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Abstract: An overview of several ptychographic phase 
retrieval methods and the theory behind them is pre-
sented. By looking into the theory behind more basic 
single-intensity pattern phase retrieval methods, a theo-
retical framework is provided for analyzing ptychographic 
algorithms. Extensions of ptychographic algorithms that 
deal with issues such as partial coherence, thick samples, 
or uncertainties of the probe or probe positions are also 
discussed. This introduction is intended for scientists and 
students without prior experience in the field of phase 
retrieval or ptychography to quickly get introduced to the 
theory, so that they can put the more specialized literature 
in context more easily.

Keywords: coherent diffractive imaging; lensless imaging; 
phase retrieval; ptychography.

1   Introduction
Electromagnetic radiation has long been an invaluable 
tool to observe many different objects and phenomena. 
For example, we navigate the world every day using our 
eyes to detect light, but a much broader range of the elec-
tromagnetic spectrum can be used to study many more 
phenomena: X-rays can be used to study the molecular 
structure of crystals, while infrared radiation is observed 
to reveal the history of the universe. It is, therefore, 
important to notice that with all our current detectors, we 
can detect only part of the information that is encoded 
in electromagnetic fields: we can measure how strong 
the field is, but we cannot directly measure each point in 
that field oscillates with respect to each other if the field 

oscillates at optical frequencies or higher. Put mathemat-
ically, if we have a monochromatic coherent field, we can 
describe it with a complex-valued function U = | U | eiφ, but 
we can only measure directly its intensity |U |2, and not 
its phase φ.

One can use tricks to make intensity patterns reveal 
information about the phase, for example, using interfer-
ometry. In this case, one has two fields 1

1 1| | iU U e φ=  and 
2

2 2| | ,iU U e φ=  which are made to interfere. The observed 
intensity can be written as

 2 2 2
1 2 1 2 1 2 1 2| | | | | | 2 | || |cos( ),U U U U U U φ φ+ = + + −  (1)

where we now can see that the phases φ1 and φ2 affect 
the observed intensity. Interferometric techniques have 
proven to be extremely useful in, for example, surface 
height measurements (where white light interferometry is 
used) and three-dimensional (3D) imaging (where optical 
coherence tomography is used). However, a drawback of 
interferometric setups is that they can be bulky and may 
be rather sensitive to perturbations. In fact, this sensitivity 
has been exploited to detect the extremely weak pertur-
bations caused by gravitational waves. For other applica-
tions such as phase imaging, it is more convenient to use 
less sophisticated and sensitive setups, so other methods 
such as Zernike phase-contrast microscopy have been 
developed.

When tremendous computational power became 
available with the advent of computers, another field of 
phase retrieval emerged, namely, computational phase 
retrieval. The overall trend in this development is that the 
difficulties are moved from the experiment to the com-
putational domain: the experimental setup gets simpler, 
while the phase retrieval algorithms become more sophis-
ticated. For example, with coherent diffractive imaging 
(CDI), it is possible to create an image of an object without 
having to use any high-quality lenses. By simply measur-
ing the intensity pattern of the scattered far field, the com-
plex-valued transmission function of the object can be 
computed using iterative phase retrieval algorithms. This 
is, for example, useful for imaging using wavelengths in 
the soft X-ray regime, for which the quality of the focusing 
optics is limited.
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Figure 1: The single-intensity phase retrieval problem uses two constraints in different spaces: a support constraint in object space and a 
modulus constraint in diffraction space. The two spaces are related to each other by a Fourier transform.

One particular method of phase retrieval that has 
recently gained notable popularity and success is ptych-
ography. In this method, an object is illuminated by a 
spot (referred to as ‘the probe’) that is shifted to different 
positions that are chosen such that the probe at adjacent 
positions overlap. For each position, the far-field inten-
sity pattern is recorded, and the object’s complex-valued 
transmission function is computed iteratively using these 
patterns. Because the probes overlap, there is a degree of 
redundancy in the measured diffraction patterns, which 
makes the reconstruction scheme very robust. In fact, it 
has been proven to be so robust that much more than just 
the object can be reconstructed. To name a few: uncer-
tainties in the probe and probe positions can be corrected; 
3D information of the object can be reconstructed; coher-
ence properties of the illuminating probe can be obtained. 
In the following, we will have a closer look at how the 
ptychographic algorithm works and in what ways it has 
been extended. Though we try to give a good overview 
of the field, it will be far from exhaustive, given the large 
numbers of variations that have been invented and are 
still being invented at a considerable rate.

First, we discuss the single-intensity phase retrieval 
problem. We will see that there are two ways to approach 
this problem: as a cost-minimization problem or as a fea-
sibility problem. These two approaches will then be used 
to study ptychographic phase retrieval algorithms. Next, 
we discuss several variations of the ptychographical algo-
rithm that deal with issues such as probe retrieval, posi-
tion correction, partial coherence, and thick samples.

2   Single-intensity phase retrieval 
algorithms

Although the focus of this review lies on ptychographi-
cal algorithms, one ought to first familiarize oneself 
with simpler phase retrieval algorithms that use a sin-
gle-intensity pattern before studying ptychography. The 
problem we consider is the following: we have a object 
with a complex-valued transmission function ψ(x), 
where x is a 2D position vector. We denote its Fourier 
transform as Ψ(x′), so we can write the intensity pattern 
that is measured in the far field as |Ψ(x′)|2. In addition, 
we suppose that the object has a finite support S, which 
we know:

 ( ) 0 if  .Sψ = ∉x x  (2)

Thus, we have two known constraints in the two domains:
1. a support constraint S in the object domain;
2. an amplitude constraint |Ψ(x′)| in the Fourier domain.

