/cm 2  resulting in the exposure,  E , in units 

of mJ/cm 2 . Typically, the irradiance of the aerial image is 

normalized such that an open frame pattern, i.e., a 100 %  

transmission clear area produces an aerial image irradi-

ance of   ̂I ( x , y )  =  1.0, where we have used a carrot to denote 

normalization, and we have dropped the prime notation 

for the image plane for simplification. This normalization 

requires the angular spectrum of the object or reticle pat-

terns, shown in Eq. (2), to be scaled by the transmission. 

In practice, to achieve a specific distribution of exposure 

due to the aerial image, we would multiply the normal-

ized irradiance by a nominal exposure,  E   
n
  , which has an 

implicit time dependence. Hence, we can write the aerial 

image exposure as, 
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 Figure 4    Photoresist response to exposure.    

    
ˆ( , ) ( , ) nE x y I x y E= ⋅ . (19) 

 The outcome of this is that the representation of the 

exposure mechanism is a multiplicative scaling of the 

aerial image. This becomes advantageous when formulat-

ing models of photoresist behavior. 

 Figure  4   shows an example of the bulk response of 

the positive photoresist to an open (100 %  transmission 

reticle) exposure to actinic radiation. The photoresist has 

been coated on a substrate with an absolute thickness, 

T 
0
 . For a substantial amount of exposure, the normalized 

resist thickness changes relatively slowly. However, at an 

inflection exposure,  E   
i
  , the photoresist starts to lose film 

thickness at a more rapid rate, with a slope of  γ  
resist

 , until 

the point where no photoresist is remaining on the sub-

strate. This exposure is termed the  ‘ clearing dose ’  or  E   
0
  . 

An ideal photoresist would have  γ  
resist

   =   ∞  and T  =  T
0
 up to 

the point  E   
i
   with  E   

i
    =   E   

0
  .  

3.2     Combining photoresist response and 
aerial images 

 A simple model for the aerial images uses the bulk 

response of the photoresist as the primary mechanism of 

development. While only a first-order approximation, its 

simpli city gives insight into the role of the aerial image 

in lithographic performance. The model assumes that if 

we have an aerial image exposure into the photoresist, as 

given by Eq. (19), then for all positions where  E ( x,y )   ≥    E  
0
 , the 

 photoresist will be totally developed. For a perfect resist, 

for all exposures where  E ( x,y )  <   E  
0
 , the photoresist will 

have a thickness comparable to the initial thickness. The 

width of the patterned features is, therefore, determined 
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at the  E  
0
  positions, and the photoresist structure will have 

vertical sidewalls. This is called the  threshold  model of 

photoresists and does not consider the finite thickness of 

the resist, but only the positions where  E ( x,y )   ≥    E  
0
 . 

 Figure  5  A examines the threshold model in further 

detail, where we assume that  E  
0
   =  1.0 and  E ( x , y )  =    ̂I ( x , y ). 

The red curve is the outcome of an aerial image simu-

lation of a 300-nm isolated space. If this distribution is 

multiplied by 3.125, as given by the blue curve, the width 

of the photoresist space will exactly be 300 nm. This cor-

responds to an irradiance threshold of 0.32 on the original 

curve. Figure 5B shows the predicted resist structure with 

straight sidewalls. We can define a critical dimension (CD) 

as the measure size of the critical pattern. In this case, it 

is our target space size of 300 nm. The effective nominal 

exposure for the threshold model is just the reciprocal of 

the irradiance threshold. We can write this as, 

    
0

threshold

1
.nE E

I
= ⋅  (20) 

 With a less than perfect resist,  γ  
resist

   <    <   ∞ , the sidewall 

structures can be sloped. A model of this was developed 

in the 1980s and is called the  ‘ tone reproduction model ’  of 

the photoresist  [33] . It is a slight modification of the thre-

shold model to include more effects of the aerial image into 

the finite thickness of the resist. Figure  6   is an example of 

the model using experimental photoresist data. The aerial 

image is of a 1- μ m isolated line model at  λ   =  365 nm with 

NA  =  0.42. The exposed image is essentially mapped into 

the photoresist pattern using the bulk response function 

of the photoresist. The size of the photoresist line is clearly 

defined by the  E  
0
  positions and Eq. (20). 

