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Abstract: In illumination optics, color mixing is a key design 
task, but the realization can be a challenge. While tunable 
light sources based on multiple LEDs are  commonplace, 
color homogenization is just as important for white LEDs, 
due to their spatial and angular color variation. In this tuto-
rial, we first look at color mixing from an abstract, phase 
space-based viewpoint. From there, we derive a taxonomy 
of color mixing problems: How is the multi-color light 
source composed? What kind of homogeneity is required 
in the target? How is the homogenization influenced by 
source and target étendue? We categorize these problems 
and we present a toolbox: A selection of optical design ele-
ments, e.g. mixing rods and fly’s eye arrays, and we show 
for each design pattern how it fits into the taxonomy.

Keywords: color mixing; illumination; LEDs; optical 
design.

PACS: 42 (Optics).

1   Introduction
Many lighting systems utilize light sources which do not 
emit homogeneous color and/or ‘brightness’ by them-
selves. For tunable LED lamps using individual red, green, 
and blue LED chips, this is obvious. However, the fila-
ments of incandescent lamps are of helical structure, high 
intensity discharge (HID) lamps are volume sources with 
a high luminance core surrounded by a lower luminance 
halo. So-called white LEDs, which use a yellow phosphor 

on a blue emitting LED in many different shapes and ways, 
are far from homogeneous: Thin film, surface emitting 
LEDs with phosphor platelets show color variation over 
angle, and multi chip white light engines look like shiny 
blue pearls in yellow soup. Inhomogeneous light sources 
are everywhere, and the often used idealized Lambertian 
source is just that: an idealization.

What is an acceptably homogeneous light output? The 
answer varies with application. What may be acceptable 
in a cheap consumer flash light is unthinkable in a profes-
sional TV studio lamp head. However, we need to be more 
precise in defining what is meant by homogeneity: From an 
optical design standpoint, the most important distinction 
is dimensional. A video projector, for example, is expected 
to homogeneously illuminate the rectangular screen. All 
that matters here is color and brightness as a function of 
the x-y location on the screen. This is what we might call 
two-dimensional (2D) homogeneity. For a TV studio lamp 
head, however, 2D homogeneity is necessary, but not suf-
ficient: Such lamp heads are also expected to create soft, 
homogeneous background shadows when an object is in 
the foreground, like a person in front of a white wall. This 
adds two angular dimensions to the homogeneity require-
ments, creating what we might call four-dimensional (4D) 
homogeneity.

As it turns out, it is this dimensional analysis which 
will allow us to think about homogenization and color 
mixing from a general, fundamental viewpoint. From 
there, we can derive deep and general insights into the 
nature of the optical design problem. To apply these 
insights, an optical designer also needs a well-stocked 
toolbox of what we would like to call design patterns, a 
term borrowed from software engineering [1]: A design 
pattern is a general, reusable solution approach to a com-
monly occurring problem within a given context.

When an experienced optical designer thinks ‘mixing 
rod’, for example, then he or she thinks of much more that 
just a stick of transparent material: There is a deep under-
standing of what a mixing rod does to incoming light, 
depending on length, cross-sectional shape, making it 
straight or tapered, and how this action on the  incoming 
light may be used in the larger context of the optical 
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system as a whole. It is this knowledge that makes ‘mixing 
rod’ a design pattern.

In this tutorial, we start with explaining the propa-
gation of inhomogeneous light in terms of phase space. 
There, the dimensional analysis mentioned will get quan-
titative meaning. We then apply the phase space concepts 
to light sources and to various applications, deriving 
a general taxonomy of color mixing and homogeniza-
tion design problems. To illustrate the homogenization 
methods, we use the phase space diagram [2].

On the basis of this phase space introduction we 
present a series of design patterns, a more or less abstract 
view on methods to influence light distributions, based 
on the earlier insights of phase space. After rising to this 
‘high altitude’ viewpoint, we descend back to practice, 
filling the tool box with a set of design elements, explain-
ing what each is doing in terms of the introduced patterns.