The situation is illustrated in Figure 1. A straightforward 
and intuitive algorithm to find ψ(x) would be to alternately 
apply these two constraints, which gives the error reduc-
tion (ER) algorithm [1]
1. For the kth estimate fk(x), calculate its Fourier trans-

form Fk(x′).
2. Set the amplitude of the estimated Fourier transform 

equal to the measured amplitude |Ψ(x′)| while keep-
ing the phase of the estimate.
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Figure 2: The phase retrieval problem can be formulated as a cost function minimization problem or as a feasibility problem.
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There are two different ways in which we can interpret 
this intuitive scheme mathematically (illustrated in 
Figure 2):

As a feasibility problem. We define two sets: a set A, 
which consists of all functions f(x) that satisfy the support 
constraint

 { ( ): ( ) 0 if },A f f S= = ∉x x x  (6)

and a set B, which consists of all f(x) whose Fourier trans-
forms F(x′) satisfy the modulus constraint

 { ( ) :| ( ) | | ( ) |}.B f F= = Ψ′ ′x x x  (7)

To solve the phase retrieval problem, we try to find an 
f(x) that satisfies both constraints

 ( ) .f A B∈ ∩x  (8)

We can find this intersection using the alternating pro-
jection method. We can define PA and PB to be the opera-
tors that project a function f(x) onto A and B, respectively. 
More explicitly,
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xx x 1
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(9)

where ℱ−1{ · } denotes the inverse Fourier transform, and
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x
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1

x
 

(10)

We can write an ER iteration as

 1( ) ( ).k A B kf P P f+ =x x  (11)

This method tends to be successful when A and B are 
convex sets, but in our problem, B is unfortunately not a 
convex set. To see this, note that if, for example, |Ψ(x′) | = a, 
then f1(x) and f2(x) for which F1(x′) = a and F2(x′) = − a both 

lie in B, but the convex combination 1 2
1 1( ) ( ) 0
2 2

f f+ =x x  

does not.

As a cost-minimization problem [2]. We can define f(x) 
to be an object estimate, and we define F(x′) to be the 
Fourier transform of the portion of f(x) that lies within S:

 
2( ) ( ) ,i

SF f e π− ⋅′
∈= ∆′ ∑ x x

x
x

x x 1
 

(12)

where Δ represents the pixel spacing. To reconstruct ψ(x) 
from the measured intensity, we want to minimize the dif-
ference between the measured amplitude |Ψ(x′) |  and the 
reconstructed amplitude |F(x′) |. Thus, we can introduce 
the cost function

 
2[ ( )] (| ( ) | | ( ) |) ,L f F

′

= − Ψ′ ′∑
x

x x x  (13)
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Figure 3: Illustration of the meaning of the step size μ in the context 
of the method of alternate projections.

which we want to minimize. To do this, we can use the gra-
dient descent scheme where we update the object estimate 
according to
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Here, μ is a step that can be chosen freely, and 
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L
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is a Wirtinger derivative. It can be shown that the steep-
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that

 

| ( ) | ( ) ( ) ( )
2 | ( ) |( ) ( )

F F F F
FF F

∗

∗ ∗

∂ ∂′ ′ ′ ′= =
′∂ ∂′ ′

x x x x
xx x  

and

 
2( )

( )
i

S
F e
f

π
∗

⋅′
∈∗

∂ ′ = ∆
∂

x x
x

x 1
x  

(15)

we find that
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where upd ( )kf x  is defined as in Eq. (4). If we choose μ = 1 in 
Eq. (14), we get

 
upd

1( ) ( ) ,k k Sf f+ ∈= xx x 1
 (17)

which is the same as Eqs. (5) and (11).
So we see that the ER algorithm can be interpreted as 

solving a feasibility problem using the method of alter-
nate projections or as solving a cost minimization problem 
using the steepest descent method with a step size of μ = 1. 
Note that for general μ, we can write the steepest descent 
update function as
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Thus, we see that also with the method of alternate 
projections, we can introduce an equivalent of a step size. 
To visualize what this means, observe that we can write

 1( ) ((1 ) ) ( ),k A B kf P I P fµ µ+ = − +x x  (19)

where I denotes the identity operator. Thus, compared to 
the case where μ = 1, we have substituted PB with (1 − μ)I 
+ μPB. While PB sets the amplitude of the estimated dif-
fracted field F(x′) equal to the measured amplitude |Ψ(x′) |  

by moving F(x′) to ( ) | ( ) |,
| ( ) |
F
F

′ Ψ ′
′

x x
x

 the operator (1 − μ)I + 

μPB moves F(x′) in the direction of ( ) | ( ) |
| ( ) |
F
F

′ Ψ ′
′

x x
x

 with a 

step size that depends on μ. This interpretation is illus-
trated in Figure 3. Similar projection operators have been 
derived in Ref. [4] from a maximum likelihood principle 
with the aim to improve noise robustness.

It is important to be aware of these two different inter-
pretations because even though they end up giving the same 
algorithm, they give us different hints as to how the algorithm 
can be improved and extended (which is very much neces-
sary because while the ER algorithm is simple and intuitive, 
it also suffers from major stagnation issues). For example, 
when interpreting the phase retrieval problem as a feasibil-
ity problem, one can draw inspiration from other methods 
for convex optimization, which led to many improved algo-
rithms [5], such as the difference map (DM) [6] and relaxed 
averaged alternating reflection (RAAR) algorithms [7]. A very 
popular phase retrieval algorithm, the hybrid input-output 
(HIO) algorithm [1], was originally not invented through such 
reasoning, but it was later demonstrated to be an instance 
of the Douglas-Rachford algorithm [8]. When interpreting 
the phase retrieval problem as a cost-minimization problem, 
one could experiment with choosing different cost functions 
[9, 10], choosing a different step size [11], or using update 
schemes other than the steepest descent method (such as 
the conjugate gradient method or Newton’s method) [12]. For 
example, it has been demonstrated that reducing the step 
size of the update function significantly improves the noise 
robustness [11] of the algorithm.

