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Abstract: In this work we present data analysis algorithms 
for detection of hazardous substances in hyperspectral 
observations acquired using active mid-infrared (MIR) 
backscattering spectroscopy. We present a novel back-
ground extraction algorithm based on the adaptive target 
generation process proposed by Ren and Chang called 
the adaptive background generation process (ABGP) that 
generates a robust and physically meaningful set of back-
ground spectra for operation of the well-known adaptive 
matched subspace detection (AMSD) algorithm. It is shown 
that the resulting AMSD-ABGP detection algorithm com-
petes well with other widely used detection algorithms. The 
method is demonstrated in measurement data obtained 
by two fundamentally different active MIR hyperspectral 
data acquisition devices. A hyperspectral image sensor 
applicable in static scenes takes a wavelength sequential 
approach to hyperspectral data acquisition, whereas a 
rapid wavelength-scanning single-element detector variant 
of the same principle uses spatial scanning to generate the 
hyperspectral observation. It is shown that the measure-
ment timescale of the latter is sufficient for the application 
of the data analysis algorithms even in dynamic scenarios.

Keywords: active stand-off spectroscopy; hyperspectral 
data analysis; QCL.

1  Introduction
Stand-off detection of hazardous substance residues has 
been subject to extensive research in the past few years, 
and yet remains to pose an ambitious goal. For successful 
application under real-world conditions high true positive 
and low false alarm rates are required. Besides measure-
ment speed, mobility and system robustness additional 
requirements may also include unperceived and eye-
safe operation in uncontrolled environments (e.g. avoid-
ing operation of high power lasers). Though numerous 
approaches have been published, to this day none were 
able to solve the task, matching all of the given conditions.

Among the suggested methods, laser-based measure
ment techniques have emerged as the most promising. 
Van  Neste et  al. proposed a trace explosive detection 
system based on photoacoustic spectroscopy using 
quantum cascade lasers (QCLs) [1]. Kendziora et  al. 
reported impressive results using an approach called pho-
tothermal infrared imaging spectroscopy that also employs 
QCLs for spectrally selective illumination [2]. Östmark 
et al. developed a stand-off imaging Raman spectroscopy 
device for trace explosive detection [3], whereas Gottfried 
et  al. employed laser-induced breakdown spectroscopy 
for the same task [4].

1.1  �Data analysis

Robust data analysis algorithms form a crucial component 
of hyperspectral detection systems, and several solutions 
have been proposed in the past few decades, many of 
which are based on the linear mixture model (LMM). The 
LMM assumes that the observed spectra can be described 
as linear superposition of contributing pure material 
spectra that form the columns of the matrix S = [s1 L sq] 
and which are commonly referred to as endmembers. 
Mathematically, the LMM reads
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The abundances αi = [αi1 L αiq] comprise the relative 
mixture weights for a specific observation xi. Zero mean 
Gaussian normal distributed noise with band-independ-
ent variance σ is usually assumed for the noise vector 
n ~ ℕ(0, σ2I). Target detection algorithms that employ the 
LMM are in general capable of sub-pixel detection as the 
background spectral contribution is part of the model 
design. In contrast, full pixel target detection algorithms 
such as the constraint energy minimization (CEM) [5], the 
matched filter (MF), e.g. given in [6], as well as the nor-
malized cross correlation (NCC) were proposed that do not 
require a specific data model. Well-known sub-pixel target 
detection algorithms that employ the LMM are the orthog-
onal subspace projection (OSP), the adaptive matched 
subspace detector (AMSD) and the adaptive coherence/
cosine estimator (ACE) [7]. The AMSD and ACE algorithms 
take a hypotheses testing approach to target detection 
by estimating a likelihood ratio for the two competing 
hypotheses, that a pixel vector contains the target sub-
stance, or consists of background material only. Whereas 
the ACE detector models the background as random noise 
distribution, the AMSD explicitly models the background 
using the contributing background endmembers. These 
are unknown in a generic measurement scenario and 
thus have to be estimated from the available data. Based 
on Ren and Chang’s adaptive target generation process 
(ATGP) [8], we present an algorithm called the adaptive 
background extraction process (ABGP) in Section 2 that 
solves this task in a two-step process. 