2   Light in phase space
Just for the record, we are going to restrict ourselves to 
geometrical ray optics in ‘HIL’ materials (homogeneous, 
isotropic, linear), neglecting diffraction and coherence as 
well as polarization, gradient index materials and bire-
fringence, all of which is very appropriate for most illu-
mination problems. For more general phase space optics, 
see e.g. [3]. We also will not discuss deeper physics, i.e. 
the connection to thermodynamics (see [4, 5]), and we 
will simplify the mathematics by analyzing phase space 
on planar surfaces, mostly.

2.1   Rays and reference surfaces

The notion of phase space rests on reference surfaces. A 
reference surface, preferably planar, is a mathematical 
entity, not a real surface. We may insert reference surfaces 
into the optical system wherever we want to analyze the 
flow of light, with one important, seemingly counterintui-
tive, restriction: The reference surface must not coincide 
with, or intersect with a real optical surface. The reason 
is that we want to look at ray directions at the reference 
surface, and optical surfaces are precisely where ray direc-
tions change, and thus are not well defined. Often, it is 
desirable to analyze rays directly before or after an inter-
action with an optical surface. Then, we put the reference 
surface an infinitesimal distance away towards one side. 
When we do that, we know that the reference surface is 
embedded in a material of known refractive index n.

Let us consider at a ray, intersecting a reference plane 
from left to right, as shown in Figure 1 on the left. Let us 
call the intersection point r� and the ray direction ,k

�
 with 

k
�
 normalized to | | .k n=

�
 (The reason for normalizing k

�
 this 

way will become apparent momentarily.) We define a Car-
tesian coordinate system on the plane, as shown in the 
center, such that ( , , 0).r x y=

�
 For ray direction, we attach 

a hemisphere, whose radius is equal to the refractive 
index n, to the point (x, y) on the plane. We use a second 
coordinate system to describe the point where the ray 
intersects this hemisphere, ( , , ),x y zk k k k=

�
 where the kx 

and ky axes are aligned with the x and y axes, respectively. 
Then, kz is redundant (given by the normalization of the 
radius to n), at least when we restrict our attention to rays 
from left to right, and (kx, ky) suffice. Given a ray that inter-
sects the reference surface, this is how we arrive at four 
numbers that describe the location and direction of this 
ray in a unique, non-redundant way.

Vice versa: Given four numbers (x, y, kx, ky), given 
a (bounded) planar reference surface, embedded in a 
medium with refractive index n and equipped with a 
Cartesian coordinate system, and given on which side of 
the surface the ray is incident (i.e. kz > 0 or kz < 0), we can 
reconstruct the ray this way: First, (x, y) must be a point 
within the surface boundaries. Second, 2 2 2

x yk k n+ ≤  must 
hold, such that 2 2 2

z x yk n k k= ± − −  is well defined. Then we 
select ( , , 0)r x y=

�  as the starting point of the ray on the 
surface, and select ( , , )x y zk k k k=

�
 as the ray direction, its 

length being normalized to n. Geometrically, this means 
to attach a tangent disc of radius n (yellow in Figure 1) to 
the surface at (x, y), mark the point (kx, ky) on the disc, 
and lift it up to the hemisphere over the disc. The point 
on the hemisphere is where the ray goes. [We should also 
mention that (kx, ky, kz)/n is the ray direction unit vector, 
whose components are known as direction cosines.]