2.1   Resolution: detector size, dynamic 
range, and background noise

When imaging a sample, it is always important to know 
with what resolution it can be imaged. In standard 
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Figure 4: Using a beam stop to block the zero-order diffraction 
peak is one way to reduce the dynamic range of the measurement, 
thereby, allowing more information of higher spatial frequencies to 
be captured.

microscopes, the resolution is determined by the numeri-
cal aperture (NA) of the focusing optics, but in diffractive 
imaging, we do not use lenses to form the image. Instead, 
we use the diffraction patterns, which correspond to the 
spatial Fourier transform of the object. The resolution 
with which we can reconstruct the sample, thus, depends 
on the highest spatial frequency we can capture with the 
detector. There are, roughly speaking, two factors that 
limit the spatial frequencies we can detect:
1. The finite size of the detector. The part of the diffrac-

tion pattern that fall outside of the detector cannot be 
used in the reconstruction. Thus, while in a standard 
microscope the resolution is determined by the NA of 
the focusing optics, in diffractive imaging, the resolu-
tion is determined by the NA of the detector (although 
for ptychography, it has been demonstrated that 
extrapolation of the diffraction pattern beyond the 
detector NA is possible [13]).

2. The noise level of the detector and the dynamic 
range of the diffraction pattern. If the object is rather 
smooth, the diffraction pattern tends to have a very 
sharp central peak, while the higher spatial frequen-
cies have a much lower amplitude. If the amplitude is 
so low that they fall below the noise level of the detec-
tor, we are basically cutting off these higher spatial 
frequencies.

In order to reduce the negative effects of a high dynamic 
range, several methods are being implemented. One could 
block the central peak with a beam stop so that one can 
increase the exposure time to capture the higher spatial 
frequencies without causing saturation by the central 
peak [14], as is illustrated in Figure 4. Alternatively, one 
could use a diffuser or curved illumination to decrease the 
dynamic range of the diffraction pattern [15–17]. Another 
common issue in CDI that affects the reconstruction 

quality is background noise, and several methods have 
been proposed for background noise removal [18, 19].

3   Ptychographical phase retrieval 
algorithms

3.1   Regular ptychography

We have discussed a phase retrieval algorithm that recon-
structs an exit wave ψ(x) with a known support S and 
Fourier amplitude |Ψ(x′) |. In ptychography, we have 
multiple exit waves that are obtained by illuminating an 
unknown object O(x) with a known probe P(x) that is 
shifted to different positions Xj

 
( ) ( ) ( ).j jO Pψ = −x x x X

 
(20)

For each ψj(x), we measure the Fourier intensity 
|Ψj(x′)| 2, as is shown in Figure 5. So whereas for the single-
intensity phase retrieval algorithm we have a support con-
straint, for ptychography, we have the constraint that the 
exit waves ψj(x) can factorize into a single object function 
O(x) and a shifting probe P(x − Xj). As a special case, we 
could create a probe by illuminating an aperture with a 
plane wave, in which case each ψj(x) has a support con-
straint as P(x − Xj) is a step function. Thus, we can intui-
tively come up with a basic ptychographic reconstruction 

Figure 5: In the ptychographic phase retrieval problem, an illumi-
nating probe is shifted to different overlapping positions across 
the object. For each position, a diffraction pattern is recorded, and 
using these diffraction patterns together with the prior knowledge 
of the probe and probe positions, the object can be reconstructed.
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algorithm that draws inspiration from the ER algorithm 
that we discussed previously
1. Given a kth object estimate Ok(x), calculate the esti-

mated exit wave for a certain j

 , ( ) ( ) ( ).k j k jf O P= −x x x X  (21)

2. Calculate the update of the estimated exit wave upd
, ( )k jf x  

according to Eq. (4).
3. Update the object estimate by dividing out the probe 

from the updated exit wave. However, because 
upd
, ( )

( )
k j

j

f
P −

x
x X

 can diverge, instead, update the object as
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P f
O

P α

∗ −
=

− +
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Here, α is a small parameter to avoid division by 0.
4. Do this procedure for all j to complete one iteration, 

after which, k is increased to k + 1.

In case P(x) is a step function, we are basically applying 
ER iterations for all probe positions sequentially. If the 
probe positions are chosen such that the probes at adja-
cent probe positions overlap sufficiently (approximately 
60% to 85% overlap [20]), each ER update at one position 
helps the reconstruction at adjacent positions. Because of 
these interconnections, the ptychographic reconstruction 
is quite robust, even though the ER algorithm, by itself, 
suffers severely from stagnation problems.

We have seen previously how the ER algorithm can 
be derived more systematically and how this helps us to 
improve it. Let us, therefore, similarly consider ptychogra-
phy more systematically.