 More advanced photoresist models usually use the 

full film image. The assumption is that the higher-order 

effects such as the higher NA image interaction with the 

photoresist films, diffusion of acids and solvents, and a 

full treatment of the photoresist development requires 

a full dimensional approach to modeling. The limited 

dimensional approach of the simple threshold model 

cannot accurately explain the effects that occur in the 

depth of the photoresist especially when the image for-

mation is due to the larger angles of incidence into the 

photoresist. Figure  7   shows a comparison of the aerial 

image, the film image, and a fully developed image of a 

5-bar 0.25-mm pattern using  λ   =  248 nm exposure and an 

NA  =  0.57. A simple threshold model would only output 

the widths of the 5 bars when only examining the aerial 

image. This may be a sufficient image model depending 

on the application. However, if a higher degree of accu-

racy is needed, the film image is necessary to model the 

depth structure. When this is used in a more rigorous 

photoresist model, we see that the prediction of the pho-

toresist images show some rounding at the top and some 

slight asymmetry between the center and outer bars.  

3.3     Applications of aerial image models 
with photoresist 

 The aerial image, in conjunction with a model of pho-

toresist, can be used to explore and study a variety of 
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 Figure 5    (A) Exposed aerial images of a 300-nm isolated space pattern, showing two different exposures and the location of the threshold 

size of the space. (B) The predicted photoresist structure using a threshold model, where the CD defines the width of the space.    
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 Figure 7    Construction of the photoresist image from the aerial image, to the film image, to the printed photoresist image.    

parameters and conditions of either the optical system 

in question or the photoresist process. The behaviors of 

the developed photoresist to various amounts of defocus, 

exposure, lens aberrations, illumination source coher-

ence, photoresist thickness, etc., are just a few of the 

parameters that have been explored. Once the photoresist 

image has been constructed from the aerial image, the CDs 

are usually calculated for a given pattern and then plotted 

against various other parameters. A historic example of this 

is the Bossung curve (named after John Bossung of Perkin 
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Elmer in the 1970s). This is a permutation where the line 

width is plotted against focus, for incremental amounts of 

exposure. Figure  8   illustrates a typical Bossung curve and 

demonstrates the optimal, isofocal exposure, where the 

line width varies minimally with changing focus. 

 Another useful way to evaluate the imaging perfor-

mance from the aerial image is to plot iso-CD contours 

against dose and focus, the so-called E-D window  [34] , 

where the contours of the target CD, plus and minus some 

tolerance (typically   ±  10 % ), are plotted, leaving a gap in 

between. The red rectangle (sometimes an ellipse is used 

instead) that fits entirely within this gap has a height equal 

to the exposure latitude (EL) and a width equal to the 

depth of focus (DOF). There is a family of such rectangles 

(or ellipses) that fit within this gap, and so the family of the 

EL and DOF can be plotted against one another to provide 

what is known as the process window  –  exposure latitude 

vs. depth of focus. The examples of the E-D window and 

the process window are illustrated in Figure  9  . 

 Another use of the aerial image is to examine the dif-

ferences in the critical dimension that can result from the 

proximity of other features or the type of feature. This 

 ‘ optical proximity effect, ’  can be caused by illumination 

coherence, aberrations, scattered light, photoresist effects, 

etch, and other processes. It is primarily thought of as 

having most to do with diffraction and coherence of the 

source. A simple way of characterizing this is to plot the 

width of specific features with some nominal width or CD, 

at a given focus and exposure, for a range of pitches. The 

plot of this optical proximity effect (OPE) illustrates how 

the photoresist width will vary in the transition from equal 

lines and spaces, to isolated (or nearly isolated) structures. 

An example of the OPE curve, or sometimes the  ‘ coherence 

curve ’   [35] , is illustrated in Figure  10  , where a 100-nm line 
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has been simulated using  λ   =  193 nm with annular illumi-

nation and a simple threshold model. The effect in this 

example is mainly driven by the annular illumination, 

which tends to be only optimized within a finite range of 

pitches. Outside of this range, the aerial image requires a 

different nominal exposure-to-size to the target CD. 

 Finally, we can use aerial images to examine the effect 

of reticle or mask errors. As an illustration, if we assume an 

error in a mask feature by, say, 4-nm, then with an optical 

system having a reduction factor (m  =  1/4) of 4, the error in 

the resist should be 1 nm. However, because of diffraction, 

coherence, and all the other subtle effects of lithographic 

imaging, there can be a strong nonlinearity between the 

object to image mapping. The effect is described by a 

factor called the  mask error enhancement factor  (MEEF), 

and we can define it by, 
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300A B

275

275

250

250

225

225
Mask CD (nm)

200

200 300

175

0

2

4

6

8

NA=0.7

NA=0.8

M
E

E
F

P
ho

to
re

si
st

 C
D

 (n
m

)

12

+10% CD

10

14

16

18

175

150

150
125

125 275250225
Mask CD (nm)
200 300175150125

 Figure 11    (A) The linearity curve for the dense lines. The mask CDs are in the wafer scale units. The photoresist exposure has been targeted 

for a mask CD  =     150 nm. (B) MEEF as a function of dense lines for NA  =  0.7 and NA  =  0.8.    