So why is this a useful description? A first hint comes 
from looking at refraction. To study refraction at e.g. a 

y axis

x axis

(x,y)

radius = n

r

k

(kx,ky)

Figure 1: Coordinates (x, y, kx, ky) of a ray in phase space.
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planar glass surface (n = 1.5), we place two reference sur-
faces, one to each side of a refractive surface, at an infini-
tesimally small distance. One reference surface will be in 
air, the other in glass (the dashed lines in Figure 2). There, 
we show a ray being refracted, from air on the left into the 
glass on the right. The n = 1 hemisphere is shown in red, the 
n = 1.5 hemisphere in blue. The geometrical relations show 
that the tangential components of k

�
 (the solid red and blue 

vertical lines) remain unchanged under refraction.
Algebraically, we know from Snell’s law that

 1 1 2 2sin( ) sin( ) constn nα α= =  (1)

and from trigonometry that

 
2 2sin( ) x yn k kα = +  (2)

where α denotes a ray’s angle with the surface normal.
So when we align the coordinate systems of the two 

reference surfaces and ignore their infinitesimal distance, 
we find that the ray in air (before refraction) and in glass 
(after refraction) are described by the very same numbers 
(x, y, kx, ky). Thus, by defining a ray’s direction by the tan-
gential components (kx, ky) of its k

�
 with | | ,k n=

�
 we obtain 

a quantity which is conserved under refraction – and con-
served quantities are useful analysis tools. (Physically, 
this prescription is based on k

�
 being the wave vector when 

we use the wavelength as the unit of length, and Max-
well’s equation dictating that the tangential components 
of k
�
 remain unchanged at an optical interface.)

2.2   Ray bundles in phase space

Let us now consider extended ray bundles intersecting a 
reference surface. Each ray is identified by its (x, y, kx, ky) 

coordinates, which naturally span a 4D space, the phase 
space of geometrical optics. In Figure 3, we show in a 2D 
cross-section how a ray bundle propagates from one aper-
ture to the next.

To visualize how ray bundles behave and look like in 
phase space, we use 2D phase space diagrams. Each ray is 
plotted as a point in a coordinate system spanned by its x 
and kx coordinates [2].

In Figure 4, the left picture shows the phase space 
diagram for the rays as they leave the left reference 
surface, P1. Note that the colors of the points are matched 
with the colors of the rays in Figure 3. For example, the 
blue rays come from the lowest point of P1, all having the 
same x coordinate but varying direction, kx. The rays span 
a region which looks like a parallelogram with two slightly 
bent sides – a very typical look in this kind of diagram. In 
the right picture the same rays are shown as they intersect 
P2, after some propagation. Note that, now, the green and 
the red rays have constant x, which is entirely correct, as 
they are all aimed at the uppermost and lowermost point 
on P2, respectively. We see: propagation in free space 
amounts to shear in phase space.

The reader is asked to take away three key notions 
from these two figures. (i) There is not just one phase 
space. On the contrary, there are as many phase spaces as 
there are reference surfaces. It is important to choose the 
right ones for fruitful analysis. (ii) These infinitely many 
phase spaces are not independent. On the contrary, the 
laws of physical ray propagation induce a mapping (see 
Figure 4) between any two phase spaces. You can pick 
any point (=ray) in a phase space, and physics will dictate 

Air (n = 1) Glass (n = 1.5)

α1

α2

kx

Figure 2: Refraction leaves kx and ky constant. –1 0 1 2 3 4 5
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Figure 3: A ray bundle between two reference surfaces (P1 on the 
left, P2 on the right). Shown are the edge rays only: Black and blue 
rays come from the spatial edge of P1, green and red rays proceed 
towards the spatial edge of P2.
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which points (=rays) in other phase spaces of the same 
system correspond to the one you picked.

2.3   Étendue

The third notion is volume. The points (a.k.a. rays) in 
Figure 4 enclose a 2D volume (a.k.a. area) each. It is hard 
to visualize, but the process is entirely analogous in full 
three-dimensional (3D) space, where the phase space 
has four dimensions, not two. The 4D volume U in phase 
space, spanned by an extended ray bundle, is known as 
étendue. Just like the area A in 2D can be measured by 

= ∫d d ,A x y  and the volume V in 3D by = ∫d d d ,V x y z  the 
étendue U can be measured by

 
= ∫d d d dx yU x y k k  (3)

θ Ω= ∫ 2d cos( )dAn  (4)

Étendue is a French word, meaning ‘extent’, and is a 
quantitative measure of the combined angular and spatial 
size of a ray bundle. Étendue is intimately related to the 
Lagrange invariant in imaging optics. However, étendue 
makes no assumptions about symmetry, or about rays 
being paraxial, or about an optical axis at all. (In fact, the 
coordinate free definition in Eq. (4) allows for curved, non-
planar reference surfaces, but we will restrict ourselves to 
planar reference surfaces in this tutorial.)