As a feasibility problem. Let us denote the collection of 
exit waves fj(x) as f. We define two sets: a set A, which con-
sists of all f that satisfy the factorization constraint

 j
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jA O x f
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= −

f x
x x X  (23)

and a set B, which consists of all f that satisfy the modulus 
constraints

 { :| ( )| | ( )| for all }.j jB F j= = Ψ′ ′f x x  (24)

We define PA and PB to be the projection operators that 
project an f onto A and B, respectively [21]:

 

2

1

( ) ( )
( ) ( ) ( ) where ( ) ,

| ( ) |

( )
( ) | ( ) | ,

| ( ) |

j jj
A j j

jj

j
B j

j

f P
P O P O

P

F
P

F

α

∗
′ ′′

′′

−

−
= − =

+ −

 ′ = Ψ ′ ′  

∑
∑f f

x x X
f x x X x

x X
x

f x
x

F

 

(25)

where α is a small parameter to prevent division by 0. To 
solve the ptychographic phase retrieval problem, we try to 
find an f that satisfies both constraints

 ,A B∈ ∩f  (26)

and from this f, we can use the expression for Of(x) in 
Eq. (25) to calculate O(x). To find such an f, one can apply 
an alternate projection scheme

 1 ,k A B kP P+ =f f  (27)

or any other projection-based scheme such as HIO, RAAR, 
or DM.

As a cost-minimization problem [22, 23]. Given an esti-
mated object Ok(x), we can calculate the estimated Fourier 
amplitudes |Fj(x′) |, which, for a good reconstruction, 
need to be the same as the measured Fourier amplitudes 
|Ψj(x′) |. Thus, we can introduce a cost function
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which we want to minimize. Using the steepest descent 
scheme, we get
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It is also possible to use a preconditioner so that the 
update function changes to, for example [12],
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A major difference between the update scheme in 
Eq.  (22) and the update schemes in Eqs. (27) and (29) 
is that the latter two update the object globally (i.e. the 
updates for all probe positions are used to update the 
object estimate in its entirety at once), whereas the former 
updates the object incrementally (i.e. the object estimate 
is updated for each probe position sequentially). Using an 
incremental approach may be preferred when the number 
of recorded intensity patterns is very large, which would 
make a global update iteration very costly [11]. With an 
incremental update scheme and the right preconditioner 
and step size, one can obtain the update scheme of Eq. (22) 
using the steepest descent algorithm. Another regularized 
update function has been proposed more recently [24]:

upd
, ,

2 2

( ) ( ( ) ( ))
( ) : ( ) ,

(1 ) | ( ) |  max | ( ) |
j k j k j

k k
j j

P f f
O O

P P
µ

α α

∗− −
= −

− − + −

x X x x
x x

x X x X

 
(31)
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where μ and α are update parameters. Moreover, this algo-
rithm has been extended by adding ‘momentum’ to the 
update. Extension of the gradient descent method using 
momentum, as well as other extensions of the gradient 
descent algorithm are explained in Ref. [25].

Advanced projection-based methods have been 
explored using global updates [12, 21], as well as using 
incremental methods [26].

3.2   Fourier ptychography

In Fourier ptychography [27], the Fourier transform of 
O(x) takes on the role of the object that we need to recon-
struct. Let us denote the Fourier transform of O(x) as Ô(x′). 
We can create Ô(x′) by illuminating the object with a plane 
wave and focusing the transmitted field with a lens, after 
which Ô(x′) forms in the focal plane. By tilting the angle 
of the incident plane wave, Ô(x′) is shifted to ˆ( ).jO +′ ′x X  
By putting a fixed aperture in the focal plane, we multiply 
ˆ( )jO +′ ′x X  by a probe function ˆ( ).P ′x  The field that is trans-

mitted by the aperture can then be Fourier transformed 
by a second lens (Figure 6). ˆ( )P ′x  can also describe aber-
rations introduced by this second lens. By measuring the 
intensity in the focal plane of the second lens, and chang-
ing the angle of the plane wave that is incident on the 
object, we obtain a ptychographic data set with which we 
can reconstruct Ô(x′). By inverse Fourier transforming the 
reconstruction, we obtain a reconstruction for O(x).

Equivalently, one could also keep the angle of inci-
dence fixed and move the aperture. However, the advan-
tage of changing the angle of incidence is that it can be 
accomplished by using a LED matrix illumination module 
[27], which means that a conventional microscope can 
easily be adapted for Fourier ptychography, and that no 
mechanically moving components need to be introduced. 

Also, it should be noted that the equivalence only holds 
when the sample is sufficiently thin so that the object’s 
transmission function is the same for each angle of illu-
mination, and the transmitted wave can be approximated 
by a simple multiplication. For thick samples where the 
approximation is not valid, the portion of the 3D Fourier 
transform of the object that is reconstructed depends on 
whether the aperture is shifted whether the incident angle 
of the illumination is varied [28] (also see Section 4.4.2).

4   Extensions
So far, we have discussed variations of the ptycho-
graphical algorithm, which are obtained by viewing 
the phase retrieval problem from different perspectives 
and using different approaches to solve the problem. 
These variations differ in certain properties such as their 
convergence behavior, noise robustness, and required 
computational power, but they all solve the same basic 
problem. That is, in all cases, we need to assume for 
example the following:

 – The probe function P(x) is known precisely.
 – The probe positions Xj are known precisely.
 – The light is coherent so that the far-field propagation 

can be modeled with a single Fourier transform.
 – The object is sufficiently thin so that the exit waves 

ψj(x) can be calculated using a simple multiplication 
O(x)P(x − Xj).

What we will discuss next are variations of ptychographi-
cal algorithms that aim to deal with scenarios where some 
of the aforementioned assumptions do not hold. In this 
article, the extensions are presented separately for the 
sake of a clearer structure, but of course, it is possible to 
combine them. For example, one can retrieve the object, 

Figure 6: Left: In regular ptychography, the object O(x) is shifted with respect to the probe, and with the corresponding intensity measure-
ments, O(x) can be reconstructed with a ptychographic algorithm. Right: In Fourier ptychography, the object O(x) is illuminated with plane 
waves from different angles so that the Fourier transform Ô(x′) is shifted with respect to an aperture. Using a ptychographic algorithm, Ô(x′) 
is reconstructed, which can be inverse Fourier transformed to find O(x). (A) Regular ptychography. (B) Fourier ptychography.
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probe, and probe positions at the same time for partially 
coherent illumination. Also, even though simultane-
ous retrieval of both object and probe is, here, presented 
simply as an extension of PIE (as it happened chrono-
logically), it should be noted that this is a crucial part of 
ptychography and was, in large part, responsible for its 
success.

