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Abstract: Efficient performance assessment is essential 
during the design of systems involving complex aspheres. 
We present new classes of pupil sampling schemes that, 
with a reduced number of rays, yield accurate estimates 
of the RMS wavefront aberration over a circular pupil. It 
turns out that the number of samples in the pupil can be 
reduced by a factor of about 0.7, and these ideas can also 
be expected to lead to a similar additional reduction fac-
tor when averaging over the field and color. Beyond that, 
analysis of a patented lens system is used to establish the 
path to further significant reductions.
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1  Introduction
When compared to traditional designs, the application of 
increasingly complex aspheres means that additional rays 
must be traced to estimate merit functions with sufficient 
accuracy. It is otherwise possible to achieve high levels 
of correction for the sampled rays while permitting poor 
performance within the unsampled regions of the pupil. 
Despite the ongoing boom in computing power, efficiency 
is crucial in these challenging design tasks when there are 
many active degrees of freedom. Optimal ray sampling, 
therefore, remains critical. We focus in this work upon 
axially symmetric systems and accept that entities like 
the RMS over the pupil of the geometrical-optics-based 

wave aberration involve underlying approximations that 
set a limit to meaningful accuracy. In at least the initial 
phases of design, however, such averages provide valu-
able figures of merit.

For averaging over the pupil, earlier work in this area  
applied Gaussian quadrature separately in angle and 
radius [1]. This approach is sometimes referred to as ‘iter-
ated Gaussian quadrature’ (IGQ) and is effective for lower 
orders of correction. Unfortunately, it is not optimally 
matched to the task for high-performance systems where 
larger numbers of samples are required for averaging both 
the wavefront aberration and its square. Although expla-
nation of their classification is delayed until Section 2, it 
is apparent in Figure 1 that these sampling patterns for 
higher-order schemes become unevenly bunched.

Although it appears to be not well known in the 
optical design context, there is an existing body of work 
on what is referred to as ‘cubature’. This is reviewed in Ref. 
[2] and includes specific schemes for estimating uniformly 
weighted averages over a disc [3]. An online encyclopedia 
is also partially assembled (see [4]). The sampling scheme 
from the encyclopedia for order 25 is shown in Figure 2 
where it is evident that some of the uneven bunching at 
the right in Figure 1 has been reduced, and the number of 
samples has fallen by 15–20%. A variety of such schemes 
exist, and some more attractive and effective options 
form the subject of this paper. We present one approach 
for deriving these schemes in Section 2 and some sample 
solutions in Section 3 before considering a key applica-
tion in Section 4 that points the way to further significant 
improvements.

2  Symmetric cubature schemes
When polynomials are able to approximate the integrands 
of interest, it is natural to apply quadrature schemes that 
use a linear combination of a finite number of samples 
designed to exactly integrate as many monomial terms as 
possible. For the estimation of one-dimensional integrals 
over a finite interval, Gaussian quadrature manages to www.degruyter.com/aot
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integrate polynomials up to the order 2n-1 by using only 
n sample points: There are 2n degrees of freedom in the 
sample locations and weights, and this is also the number 
of monomial terms in the target polynomial. It so happens 
that the associated set of 2n non-linear equations (one for 
each of the monomials) that involve these 2n unknowns 
always has a beautiful solution where the sample locations 
all fall within the interval of integration [normalized here 
to (-1,1)], and all the weights are positive. Unsurprisingly 
perhaps, those sample locations and weights are symmet-
ric about the origin. Anti-symmetric terms, therefore, sum 
precisely to zero; hence, it is an even term, namely, the 
order 2n, which is the first to fail.

For integrating over the unit disc in terms of Cartesian 
coordinates (x,y), it turns out to be effective for general 
purposes to attempt to integrate all the monomials xjyk 
up to a fixed order, say t, where t = j+k. This follows from 
the observation (evident in the domain of orthogonal 
polynomials, see Sec. 6.1 of [5]) that smooth functions 

Figure 2: A long known cubature scheme for order 25. Here, 67 
samples in only half of the 14 (internally symmetric) sectors are 
required due to symmetry.