What makes étendue such an immensely useful 
quantity is the law of conservation of étendue – often 
mentioned, often not entirely understood. It is important 
to be very clear what that means, exactly. So let us be 

precise. We consider a ray bundle, i.e. a set of rays with 
finite spatial and angular extent, which proceeds through 
an optical system. We also define a number of refer-
ence surfaces, such that each and every ray from the ray 
bundle intersects each and every reference surface exactly 
once. Figure 3 is a very simple example, with free space 
propagation and two reference surfaces. We compute the 
étendue of the ray bundle according to Eq. (3) as it inter-
sects each reference surface. We assume the system meets 
the following requirements: (i) The rays undergo only 
free propagation, refraction and reflection on piecewise 
smooth surfaces. (ii) There is no scattering, no ray split-
ting at partially reflecting and/or birefringent surfaces, 
no wavelength conversion at, e.g. luminescent dyes. (iii) 
Partial absorption at surfaces and in material is allowed: 
étendue is about geometry, not flux.

Then, it turns out that the étendue of this ray bundle 
is precisely the same on each and every such reference 
surface: the mapping between phase spaces given by the 
physics of ray propagation conserves étendue. (Proofs are 
found, e.g. in [4, 6].)

To clarify, let us consider three situations where 
étendue is not conserved, because requirements are vio-
lated. (i) A beam from a video projector hits a screen, 
from where it is diffusely reflected. The reference surface 
is immediately in front of the screen, in air. We consider 
two phase spaces on this surface: one for incoming, one 
for outgoing light. The cross-section area is the same for 
incoming and reflected ray bundles. However, the incom-
ing beam has a small étendue, because it subtends only a 
small angular range: the lens of the video projector as seen 
from the screen. The reflected beam, however, is scattered 
into the complete hemisphere, increasing the étendue by 

2D phase space diagram for P1 2D phase space diagram for P2
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Figure 4: In phase space diagrams corresponding to the two reference surfaces, P1 and P2 in Figure 3, rays are shown as points. Colors are 
matched between this figure and Figure 3: the blue rays, e.g. proceed from the lower edge of P1 all across P2. The dashed lines are not rays: 
they visualize the mapping between the two phase spaces which is induced by the laws of optics.
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a large factor. (ii) In a beam splitter, we can define two ray 
paths: transmitted and reflected. Étendue is conserved in 
each ray path separately, but if one considers both paths 
simulteaneously, étendue is precisely doubled. (iii) In an 
optically pumped single mode laser, e.g. a doped ruby 
crystal pumped by a flash lamp, the incoming étendue 
from the flash lamp is large, but the outgoing étendue of 
the collimated laser beam would be zero, if diffraction 
at the aperture would not create a small angular spread 
(interestingly, the étendue of a single mode is always λ2 [7]).

2.4   Radiometry in phase space

Now, it is time to fill phase space – this purely mathemati-
cal, geometrical structure – with light. On some reference 
surface, let us pick a ray r = (x, y, kx, ky), and let us look 
at its immediate neighbors, i.e. the rays coming from an 
infinitesimal area element dA = dxdy around (x, y), and 
going into an infinitesimal angular range dkxdky around 
(kx, ky). This defines an infinitesimal étendue element dU,

 
d d d d dx yU x y k k=  (5)

There will be an infinitesimal amount of radiant flux 
dФ flowing in dU. This allows us to define the density of 
flux in phase space, in an entirely analogous way to the 
definition of mass density ρ = dm/dV, or electric current 
density J = dI/dA, or any other density which is defined 
by dividing the infinitesimal amount of something by the 
infinitesimal n-dimensional volume which that some-
thing occupies. 