4.1   Probe retrieval: ePIE

In the previous algorithms, we assumed that the probe 
P(x) is known, the object O(x) is unknown, and that the 
probe is shifted to known positions Xj. However, if we con-
sider far-field propagation, we could also keep the probe 
stationary and shift the object by −Xj to get the same 
intensity patterns
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Thus, the same scheme that we used to update an 
object estimate if the probe is known, we can also use 
to update a probe estimate if the object is known. Even 
though we assumed far-field propagation to obtain this 
symmetry, it should be stressed that this is just to under-
stand the ePIE update scheme more intuitively, and it 
does not mean that probe retrieval is not possible in the 
case of near-field ptychography [29, 30]. If both probe 
and object are not precisely known, we can assume that 
the estimates for the probe and object we have are accu-
rate enough to update the estimate for the object and 
probe, respectively [21, 22, 31]. For example, when using 
the steepest-descent scheme with incremental updates
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where

and k gets increased to k + 1  when the update has been 
applied for all positions Xj. Note that due to the simple 
relation between upd

, , ( )P k jf x  and upd
, , ( ),O k jf x  one does not 

need to perform extra fast Fourier transforms (FFTs) 
to compute upd

, , ( ),P k jf x  which would be computationally 
expensive. What this means is that if the probe contains 
unknown aberrations, the algorithm can reconstruct 
the correct probe so that the quality of the object recon-
struction is not degraded by an incorrect probe estimate. 
However, when using the steepest-descent method, the 
initial estimate of the probe and/or object should be suffi-
ciently accurate because, otherwise, the estimates cannot 
be updated reliably, and the algorithm will diverge. To 
remedy this problem, one can use more sophisticated 
update schemes such as the DM to ensure initial con-
vergence and use the steepest-descent scheme for final 
refinement [21].

4.2   Probe position correction

Let us assume that we know P(x), that P(x) has a finite 
support, and that there is some uncertainty in the probe 
positions Xj. In principle, one could use a single-intensity 
phase retrieval algorithm such as HIO to reconstruct the 
exit waves ψj(x) for each probe position separately, cal-

culate the object 
2

( ) ( )
( )

| ( ) |
jP

O
P

ψ

α

∗

≈
+
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x
 for each probe posi-

tion, and from these object reconstructions, one could 
infer the positions Xj by seeing where these reconstruc-
tion overlap. This can be determined by seeing where 
the cross-correlation of two reconstructions at adjacent 
positions attains its maximum. This procedure defeats 
a bit the purpose of doing ptychography though, as the 
point of ptychography is to use the overlap between adja-
cent probes during the reconstruction to make the algo-
rithm more robust. However, it does illustrate the notion 
that one should be able to correct for any errors in the 
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probe positions. In order to reconstruct the probe posi-
tions while still benefiting from the robustness provided 
by the overlap between probes, an update scheme is 
required that updates the object (and probe, if it contains 
any uncertainties) and probe positions simultaneously. 
Several such update schemes are discussed in the fol-
lowing. In these methods, one is sometimes required to 
shift functions by an amount that does not correspond to 
an integer number of pixels. To perform these subpixel 
shifts, one can Fourier transform the function, multiply 
it with a linear phase function, and inverse Fourier trans-
form it [13].

4.2.1   Cost function minimization

Let us write the probe positions as Xj = [Xj, Yj]. We have 
seen how we can use a gradient-descent method to mini-
mize a cost function L to optimize the object reconstruc-
tion O(x) and probe reconstruction P(x). Similarly, we 
could consider the probe positions Xj, Yj as optimization 

variables and calculate ,
j

L
X

∂
∂
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 to employ a gradient 
descent scheme
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though a gradient descent tends to get trapped in local 
minima quite easily. It was demonstrated in Ref. [22] that 
a conjugate gradient scheme to update the object, probe, 
and probe positions simultaneously can correct for small 
errors in the probe positions. In Ref. [32], it is proposed 
to use ePIE or DM to update the object and probe func-
tions, while using a conjugate gradient update scheme to 
update the probe positions. In Ref. [33], Powell’s conju-
gate direction method is used to update the probe posi-
tions. The step size of the update can be chosen to be a 
fixed small constant, or it can be found by performing 
a line search [32]. Other methods to decide on the step 
size of a certain update scheme are to start with a certain 
value and decrease it linearly to a small or zero value over 
a set number of iterations [34], or to decrease the step 
size once the direction in which the probe positions are 
being updated starts oscillating [35]. Note that of these 
methods, performing a line search is more computation-
ally demanding as it requires performing additional FFTs. 
Another method to correct errors in the probe positions 
is to assume a drift model that parameterizes the probe 

positions, so that the cost function that needs to be mini-
mized depends on fewer optimization variables, which 
allows one to find its global minimum by trial and error 
[36].