Figure 1: IGQ schemes for order 9 at the left and order 25 at the 
right (with 11 and 79 samples). Only half of the pupil needs to be 
sampled due to symmetry. The number of samples in the full disc is 
also shown in gray.

that exhibit variations on a scale that allow up to about C 
cycles across the domain are predominantly captured by 
terms up to the order t≈πC. For simplicity, only symmetric 
sampling schemes are investigated here. That is, as is the 
case in Figures 1 and 2, we consider only configurations 
where the samples are invariant under sign changes of x 
and y. All terms involving any odd orders are then auto-
matically handled exactly, and just as for Gaussian quad-
rature, the resulting schemes are, therefore, designed to 
integrate all terms up to, and including some, fixed odd 
value of t. Because the integrands of interest to us are 
symmetric functions of x, the desired integral is then just 
twice the integral over the semi-circle where x ≥ 0. Also 
notice in the figures above that, if the sample points are 
reflected into x < 0 to fill the whole disc and the resulting 
grid is rotated by π/2, an alternative configuration results. 
In each of these three cases, however, a greater number of 
samples is now required within x ≥ 0. This is because there 
are then more points on the y axis. Accordingly, we rotate 
all solutions to ensure a minimal number of samples on 
that vertical line of symmetry.

As a benchmark, consider the application of IGQ in 
polar coordinates for integrating all terms up to an odd 
order, say t = 2h+1. It can be seen that we must sample on 
h+1 spokes. The samples then sit on (h+1)/2 rings when h is 
odd or on h/2 rings with an additional sample at the centre 
when h is even. (As shown in Figure 1, the Radau variant 
of Gaussian quadrature is used when h is even.) As each 
sample generally brings three degrees of freedom (two 
for location and one for weight), the number of samples 
required by a cubature scheme can be estimated to be 
one third of the number of terms xjyk with even values of 
j where j+k  ≤  t, i.e. one third of (t+3)(t+1)/4. For large h – 
hence large t – it follows that Gauss requires t2/8+O(t) 
samples, while this simple estimate for cubature is about 
33% less, namely, t2/12+O(t). A comparison for moderate 
orders is presented in Table 1.

2.1  Configuring specific schemes

Cubature schemes are designed to estimate an integral as 
a linear combination of function values, say

	
( ) ~ ( ).i i

i
f x dx w f x∑∫

�
(1)

For a given number of samples, the goal is to deter-
mine sample locations and weights that give exact results 
up to the highest polynomial order possible. That chal-
lenge can be taken on by minimizing the sum of the 
squared error resulting in Eq. (1) when summed over any 
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target set of basis functions, say monomials or orthogo-
nal polynomials. As the weights appear linearly in these 
errors, they can be determined via standard linear least 
squares methods. This reduces the task to the optimiza-
tion of just the sample locations. (Note that, after the 
weights have been determined, the merit function is best 
left in the form of a sum of squares in order to reduce 
round-off effects.) Ultimately, solutions are rejected if any 
of the weights are negative or any samples fall outside the 
region of integration.

We applied a variety of simple optimization schemes 
(including conjugate gradient, damped least squares, 
and other canned algorithms) to arrive at the results pre-
sented below. While monomials are an acceptable basis 
in this work either for low-order solutions or for the initial 
phases of optimization, it is numerically preferable to use 
orthogonal polynomials to avoid catastrophic round-off 
complications. In particular, we adopted the symmetric 
Zernike polynomials given in terms of the Jacobi polyno-
mials as

	 (0, ) 2( , ) cos (2 -1).m m m
n nZ r r m P rθ θ= � (2)

Simple trigonometric identities establish that 
( , )m

nZ r θ  is a polynomial of order t = 2n+m in the Cartesian 
coordinates. In fact, when supplemented with the anti-
symmetric Zernikes (where cos is replaced by sin), the set 
of all terms with m+2n  ≤  t is exactly interchangeable with 
the monomial terms xjyk, where j+k  ≤  t. This result follows 

from the discussion of Eq. (6) in Ref. [6]. Orthogonality 
means that ( , )m

nZ r θ  integrates to zero unless m = n = 0, so 
Eq. (1) becomes especially simple, and those requirements 
are then numerically robust provided recurrence relations 
are used to evaluate the Jacobi polynomials.

3  �Examples of moderate-order 
configurations

This task has now been reduced to the optimization of the 
location of a set of points in the unit semi-circle. A selec-
tion of configurations is offered in this section to give 
an idea of the varieties of solutions that emerge. Some 
numerical details are presented in the Appendix.