1.2  �Evaluation data

The algorithm is tested on measured data using two differ-
ent experimental approaches. Both hyperspectral sensors 
are based on active mid-infrared (MIR) spectroscopy using 
external cavity QCLs (EC-QCLs) as illumination sources 
and have been subject to previous publications. The hyper-
spectral imaging sensor described in [9] acquires a full 
hyperspectral image at the timescale of 10 s and is shown 
to be well applicable for residue detection in static scenes. 
However, as the hyperspectral image bands are sequentially 
generated, a relative motion of the sensor and scene could 
potentially induce non-linear spectral mixing of adjacent 
materials in the resulting data set. In [10] a fast scanning 
single-element detector variant of the same principle is pro-
posed that measures single spectra at a timescale of 1 ms 
and the required spatial information is obtained sequen-
tially. It is shown that the measurement speed is sufficient 

for acquisition of hyperspectral observations in dynamic 
scenes (i.e. scenes that contain objects moving at a limited 
speed or spatial displacement caused by data acquisition 
using a hand-held device) without violation of the assump-
tions made by the mixture model. Consequently, the pro-
posed target detection algorithms are readily applicable to 
measurement data obtained by either system.

2  �The adaptive background 
generation process

The ABGP is an iterative endmember extraction algorithm 
that generates the background endmember matrix in two 
stages. In the seeding stage, it searches for image spectra 
that are most different from each other and the target 
spectrum using Ren and Chang's ATGP [8], which employs 
ideas lent from the OSP target detection algorithm to gen-
erate a set of q potential pure substance estimates. In the 
subsequent stabilization stage, a clustering method is 
employed to obtain more significant class representatives.

2.1  �The seeding stage

In the seeding stage given in Listing 1 a set of potential 
background spectra that form the columns of the seed 
matrix �B  is generated. This is achieved by operating the 
ATGP algorithm and initializing the endmember matrix 
with the target matrix T ∈ ℝp × t. In this variant the ATGP 
is expected to identify potential pure background pixels, 
while avoiding target spectra. We thus refer to the columns 
of T as include guards.

Listing 1: The ABGP seeding stage as a variant of the ATGP algorithm.

Input: Hyperspectral observation == ∈R1{ } , ,N p
i iX x x  target matrix 

T ∈ ℝp × t, background dimension q
Output: Background seed vectors 1[ , , ]q= …B b b� ��

\\ initialize background matrix with include guards
←B T�  

for j ← 1 to q do
\\ find spectrum that differs most from target and background
  1( )⊥ Τ −← −BP I B B B B�

� � � �

  ← � �
� argmax {( ) ( )}

i i ix B Bb P x P x� � �

  ←B�  concatenate , B b��  

\\drop include guards

1[ , , ]t t q+ +← …B b b� ��

return B�
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The result of the seeding stage is a set of background 
seeding vectors = …� ��

1[ , , ]qB b b  that could already be 
used as background endmembers for a target detection 
algorithm. However, in that case only a small fraction of 
the available data are employed for model construction. 
In addition, single pixel spectra can be subject to noise 
artifacts and the ATGP which is based on an extreme value 
measure intrinsically favors outliers. This can substan-
tially affect the quality of � .B  We propose a stabilization 
stage that runs a clustering algorithm on the observation 
data using �B  as seed vectors and adopt the cluster means 
as background endmembers.

2.2  �The stabilization stage

A seed-based strict partitioning of the observation 
data = 1{ }N

i ix  into q + t clusters {C1, …, Cq, Cq + 1, …, Cq+t} is 
obtained using any full-pixel target detection algorithm. 
Let T(xi; v) denote the corresponding target detection 
function for the observation vector xi and target vector v. 
As the value of T relates to the probability that xi contains 
v, it can be employed to generate meaningful clusters. 
Based on the cumulative set of seed vectors and include 
guards, = … …� �

1 1{ , , , , , }q tV b b t t , we gain the strict 
partitioning

	 {1, , }{ | argmax ( ; [ ])}k i k q t iC k T k∈ … += =x x V � (2)

The include guard clusters Cq+1, …, Cq+t potentially contain 
target spectra and are hence collected into a rejection 
class. The endmember matrix B = [b1, …, bq] is obtained  
 
using the cluster means 1 .

| | l k
k lC

kC ∈
= ∑x

b x  As stated 

before, in Eq. (2) an arbitrary full-pixel target detec-
tion algorithm can be employed for the choice of TD. For 
computation performance purposes we chose the NCC 

algorithm for this task. An example of ABGP operation 
in an artificial hyperspectral image is given in Figure  1. 
The data set was generated using the LMM as a data gen-
eration model using measured background and target 
spectra as input. The abundances were chosen to create 
four background regions and a pentaerythritol tetrani-
trate (PETN) contaminated region in the image center in 
the form of the Fraunhofer logo with decreasing mixture 
weight from top to bottom. We show the results of the 
clustering stage by indicating the location of the chosen 
spectra. The clustering results are given as indexed color 
maps where pixel vectors belonging to the same cluster 
are identically colored. Based on trinitrotoluene (TNT) 
as target include guard, the ABGP algorithm generated a 
seed vector for every material region of the image, includ-
ing the contaminated area. If the PETN library spectrum is 
employed as include guard, the high PETN contamination 
area is omitted and the redundant endmember is placed in 
one of the background regions.