4.2.2   Annealing

Given probe position estimates Xj,k, we can create a set of 
M + 1 estimated probe positions consisting of the original 
estimate Xj,k and M randomly perturbed probe positions 
[34]
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Here, Cm are vectors [cx, cy] where cx, cy are randomly 
drawn from some interval [−c, c]. The parameter c can be 
chosen to be smaller as the algorithm progresses so that 
the correct probe positions can be found more accurately. 
For all M perturbed probe positions pert

, , ,j k mX  one can cal-
culate the error between the estimated and the measured 
amplitude pattern
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where

 pert
, , , ,( ) { ( ) ( )}( ).j k m j k mF O P= −′ ′x x x X xF  (38)

Let pert
, ,j k nX  be the probe position for which this error 

Ej,n is minimal. We apply an ePIE update (or an update of 
some other object reconstruction scheme) to the object 
and the probe using this probe position, and we choose it 
to be our next estimated probe position

 
pert

, 1 , , .j k j k n+ =X X  (39)

Note that for each Cm, one has to perform an addi-
tional FFT, which increases the computational demands 
of the algorithm. A similar annealing method has been 
used for Fourier ptychography [37].

4.2.3   Cross-correlation

The cross-correlation method [35] is based on the 
 observation that if one applies to Ok(x), an ePIE update 
for an estimated probe position Xj,k, the updated object 
estimate upd, ( )j

kO x  is shifted toward the true position 
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Xj. This shift Cj,k is used to update the estimated probe 
position

 , 1 , , ,j k j k j kµ+ = +X X C  (40)

where μ is an update parameter. To find the shift 
Cj,k, one can find the peak of the cross-correlation of 

upd,
,( ) ( )j

k k k jO Π −x x X  and Ok(x)Πk(x − Xk,j). Here, Πk(x − Xk,j) 
is a step function that indicates the region where the probe 
has a sufficiently strong amplitude:
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where α is a threshold value. The computationally expen-
sive step in this method is to perform the FFTs required 
to compute the cross-correlation function and to find the 
location of its maximum with subpixel accuracy [38].

4.2.4   Intensity gradient

If we assume that we have sufficiently good estimates of 
the probe and the object, and that the difference between 
the estimated intensity pattern
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and the measured intensity pattern |Ψj(x′) | 2 is mainly due 
to an error

 , , ,[ , ]j k j k j kX Y∆ = ∆ ∆X
 (43)

in the estimated probe position

 , , ,[ , ].j k j k j kX Y=X  (44)

Then, we can write
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We can linearize the difference between the estimated 
and measured intensity as
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In this equation, we can calculate the derivatives of 
|Fk,j(x′) | 2 numerically, so the only unknowns are ΔXj,k and 
ΔYj,k. We can write this equation as a matrix-vector equation

 = ,u Av  (47)

where
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where N is the number of pixels on the detector. One can 
find the least-squares solution for v using
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where it should be noted that ATA is a 2  ×  2 matrix, so its 
inversion is computationally inexpensive. The estimated 
probe positions are then updated as [39]
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where μ is an update parameter. The computation-
ally expensive step lies in computing the matrix A, 
which requires four FFTs to numerically calculate the 
derivatives
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but it should be remarked that ℱ{Ok(x)Pk(x − Xj,k)}(x′) 
needs to be calculated anyway to perform the object 
update (e.g. using ePIE).

4.2.5   Direct estimation

Almost all the methods that have been discussed so far 
relied on using an iterative algorithm to incrementally 
improve the probe position estimates while simultane-
ously reconstructing the object and probe. However, there 
are also methods that can infer good estimates for the 
probe positions more or less directly from the measured 
intensity patterns. For example, shadow images, Gabor 
holography [40] and Fourier holography [41], have been 
used to directly obtain a decent reconstruction of the exit 
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wave from its diffraction pattern. The reconstructions at 
adjacent probe positions are then used to calculate the 
displacement between the probe positions using a cross-
correlation method. Another method is to use a setup 
where the measured diffraction pattern is the image of a 
pinhole that is perturbed by a weakly scattering sample 
[42]. To shift the probe to another probe position, the 
pinhole is shifted, and therefore, the image of the pinhole 
is shifted proportionally. This way, one can infer the probe 
positions directly from the measured intensity patterns.

4.3   Partial coherence

When the incident field is partially coherent (either spa-
tially or temporally), one cannot describe the transmitted 
exit wave simply as ψj(x), or the diffracted field as Ψ(x′). 
Instead, we can decompose the illuminating field into 
modes and reconstruct them separately. If the incident 
field is spatially partially coherent, and if the coherence of 
two points depends only on the difference between them, 
then, the diffracted intensity patterns can be described as 
a convolution of a completely coherent diffracted intensity 
pattern with the Fourier transform of the degree of coher-
ence function. Whether using spatially partially coherent 
illumination can benefit the reconstruction quality has 
been discussed in Refs. [14] and [43]. In the following, we 
describe in more detail how the ptychographic algorithm 
can be adapted to deal with partial coherence.

4.3.1   Mode decomposition

Let us denote the incident field as U(x, t), and let us 
assume that it is quasi-monochromatic with frequency ω 
so that we can write

 ( , ) ( , ) .i tU t P t e ω−=x x  (52)

The incident field has a mutual intensity J(x1, x2) that 
describes the correlation of a quasi-monochromatic field 
P(x, t) between pairs of points (x1, x2)

 
1 2 1 2

1 2

( , ) ( , ) ( , )
( , ) ( , ) ,

J U t U t
P t P t

∗

∗

= 〈 〉
= 〈 〉

x x x x
x x  (53)

where the brackets denote the time-average. From Mer-
cer’s theorem, it follows that we can decompose the par-
tially coherent field in coherent modes [44, 45]
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Defining ψn(x) = O(x)Pn(x), the far-field intensity is 
given by
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So the intensity is found by writing the incident 
partially coherent field as multiple coherent modes that 
are mutually incoherent, propagating each mode coher-
ently, and adding the diffracted intensities incoherently. 
Technically, there are, in general, an infinite number of 
modes required to describe the partially coherent field, 
but in practice, only a finite number of modes are nec-
essary to describe the field with sufficient accuracy. The 
more coherent the field is, the fewer modes are required, 
and if the field is fully coherent, only one mode is 
required. The same procedure can be applied when the 
incident field is temporally partially coherent (i.e. when 
it consists of multiple wavelengths), in which case each 
mode corresponds to a certain wavelength. Also, when 
multiple wavelengths are considered, it is possible that 
the object responds differently to each wavelength, and 
therefore, one would also have to introduce different 
object modes On(x). For the ptychographical algorithm, 
this means that instead of just one exit wave ψ(x), we 
have to reconstruct several modes ψn(x). We define the 
cost functional
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In the case of using multiple wavelengths where each 
illumination mode Pn(x) is associated with a separate 
object mode On(x), we can update the estimates as [46]
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The derivatives can be calculated to be