3.1  Order 11

In this case, h = 5 and IGQ needs six spokes of three rings 
for a total of 18 sample points. The result is shown in 
Figure 3 along with two cubature schemes for order 11. 
There are 15 samples at the bottom left in Figure 3 and 
14 samples at the bottom right, and the latter matches the 
simple estimate given in Table 1. It turns out that there is 
a one-parameter family of solutions for both these cuba-
ture options; the cases displayed have the three most 
central samples chosen to be equidistant from the origin. 

Table 1: A comparison of the number of samples required in a semi-
circle by iterated Gaussian quadrature and a simple estimate of the 
number required by cubature.

t # IGQ # CubEst % Reduction

11 18 14 22.2
13 22 56/3 15.2
15 32 24 25.0
17 37 30 18.9
19 50 110/3 26.7
21 56 44 21.4
23 72 52 27.8
25 79 182/3 23.2
27 98 70 28.6
29 106 80 24.5
31 128 272/3 29.2
33 137 102 25.5
35 162 114 29.6
37 172 380/3 26.4
39 200 140 30.0
41 211 154 27.0
43 242 506/3 30.3 Figure 3: IGQ scheme for order 11 at the top, and two cubature 

options for order 11 below. 
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More generally, the most central point on the horizontal 
axis is free to move side to side (over a narrow range), 
while the other samples and weights adapt to maintain 
the state of correction. That is, there is one superflu-
ous degree of freedom. (There are 22 degrees of freedom 
in each of these schemes and only 21 terms with even 
powers of x and y.) Notice that when the integrand is not 
symmetric, each of these configurations must be reflected 
to fill the left side of the disc making a more general 11th-
order cubature scheme with 26 and 28 samples, respec-
tively. Because it then has more samples, this means that 
the 14-sample scheme would not feature in the traditional 
literature on cubature, but it is the preferred one in our 
context, where it represents a 22% reduction over IGQ.

3.2  Order 25

The reference list in Ref. [4] establishes that the cuba-
ture scheme for order 25 that was presented in Figure  2 
was first reported at least 40  years ago. Because the 
weights are uniform for the 14 points around each ring, 
all the sampled Zernikes sum exactly to zero except for 
the 13 terms with m = 0 and the 6 terms with m = 14. (Recall 
m+2n  ≤  25.) These, therefore, comprise the 19 basis ele-
ments used in the analog of Eq. (1) for this case. To satisfy 
these 19 requirements, there are six coordinates for the 
points along the positive x axis and three coordinates for 
the points on the line at angle π/14 making 9 degrees of 
freedom. These supplement the 10 weights to give a total 
of 19 degrees of freedom that makes a solution seem viable 
although not necessarily guaranteed. Optimization of 
such a configuration, however, readily leads to the solu-
tion shown in Figure 2 with 67 samples over the semi-
circle in place of the 79 samples for the corresponding IGQ 
in Figure 1 (i.e. only a 15% reduction).

Although the resulting sampling pattern in Figure 2 is 
more attractive, the shape of the perimeter still appears to 
be awkwardly dictating the geometry of the sampling near 
the center. It seems natural, therefore, to seek a solution 
where the sampling near the center is a more uniformly 
distributed set of points with roughly uniform weights. 
More importantly, the simple estimate in Table 1 suggests 
that we may be able to find a solution with closer to 60 
samples instead of the 67 in Figure 2.

When we drop from the 14-fold symmetry in Figure 2 
down to the sixfold symmetry, ( , )m

nZ r θ  then sum exactly 
to zero except when m = 0, 6, 12, 18, and 24, where there 
are 13, 10, 7, 4, and 1 terms, respectively, within m+2n  ≤  25 
making a total of 35 requirements to be met. Aside from the 
origin, the sampling scheme at the upper left in Figure 4 

Figure 4: A selection of novel cubature schemes for order 25. The 
example at the lower right has 65 samples in the semi-circle and 121 
when the integrand is not symmetric.

has six points on the positive x axis and three on the line 
at angle π/6 giving 9 degrees of freedom to locate them. 
The location of the six points between those two lines 
gives 12 more degrees of freedom, and there are 16 weights 
making a total of 37 degrees of freedom – perhaps two 
more than needed. In fact, the last sample along the x axis 
can be locked at the edge; hence, 36 degrees of freedom 
are active in the final optimization, which yields a solu-
tion with 67 samples in the semi-circle (and 127 for the full 
circle when the integrand is not symmetric). Although the 
sample count is the same as that in Figure 2, the sample 
locations in the central region have more uniform weights 
and distribution, as desired.