3  �Residue detection using active 
MIR hyperspectral imaging

We demonstrate detection results obtained on meas-
urements acquired with a QCL-based active MIR hyper-
spectral image sensor (see [9, 11]). The system utilizes 
two broadly tunable EC-QCLs as illumination sources 
that offer a cumulative tuning range from 990  cm−1 to 
1330  cm−1. The EC-QCLs are operated in pulsed mode 
at 1.7  MHz with a duty cycle of 17%, which leads to an 
effective emission linewidth of about 1 cm−1. Littrow-type 
external cavity resonators are employed for controlling 
the emission wavelength and beam alignment is achieved 
using a custom-coated dichroitic mirror. The diffusely 
backscattered light is collected by a high-performance 

Polyamide
(blue)

Jeans Leather

PETN

Polymide
(purple)

EM5 EM4 EM3 EM2 EM1 Rejected

Figure 1: Left: pseudo-color representation of artificial hyperspectral image comprising four different background regions and a PETN 
contamination. Center: ABGP result for the TNT target hypothesis. The endmember locations are indicated by circled crosses and the spatial 
regions that form the corresponding cluster are colored accordingly. Right: same for the PETN hypothesis.
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mercury-cadmium-telluride (MCT) image sensor that 
generates 192 × 192 pixels at a rate of 400 fps. The laser 
and camera are synchronized by activating the illumi-
nation in each second image grabbed by the camera 
only. The difference of two adjacent frames is used as a 
signal image to suppress the thermal background of the 
scene. A multi-look approach is chosen for the reduc-
tion of speckle, which stems from the coherent nature 
of the laser. A series of 10 independent speckle patterns 
are projected onto the scene and averaged per illumina-
tion wavelength. By synchronous step-tuning the emis-
sion wavelength, a hyperspectral image is generated 
with a typical resolution of 1 cm−1. In this configuration 
full hyperspectral images are acquired in 10 s to 15 s. A 
set of backscattering spectra measured using the pro-
posed hyperspectral image sensor is shown in Figure 2. 
All substances show characteristic absorption features 
in the considered wavelength range. This set serves as 
spectral library for the suggested detection process in the 
following.
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Figure 2: Backscattering spectra of hazardous substances meas-
ured using active hyperspectral imaging on a weakly scattering 
surface (glass).
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Figure 3: Left: polyamide sample containing RDX contaminated areas transparently overlaid with mean backscattering signal indicating the 
illuminated region. Center, right: the output of the ABGP algorithm for background endmember extraction under the PETN (center) and RDX 
(right) target hypothesis.

3.1  �Analysis of ABGP operation

In Figure 3 we present the output of the ABGP algorithm 
on a hyperspectral image of an hexogen (RDX) contami-
nated polyamide sample. The seed vector locations are 
indicated as circled colored crosses, and the result of 
the clustering stage is given as a color map. We show the 
results obtained under the PETN and RDX hypotheses. 
Under the PETN hypothesis the ABGP chose the first two 
endmembers to account for the polyamide substrate. The 
third endmember fell into an RDX contaminated area that 
is hence correctly considered background. The clustering 
results show a random distribution of endmembers 1 and 
2  within the background area, indicating a fairly homo-
geneous substrate material and illumination. Under the 
RDX hypothesis, the pixel vectors within the target con-
taminated areas fall into the rejection class and the three 
background endmember clusters are randomly distrib-
uted across the remaining scene.