 

upd
, , , , , , ,

,

upd
, , , , , , ,

,

( ) ( ( ) ( )),
( )

( ) ( ( ) ( )),
( )

n k j O k j n O k j n
n k

n k j P k j n P k j n
n k

L P f f
O

L O f f
P

∗
∗

∗
∗

∂ = − −
∂

∂ = + −
∂

x X x x
x

x X x x
x

 
(58)



434      S. Konijnenberg: Ptychographic phase retrieval methods
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where Γ(x′) denotes the Fourier transform of γ(x, 0), and 
|Ψ(x′) | 2 denotes the diffraction pattern if the incident 
field is coherent. By Fourier transforming this back to dif-
fraction space, we get a convolution [47, 48]
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So we see that Γ(x′) acts as a sort of point spread func-
tion that blurs the diffraction pattern more as the incident 
light becomes less coherent. The modulus constraint pro-
jection is
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In case Γ(x′) is unknown, it has been suggested that it 
can be updated during the iterative algorithm by employ-
ing a Richardson-Lucy algorithm [48] or by minimizing a 
cost functional such as
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with respect to Γ(x′) [47].

4.4   3D Objects

So far, we have assumed that the exit wave can be com-
puted by simply multiplying the incident illumination 
with the object transmission function ψ(x) = P(x)O(x). 
However, this is an approximation that holds only for 
thin samples. In the following, we discuss ptychographic 

Like in Eq. (34), it should be noted that because of 
the simple relation between updated exit waves, no addi-
tional Fourier transform needs to be performed. In the 
case of a quasi-monochromatic spatially partially coher-
ent illumination where each illumination mode Pn(x) sees 
the same object O(x), the update for the object estimate is 
slightly different [14]
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where fO,k,j,n(x) = Ok(x)Pn,k(x − Xj).

4.3.2   Convolution

If we define P(x) = 〈P(x, t)〉 (where P(x, t) is defined in Eq. 
(52)), then, we can define the degree of coherence as
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so that J(x1, x2) = P(x1)*P(x2)γ(x1, x2). In case we assume that 
γ(x1, x2) only depends on the difference between the two 
points x1, x2, i.e. γ(x1, x2) = γ(0, x2 − x1), we can write the 
far-field intensity as a convolution, and the ptychographic 
algorithm can be changed accordingly. To demonstrate 
this, we inverse Fourier transform I(x′), giving
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algorithms that reconstruct thicker samples for which the 
multiplicative approximation does not hold.

4.4.1   Multislice method

In the multislice method [49], the object is modeled as a 
sequence of N slices On separated by some distance Δz (it 
does not necessarily have to be a fixed distance, but for 
simplicity, let us assume in this case it is). For each slice, 
we assume the multiplicative approximation holds, and 
we assume that in between the slices, the light propagates 
freely. Thus, if we define 

z∆P  to be the propagator (e.g. the 

angular spectrum propagator) over a distance Δz, we can 
model the forward calculation as

 
1 2 1( ) { ( ) ( ) ( ) ( ) ( )}.j N N jz z z

O O O O P∆ − ∆ ∆Ψ = −′x x x x x x X…F P P P

 (66)

At the nth slice, we can define the incident wave as

 , 1 2 1( ) ( ) ( ) ( ) ( ),
z z zj n n jP O O O P−= −x x x x x X…∆ ∆ ∆P P P  (67)

with

 ,1( ) ( ),j jP P= −x x X  (68)

and we define the exit wave as

 , ,( ) ( ) ( ).j n j n nP Oψ =x x x  (69)

This is illustrated in Figure 7. Given the object esti-
mates On,k(x) and probe estimate Pk(x), we can use Eq. (66) 
to calculate the estimated intensity pattern |Fj,k(x′) | 2; we 
can use the measured intensity pattern |Ψj(x′) | 2 to update 
the estimated field Fj,k(x′) as

 ,upd
,

,

( )
( ) | ( ) | .

| ( ) |
j k

j k j
j k

F
F

F
′

= Ψ′ ′
′

x
x x

x
 (70)

We can propagate this updated field back 
through all the slices from n = N to n = 0 and use ePIE 

iterations to update each incident wave estimate Pj,n,k(x) 
and object estimate On,k(x) using the estimated exit waves 
fj,n,k(x) = Pj,n,k(x)On,k(x)

 

upd
, 1 , , , , , , ,

upd
, , 1 , , , , , , ,
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n k n k j n k j n k j n k

j n k j n k n k j n k j n k

O O P f f

P P O f f

µ

µ

∗
+

∗
+

= + −

= + −

x x x x x
x x x x x  (71)

where

 

upd 1 upd
, , ,
upd
, , , 1, 1

( ) { ( )}( ),
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j N k j k

j n k j n kz

f F
f P

−

− + +
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x ∆

F

P  (72)

This method has been termed 3PIE [49]. Another 
approach, where the update of the slices is applied 
simultaneously rather than sequentially, is described in 
Ref. [50]. In order for this procedure to work, one should 
take care that the slices are sufficiently far apart so that 
the multiplicative approximation cannot be applied to 
two consecutive slices because, otherwise, there would 
be no unique solution for On(x) and On+1(x): g(x)On(x) and 

1
1 ( )
( ) nO

g + x
x

 would then be solutions as well for arbitrary 

g(x). However, at the same time, the slices should be suf-
ficiently close so that for each single slice, the multipli-
cative approximation holds. Also, it should be noted that 
if each slice On(x) is multiplied by some constant cn such 
that Πncn = 1, the same diffraction pattern is obtained, 
thus, leading to multiple solutions. An advantage of this 
method is that multiple scattering is taken into account by 
propagating the field that is scattered by each slice.