Inspired by the results in Table 1, however, it is tempt-
ing to continue to seek a solution with fewer samples. 
Several effective options emerged when fourfold symme-
try was explored. In this case, it is necessary to explicitly 
control only the Zernikes, where m is a multiple of 4, and 
there are 13+11+9+…+1 = 49 of these. The configuration at 
the top right in Figure 4 has four samples on the diagonal 
and one on the x axis that deliver 10 degrees of freedom. 
The 14 points between these two lines bring 42 additional 
degrees of freedom making a total of 52 – perhaps three 
more than needed. Again, one of those points ends up 
sitting on the boundary so only 51 degrees of freedom are 
active in the final optimization that yields a solution with 
67 samples in the semi-circle once again. The full circle 
now involves 132 samples, so that configuration is only 
noteworthy when the integrand is symmetric.
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To meet those 49 requirements for fourfold symme-
try, the configuration at lower left in Figure 4 has pre-
cisely 49 degrees of freedom: 14 from the samples on the 
lines of symmetry and 35 from the 12 points in between 
(because one of those 12 ends up on the boundary). 
This configuration has 65 samples in the semi-circle and 
124 in the full circle, so it is a new best for both cases. A 
final alternative is shown at the lower right in Figure 4 
that offers 50 degrees of freedom: 30 from the location 
of the points along with the 20 weights. The solution 
once again has 65 samples in the semi-circle, but is now 
another new best with 121 points for general cubature 
over the circle.

Finally, on moving to two sectors where the sampling 
is required to be symmetric in both x and y (as in the exam-
ples in the second row in Figure 3), there are then 91 terms 
of the form xjyk with even values of j and k within j+k  ≤  25 
that must be controlled. (This set is interchangeable with 
the Zernike terms with even values of m.) Upon deleting 
two of the outermost points from a sector in the solution at 
the top left in Figure 4, there are still 92 degrees of freedom 
in the configuration. Upon optimizing with this reduced 
symmetry, the solution at the top in Figure 5 emerges. It 
is yet another new best with 117 points for general cubature 
over the circle and 62 in the semi-circle and is just the sort 
of elegant and effective solution that we sought in place 
of the option at the right in Figure 1 or even in Figure 2. 
Alternatively, starting with a square grid that has fewer 
samples on the y axis (while also offering 92 degrees of 
freedom) leads to the solution at the bottom in Figure 5. 
This is also a new best with just 60 samples in the semi-
circle, which marginally beats the simple estimate in 
Table 1. These solutions each represent a reduction by 
about 25% over the corresponding numbers for the IGQ 
solution of Figure 1.

In summary, as we have approached it, the initial 
part of the challenge for any given symmetry is to find 
an elegant geometric pattern that delivers about the 
required number of degrees of freedom while smoothly 
melding samples near the boundary to a uniformly tiled 
grid away from the edge. It is quite possible, of course, 
that even better solutions may be found at order 25. In 
the case of the general cubature over the full circle, for 
example, it could be helpful to collapse some of the 
samples at the bottom in Figure 5 to sit on the y axis. (Note 
that each point on one of the coordinate axes generally 
delivers 2 degrees of freedom and represents two samples 
overall, while each point inside the quadrant delivers 3 
degrees of freedom and represents four samples overall; 
hence, it offers a reduced number of degrees of freedom 
per sample.) With, say six on the x axis and five on the 

Figure 5: The more effective cubature schemes for order 25 (to be 
compared with those in Figures 1 and 2).

y axis and 23 points inside the first quadrant, there are 
then 91 degrees of freedom, which may lead to a solution 
with just 114 points in the circle. Such options are left for 
the interested reader to pursue, however, because our 
focus in this work is upon the semi-circle, and the second 
solution in Figure 5 is likely to be close to optimal for that 
case.

4  Lens design case study
The key component of the optical design that is of inter-
est here involves the estimation of the RMS of the wave-
front aberration, say Φ, over the pupil. In the case of 
lithographic projection systems, for example, the exit 
pupil is required to be almost perfectly circular making it 
an ideal application to be considered here. The patented 
system sketched in Figure 6 is, therefore, analyzed for 
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demonstration. It incorporates nine aspheres (indicated 
by hatch marks in Figure 6) of the 16th order. Because esti-
mates of both the mean and the mean of the square of Φ 
are required, it is valuable to determine how many poly-
nomial terms are required in order to fit these functions. 
The results can then guide the selection of appropriate 
cubature schemes. Our fitting in terms of Zernike polyno-
mials is performed by using the Ting-Luke extension of the 
methods presented in Ref. [5]. We use RMS normalization 
of the polynomials so that the fitted coefficients form a 
natural spectrum in that the sum of their squares equals 
the mean of the square of the fitted function.