3.2  �Comparison of detection algorithms

In Figure 4 we present a comparison of the detection 
results obtained by the mentioned methods for the case 
of PETN residues on a polyamide substrate. The samples 
were manufactured by deposition of target material on a 
polyamide substrate using a synthetic rubber stamp. We 
note that although this approach does not allow us to 
assess the deposited quantity, it is well suitable to match 
the morphology of residues to be expected under real 
world conditions. We follow that all considered model-
based sub-pixel detectors (AMSD-ABGP, ACE and OSP) 
are well applicable to detection in hyperspectral images 
acquired with the proposed measurement technique and 
significantly outperform the full pixel detectors. Whereas 
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the sub-pixel detectors are capable of detecting lower 
residue concentrations, the full pixel detectors yield suc-
cessful detection results only for areas with high target 
coverage. Among the full pixel detectors, the CEM detector 
slightly outperforms the MF and NCC detectors. The MF 
is prone to both false alarms of TNT and false alarms of 
PETN at the edges of the illuminated area. Considerable 
false alarm rates for TNT are observed in the detection 
map generated by the NCC detector.

In Figure 5 we present AMSD-ABGP detection results 
of PETN, RDX and TNT residues. We observe that all RDX 
and PETN contaminated areas generated positive detec-
tion results with only minor false alarms raised for the 
competing substances. For the case of TNT contaminants 
on polyamide the detection outcome is slightly inferior, as 
one of the contamination areas failed to cause an alarm. 
Using the background and contaminated spectra obtained 
by spatial averaging over the corresponding regions as 
generated in the detection step we obtain a close match of 
the TNT library spectrum, which supports the assumption 
that the LMM holds for the suggested measurement princi-
ple. We recall that a fundamental assumption of the LMM 
is that each image spectrum stems from a specific area 
in the scene, the elongation of which is predominantly 
defined by the diffraction limited resolution. At the long-
wave cutoff of the considered configuration this amounts 
to dairy ≈ 50 μm and yields a spatial resolution of 0.68 μm. 
Hence, any spatial displacement that exceeds this order of 

magnitude during the measurement potentially induces 
significant material mixture in single spectra and thus 
violates the LMM. Consequently, the application of this 
device is mainly restricted to static scenes.

4  �Fast backscattering spectroscopy
In this section we present a modification of the measure-
ment principle that allows real-time spectroscopy and con-
sequently enables remote substance detection in dynamic 
environments. This is achieved by replacing the mechani-
cally tuned EC-QCL by a rapid wavelength-scanning 
micro-opto-electro-mechanical system (MOEMS)-tuned 
EC-QCL device that was developed in collaboration with 
Fraunhofer IPMS and enables a full wavelength scan at a 
timescale of ≈1 ms [10, 12]. This renders measured spectra 
up to a limited timescale invariant to relative motion of the 
sensor and sample.

4.1  �Experimental setup

The MOEMS scanning grating that acts as a wavelength 
selective element in the Littrow-type external resona-
tor oscillates at its resonance frequency of fr = 976  Hz 
with an amplitude of A0 ≈ 4.5°. A QCL chip tunable in 

AN

A B C

D E F

RDX PETN TNT Background

Figure 4: Comparison of the detection results obtained by the considered target detection algorithms on a polyamide sample containing 
PETN contaminated areas. (A) AMSD-ABGP, (B) ACE, (C) OSP-ABGP, (D) CEM, (E) MF, (F) NCC.
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the range from 1080  cm−1 to 1370  cm−1 was used in the 
MOEMS resonator, and thermoelectric-cooled photo-
voltaic MCT single-element detectors were employed as 
signal and reference detectors. The MOEMS grating is 
tilted at an angle of α0 = 33.3° relative to the laser chip 
axis to roughly match the QCL chip’s gain spectrum 
center of ≈1200  cm−1. The laser pulse frequency was 
set to 400 · fr, to gain a fixed phase relation and con-
stant number of evenly time distributed laser pulses 
per oscillation period. Hence, assuming a perfect har-
monic oscillation of the grating, the emission wave-
length can be written as discrete time series that can be 
approximated as

	 λ α π φ= + ⋅ +0 0 0[ ] 2 sin( sin(2 )),rt g A f t � (3)

where the phase offset φ0 denotes the arbitrary choice 
of time origin t = 0 and g = 133  mm denotes the groove 
density of the diffraction grating etched into the MOEMS 
mirror. During the 200 ns laser pulse the expected wave-
length shift is 0.1 cm−1 and hence resides well below the 
chip’s general emission resolution of ≈1  cm−1 at a fixed 
grating position. Due to the sinusoidal time dependence 
of the emission wavelength the effective spectral meas-
urement resolution is non-constant. An estimate of the 
obtained resolution for the considered parameters is 

shown in Figure 6. The angular trajectory of the MOEMS 
is given as a scatter plot showing the amplitude at the 
equidistant time stamps defined by the laser pulse train. 
A spectral resolution of 1.43 cm−1 is obtained on average 
over the full period. Whereas the wavenumber spacing is 
minimal at the turning points of the oscillatory motion, 
it increases up to 2.3  cm−1 when passing the equilib-
rium position. This is however sufficient for resolving 
the broad spectral features observed in spectroscopy of 
solids.