    

.resist

mask

CD
MEEF

CD

∂=
∂

 (21) 

 The MEEF can be seen as creating an effective optical 

magnification and reduction such that 

   m  
effective

   =   m  ·  MEEF  and  R  
effective

   =   R  -1  ·  MEEF . (22) 

 The aerial image with a simple photoresist model can 

be used to directly estimate the MEEF and to understand 

some of the mechanisms that cause it. Figure  11  A shows 

the result of a simulation of dense lines (50 %  duty cycle) 

as a function mask CD (in wafer scale units). The NA  =  0.7 

and  λ   =  258 nm using a circular source with a lens pupil 

filling ratio of  σ   =  0.5. We also plot   ±  10 %  CD lines for refe-

rence. The photoresist exposure has been targeted for the 

150-nm lines. Ideally, we want to target the exposure at 

one CD setting and have all the other feature sizes fall 

within the   ±  10 %  zone. However, the strong nonlinearity 

is immediately noticed. This is especially evident for line 

sizes below 150 nm. The main cause is that most of the 

diffracted electric field from the reticle is not being cap-

tured by the lens due to an insufficient NA. We expect the 

MEEF to very high in this line size region. Figure 11B illus-

trates this where the MEEF has been calculated for an NA 

of 0.7 and 0.8. At 130 nm, the MEEF is approximately 15 for 

NA  =  0.7 compared to a MEEF of 2.6 for NA  =  0.8. 

 We can also gain an understanding of the fundamen-

tal mechanism of how MEEF arises by directly looking at 

the aerial image. Figure  12   examines the aerial image for 

a mask CD of 130 nm using the parameters for Figure 11. It 

is clearly evident that the high NA has a greater dynamic 
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range, i.e., contrast, as well as a steeper image slope at 

the threshold levels at the CD positions, which is   ±  65 nm. 

Therefore, any small change in the size of the aerial image 

would affect NA  =  0.7 with a much greater sensitivity. This 

translates into the higher MEEF that is seen.  

3.4    Image log slope 

 In many fields outside of lithography, contrast is a 

common metric for image sharpness. However, contrast 

only takes into account the maximum and minimum 

intensities, which generally fall above and below the 

threshold, and are positioned some distance from the 

transition that determines the sharpness of a feature edge. 

For this reason, the lithographers often think in terms of 

the slope of the intensity in the vicinity of the transition 

from dark to light as illustrated in Figure  13   because the 

greater the image slope, the sharper the transition and the 

sharper the feature edge. 

 Because the magnitude of the image slope scales with 

intensity, it is important to normalize the image slope by 

the target exposure value. Furthermore, it is also useful 

to normalize by the target line size so that changes in the 

edge position are expressed as a fraction of the line size. 

The resulting unitless metric is known as the normalized 

image log-slope or NILS  [36] , as expressed in Eq. (23). 

    

ln
.

Iw I
NILS w

I x x

∂∂= =
∂ ∂  

(23)
 

 For a given process, there is a minimum NILS required 

to print a feature at the target CD. As small changes in 

the exposure latitude have a linear effect on the NILS, 

Mack  [36]  has shown that we can usually apply Eq. (23) to 

extrapolate the exposure latitude from a few experimental 

sample points. The constants  A  and  B  are determined from 

the experimental data. 
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   %  EL   =   A ( NILS - B ). (24) 

 Defocus impacts the NILS by blurring the imaging and 

reducing the slope. However, there is a minimum NILS 

required to print a feature at the target CD; below that 

value, nothing will print. Today ’ s processes require the 

NILS to be above approximately 1.5 – 2.0, so that although 

the NILS can be estimated from the aerial image below the 

cutoff, the NILS less than the minimum correspond to the 

images outside the depth of focus.   

4    Summary 
 The need for rigorous methods in calculating the litho-

graphic aerial image became apparent with the advent of 

the Dill papers in 1975. Since then, there has been a steady 

increase in the complexity and precision of the mathema-

tical methods keeping pace with the increased resolution 

requirements demanded by Moore ’ s law. The aerial image 

calculations now include the effects of the custom par-

tially coherent illumination, thick masks, thin films on the 

wafer, polarization effects, and the vector nature of light. 

With these aerial image calculations, lithographers have 

a variety of ways to estimate the imaging performance 

of their process, by automatic computation of Bossung 

curves, process windows, OPE curves, MEEF, and more.    
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