For the on-axis field point of any rotationally sym-
metric system, just a single fan of samples is adequate to 
integrate over the pupil. Plots of both Φ and the amplitude 
of the coefficients in a Zernike polynomial fit to Φ and Φ2 
are presented in Figure 7. The absolute value of the coef-
ficients is plotted on a logarithmic scale, where each step 
in the color legend corresponds to an order of magnitude 
change. That legend descends by four orders of magni-
tude from the displayed maximum value. The units are 
nm and nm2 for Φ and Φ2 in the middle and bottom rows 
of Figure 7, respectively. Because the mean has been sub-
tracted from Φ, the piston term is zero in the first of these 
coefficient plots. In principle, all the non-zero coefficients 
should sit in the m = 0 column, but those terms that appear 
in m = 4 (down by a factor 0.0001) are due to interpolation 
off a square grid of data. Note that the dominant terms 
fall within say n < 12 and n < 16 (with m = 0) for Φ and Φ2, 
respectively.

As the field point moves from the axis, Φ loses its 
rotational symmetry. At a mid-field position, this func-
tion has the form presented in Figure 8. The dominant 
terms now fall within say n+2m < 15 and n+2m < 25 for Φ 
and Φ2, respectively. Recall that the terms up to order 
t fill a region bounded by a slope of one half instead of 
two (i.e. 2n+m  ≤  t). This means that those two regions just 
mentioned contain only about one quarter of the terms of 
orders 30 and 50, respectively: the higher azimuthal orders 
are simply not significant and can, therefore, be dropped 
from consideration. More generally, the contours of the 
magnitude of the fit coefficients in Figure 8 reveal that 
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Figure 7: The wavefront aberration for the on-axis field point along 
with logarithmic plots of the coefficients from fits of both Φ and Φ2 
in terms of Zernike polynomials.

Figure 6: Section of a re-optimized system from 2003 patent  
# WO 03/075096 A2 (or see US 2005/0231813 A1).

the slope of the truncation line should be approximately 
2. That is, we should deal with all terms in a domain of 
the form n+2m  ≤  B for some fixed upper bound B chosen to 
meet the desired level of accuracy.

At the edge of the field, Φ has the form presented in 
Figure 9. It is worth noting that the RMS of Φ is given by 
the square root of the piston coefficient (namely, 0

0α ) for 
Φ2; all the dominant terms in that spectrum must be inte-
grated sufficiently well to extract an accurate estimate of 
this RMS. The dominant terms in this case for both Φ and 
Φ2 fall in regions defined roughly by n+m  ≤  B. That is, the 
slope is now about unity, so only about one half of the 
terms of a fixed order are used at any likely level of trunca-
tion. Again, within the set of a given order, say 2n+m  ≤  T, 
the higher azimuthal orders are not significant, and we 
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need to consider only those within 2n+2m  ≤  T instead. For 
the purposes of configuring a tailored cubature scheme, 
the desired level of accuracy then determines the appro-
priate truncation value, T.

Upon reducing the target set of polynomials in accord-
ance with the application in hand, it can be expected 
that tailored cubature schemes can deliver even greater 
efficiency. As a first simple step in that direction for the 
scheme at the top left in Figure 4, consider dropping 
the six symmetry partners associated with the extreme 
point along the x axis (the vertices of the hexagon to be 
seen below in Figure 10). It turns out that the resulting 
121 samples can be re-optimized while retaining the seg-
mented sixfold symmetry to give exact results for all of the 
originally targeted Zernikes except for what is typically 
the least significant one, namely, 24

0 ( , ).Z r θ  More gener-
ally, it will not be possible to remove a sample from within 

a segment whenever one of the target requirements is 
dropped, but perhaps one for every two to three require-
ments that are dropped.