4.2  �Measurement results

We demonstrate the capability of the real-time backscat-
tering spectroscopy device in dynamic scenes employing 
the samples and algorithms introduced in the previous 
section. We note that for the application of the model-
based algorithms, we require a hyperspectral observa-
tion that contains both target and background areas of 
the scene to be analyzed. This can be achieved by record-
ing a data stream during a scanning motion of either the 
measurement spot or the sample. While in a hand-held 
variant of the device this motion would be performed 
by the operator or a scanning mirror, the data presented 

 Background
 Contaminated

10.00 9.09 8.33 7.69

0.6

0.8

1.0

1.2

Wavelengths (µm)

AN RDX PETN TNT Background

A B C
Wavelengths (µm)

 Library TNT

In
te

ns
ity

 (
a.

 u
.)

In
te

ns
ity

 (
a.

 u
.)

1000 1100 1200 1300

10.00 9.09 8.33 7.69

0.6

0.8

1.0

1.2

 Library TNT

Wavenumbers (cm–1)

1000 1100 1200 1300

Wavenumbers (cm–1)

 Unmixed TNT

Figure 5: Detection results of RDX (left), PETN (center) and TNT (right) residues on polyamide obtained using the AMSD-ABGP target detection 
algorithm. Bottom: validation of the linear mixture model for the case of TNT on a polyamide substrate. (A) RDX, (B) PETN, (C) TNT.
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in the following were collected by moving the sample 
under a fixed measurement spot. The latter is defined by 
the QCL’s collimated output beam that has an approxi-
mate 4σ diameter of 3 mm at the measurement distance 

of 50 cm. Given the approximate average motion speed 
of 7.5  cm/s, the spatial displacement during a single 
spectrum acquisition can be estimated to be 76 μm, 
which resides well below the beam diameter. It can 
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therefore be assumed that the motion does not induce 
non-linear mixing effects between adjacent materials. 
We note that  – allowing up to a half beam diameter 
shift during a full MOEMS oscillation period – under the 
given measurement parameters a displacement speed 
of up to 1.54 m/s can be accepted before spatial under-
sampling occurs and severe non-linear mixing effects 
are expected at material borders. At the cost of spatial 
resolution loss the measurement technique can be 
readily optimized for even higher displacement speeds 
by increasing the beam diameter. A sample measure-
ment of an RDX contaminated polyamide substrate is 
shown on the left of Figure 7. The hyperspectral data set 
containing 1007 samples was recorded in 1.10 s and ana-
lyzed using the AMSD algorithm with the proposed ABGP 
algorithm for background endmember extraction. The 
measured spectrogram is shown on the right of Figure 7 
as an intensity map, and the detection results are given 
in the color-coded ribbon. The four disjoint contamina-
tion areas are observed as positive detection result clus-
ters in the detection output. Based on the segmentation 
of the observation data induced by the AMSD detection 
output, we show the mean spectra of contaminated and 
background subsets in Figure 7. The RDX characteristic 
features between 1250 cm−1 to 1280 cm−1 are well observ-
able in the contaminated mean spectrum. We also show 
that the library spectrum can be obtained from the mean 
spectra by using linear unmixing, which indicates that 
the LMM is well applicable for the analysis of hyper-
spectral image data generated by the fast backscattering 
spectroscopy measurement principle.

5  �Conclusions
Based on Ren and Chang’s ATGP algorithm [8], a back-
ground extraction method called ABGP was proposed for 
estimating a set of robust and physically meaningful back-
ground spectra in hyperspectral images and employed for 
operating the AMSD as the target detection algorithm. The 
resulting AMSD-ABGP detector resembles a fully generic 
target detection algorithm that requires no knowledge of 
the background material spectra in the image and was 
shown to be capable of detecting PETN, TNT and RDX resi-
dues in hyperspectral images acquired using active MIR 
backscattering spectroscopy in static scenes. A real-time 
capable rapid-wavelength scanning variant based on the 
same spectroscopy principle was shown to produce meas-
urement data that follow the LMM even in dynamic scenes 

and the AMSD-ABGP algorithm was successfully employed 
for contact-less residue detection in the acquired data. 
This allowed for real-time detection of hazardous sub-
stance residues on the surface of moving objects and has 
the potential to be implemented in a hand-held measure-
ment device.
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