An extension of this method has been proposed where 
this procedure is performed for multiple orientations of 
the sample [51]. If the tilt of the sample is small, one can 
make the approximation that each slice is translated, as 
shown in Figure 8. By doing this, a higher resolution in the 
axial direction can be obtained.

4.4.2   3D Fourier ptychography

A sample is illuminated by plane waves from different 
angles sequentially. In the case of a 2D sample, changing 

Figure 7: In multislice ptychography, a thick sample is divided in 
slices, and each slice is reconstructed separately.

Figure 8: In precession multislice ptychography, a thick sample 
is tilted to different angles. For small tilt angles, one can make the 
approximation that each slice is translated.
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the incident angle would simply translate the Fourier 
transform of the transmitted wave as shown in Figure 6, 
and the aperture would each time capture a different 
portion of the Fourier transform. In case of a 3D sample, 
we can apply the Born approximation (i.e. single-scat-
tering approximation) to find that what we measure is 
a portion of the shell of the 3D Fourier transform of the 
sample (Figure 9). If we define v(x) to be the 3D scattering 
potential, we want to reconstruct, V(x′) its 3D Fourier 
transform, kscat a 3D vector with length 1

λ
 pointing in a 

scattering direction, and kinc a 3D vector with length 1
λ

 
pointing to the direction of the incident plane wave, we 
can write for the scattered far field U(kscat)

 scat scat inc( ) ( ).U V= −k k k  (73)

By changing the incident angle of the illumination 
kinc, a different portion of the shell is detected. Just like 
in 2D ptychography, we alternately project between the 
measured intensity patterns and overlapping probes; in 
3D Fourier ptychography, we alternately project between 
the measured intensity patterns and overlapping shell 
portions, though it must be noted that there is much less 
overlap between shell portions due to their 3D nature. 
With this procedure, a volume of V(x′) is reconstructed, 
which can be inverse Fourier transformed to find v(x) 
with a certain resolution [52]. While this method uses 
the single-scattering approximation, it does not require 
the arbitrary division into slices like the multislice 
approach. However, also in Fourier ptychography, it is 
possible to reconstruct 3D samples using a multislice 
method [53].

4.5   Others

While we have discussed quite a few variants of the ptych-
ographical algorithm, still many more have been and are 
being developed. A few of them are listed below:
1. Floating PIE [54]: can be used to interpolate or extrap-

olate intensity measurements. This can be useful 
when a central beam stop blocks part of the pattern, 
when the pattern is undersampled [54], or when the 
pattern is cut off significantly by the finite size of the 
detector [13]. It works by applying the amplitude con-
straints only to the points that are measured, while 
leaving the other points ‘floating’.

2. Single-shot ptychography [55]: by putting a pinhole 
array before a focusing lens, and putting the sample 
out of focus, the sample is illuminated by multiple 
probes at the same time, while the diffraction pat-
terns are separated in the detection plane so that they 
can be measured in a single shot.

3. Fresnel ptychography [29, 30]: instead of measuring in 
the far-field (Fraunhofer regime), the measurements 
are taken in the Fresnel regime.

4. Through-focus ptychography [56]: aside from mov-
ing the object laterally with respect to the probe, the 
object is also moved longitudinally. This is related to 
the method of probe-diverse ptychography, where dif-
ferent probes are used to scan the object [57].

5. Vectorial ptychography [58]: ptychography is extended 
so that an anisotropy map of the sample can be 
reconstructed.

6. Ptychography with an unstable probe [59]: instead of 
assuming the probe is fixed for all probe positions, 

Figure 9: In diffraction Fourier ptychography, a thick sample is illuminated by plane waves from different angles. For each angle, the dif-
fracted transmitted field corresponds to a shell of the Fourier transform of the sample, assuming that the single-scattering approximation 
holds. By reconstructing these shells, a portion of the Fourier transform of the object can be reconstructed, which can be inverse Fourier 
transformed to find a 3D reconstruction of the object. (A) Experimental setup. (B) Reconstruction in Fourier space.
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the probe is assumed to vary slightly for different 
positions due to instability of the light source. This 
means that for each probe position, a separate probe 
is updated. To ensure that the probes are still suffi-
ciently similar, the dimensionality of the set probes is 
reduced at each iteration, ensuring that the principal 
component of the probes becomes more prominent.

7. Nonlinear ptychography [60]: ptychography is used to 
image nonlinear optical interactions.

8. Bragg ptychography [61–64]: coherent diffractive 
imaging techniques are used to image strain fields in 
crystalline structures.

5   Conclusion
In this article, we have provided an overview of different 
ptychographic algorithms. Even though the list that is pre-
sented here is far from exhaustive, an understanding of 
the mathematical theory that underpins the algorithms 
will help with digesting the current as well as future lit-
erature on this topic more easily, and it can help start-
ing researchers generating their own ideas on this topic. 
Moreover, the examples of the extensions of the ptycho-
graphic algorithm should give some impression of what is 
possible with this technique.
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