5  �Discussion and concluding 
remarks

Configuring cubature schemes is an elegant design chal-
lenge that is likely to appeal to optical designers both for 
its clear graphical representation as well as its potential 
benefit in their day-to-day activities. Both design tasks 
are ultimately reduced to optimization problems, and it 
is likely that the sub-title of Ref. [2], entitled ‘Configur-
ing cubature formulae: the science behind the art’, may 
also capture the eye of optical designers. As a first cut, we 
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Figure 8: The wavefront aberration for the mid-field point.
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Figure 9: The wavefront aberration at the edge of the field.
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chose to work this problem as a local optimization task. 
Upon examining the solutions that emerged at different 
orders, we noticed that the sampling schemes appeared 
to be more uniform when the radial coordinate was trans-
formed with the inverse sine function and re-normalized 
by dividing the result by π/2 (see Figure 10). (Keep in 
mind that the solution at the bottom right in Figure 10 is 
intended for integration over the semi-circle, so the points 
in the left half are dimmed.) Together with the estimated 
number of samples given in Table 1 and a fairly simple 
tiling pattern, the inverse of this transformation allowed 
us to configure effective starting configurations for the 
optimization. Of course, given the simple bounds on all 
parameters and the inexpensive merit function, this chal-
lenge may also be suited to global optimization.

For two-dimensional integrals, the simple estimates 
used for Table 1 indicate that, at higher orders, cubature 
may deliver a computational reduction of about 30%. 

Figure 10: Insights can often be gained upon viewing the sampling 
patterns after warping the radial coordinate with arcsine, e.g. these 
plots result from Figures 4 and 5.

When averaging is also performed over the field and 
spectrum (i.e. wavelength) for rotationally symmetric 
systems, it would appear that a four-dimensional integral 
is ultimately involved. If it were appropriate to retain all 
variables to a fixed total order, it turns out that the simple 
estimate based on counting terms and degrees of freedom 
then indicates that the computational reduction over IGQ 
may be by as much as 85%. [With 5 degrees of freedom 
per sample point and t4/24+O(t3) terms up to order t, cuba-
ture is expected to involve about t4/120+O(t3) samples, 
whereas IGQ uses about t4/16+O(t3).] We are not so lucky, 
however, because the averaging over the field and color is 
performed on the square of the average over the aperture. 
This means that the aperture average cannot be com-
bined simply with its enclosing averages. Nevertheless, 
it is possible in the case of polychromatic systems to also 
apply cubature methods to the combined field and color 
averages. As a result, different colors would generally 
be traced from the different field points, while the same 
pupil sampling is used for each of those combinations. It 
is worth noting that the remarkably effective steps intro-
duced in Ref. [1] for the color average can be used once 
again to boost efficiency. Cubature may then deliver an 
additional reduction of 20–30% in the estimation of these 
outermost two integrals for a net reduction factor of about 
0.752, i.e. by 40–50%.

Importantly, the results in Section 4 demonstrate that 
the pupil functions of interest in optical design are not 
always isotropic. There is clear reason to expect that radial 
(ring-like) variations are generally more dominant than 
azimuthal (spoke-like) patterns in the pupil of a typical 
rotationally symmetric system, especially those involving 
complex aspheres. Significant additional gains can, there-
fore, be expected with tailored cubature schemes that 
target specific collections of terms to integrate exactly. For 
example, in the case of the slope of unity in (m,n) index 
space that emerged in Section 4, perhaps an additional 
40–50% reduction may ultimately be achieved when 
going beyond the sorts of cubature schemes presented in 
Section 4. Because the integrand is no longer isotropic, 
however, the guidance we used to find starting configura-
tions for the optimization may no longer be as useful. We 
have, nevertheless, seen promising initial results of this 
type. Given that the associated challenges are non-trivial, 
it could be valuable to collect an encyclopedia akin to Ref. 
[4] that is targeted solely to the specific features of our 
optical design context.

Acknowledgments: We are grateful to Alexander Epple for 
the helpful discussions.
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Appendix
The details for one sector for each of the cubature schemes 
of Section 3.2 are given here. The weights are for integrat-
ing over just the first half of the sector, so they sum to π/2 
divided by the number of sectors. These points and their 
weights must be replicated in order to fill either the semi-
circle or the entire circle, so the weights for points on lines 
of symmetry get doubled while that for the origin is multi-
plied by up to twice the number of sectors. The sum of all 
the weights is then π/2 and π, respectively.

Top left in Figure 4 has six sectors:

Top right in Figure 4 has four sectors:

Bottom left in Figure 4 has four sectors:

Bottom right in Figure 4 has four sectors. In this case, 
increment the angles by π/4 to obtain the geometry 
shown in the figure, which was rotated for purely cos-
metic reasons:
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Configuration at the top in Figure 5 has two sectors: Configuration at the bottom in Figure 5 has two sectors:
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