The density of radiant flux in phase space is defined by

 

d d
d d d d dx y

L
U x y k k
Φ Φ= =  (6)

and is called radiance. When radiant flux Ф is weighted 
with the V(λ) function to take the human eye’s sensitiv-
ity into account (and then called luminous flux Фv), the 
density of luminous flux in phase space is called lumi-
nance and is denoted by Lv. When we look at spectral 
radiant flux, by restricting our attention to light in an 
infinitesimally small wavelength interval dλ, we obtain 
spectral radiance L

λ
,

 

2d d
d d d

LL
Uλ

Φ
λ λ

= =  (7)

Radiance and luminance are functions of four vari-
ables, two each for location and direction: They measure 

how bright the light is, when we look back into a ray, 
L = L(x, y, kx, ky).

When the requirements for étendue conservation 
hold (see above), and in addition there is no absorption, 
then radiance L, luminance Lv and spectral radiance L

λ
 are 

also conserved along a ray, as that ray passes through the 
optical system: dФ is conserved by energy conservation, 
dU is conserved by étendue conservation, and therefore 
their quotient is conserved as well. This holds when the 
ray propagates freely, when it is reflected or when it is 
refracted into or out of some optical material. As spec-
trally weighted radiance is what the human eye sees (light 
coming from a spot as small as the eye can resolve, and 
going from there into the tiny solid angle of the eye’s iris), 
the reader can confirm the conservation of radiance by 
looking at a diffuse, self-radiating surface like a white 
cloud, blue sky, or a computer screen, through an optical 
system, e.g. an AR-coated singlet lens, or a clear glass 
of water. The reader will notice that the object looks no 
brighter or darker through the optics than compared to 
looking at it directly. (For historic reasons, radiance is offi-
cially defined by dividing our L by n2, and our L is called 
‘basic radiance’. We feel that it is about time to reserve the 
short name for the quantity for which we do have a conser-
vation law, and we take the liberty to omit ‘basic’. We also 
mention in passing that L

λ
 is the quantity that Planck’s 

famous blackbody spectrum formula gives us. Accord-
ingly, the conservation of spectral radiance is intimately 
connected to the second law of thermodynamics).

There are some more common quantities in illumina-
tion engineering. Irradiance E and illuminance Ev denote 
the density of flux over area,

 

d d
d d d

E
A x y
Φ Φ= =  (8)

By comparing Eq. (8) with the radiance definition in 
Eq. (6), it is apparent that we can obtain the irradiance E at 
a point (x, y) on some reference surface also by integrating 
radiance L(x, y, kx, ky) over the two angular dimensions of 
phase space:

 
( , ) d dx yE x y L k k= ∫  (9)

 
2 cos dLn θ Ω= ∫  (10)

The second Eq. (10) shows how the integration must 
be performed over a solid angle Ω instead of kx, ky. Analo-
gous equations apply to spectral irradiance E

λ
 obtained 

from spectral radiance L
λ
 by integrating over kx, ky. This 

is the mathematical expression of the definition of 



18      J. Muschaweck and H. Rehn: Illumination design patterns for homogenization and color mixing

irradiance/illuminance: How much light is incident per 
surface area, no matter from which direction it comes.

We omit radiant or luminous intensity here, as far 
field angular distribution can easily be related to irradi-
ance or illuminance on a distant screen.

2.5   Color in phase space

Let us now analyze an inhomogeneous source, like two 
adjacent LED chips of different color. We use the same 
simple setup as in Figure 3, with two planar, parallel 

reference surfaces and free space propagation in between. 
Now, we place two LED chips just behind P1, one red and 
one cyan (an admittedly unusual, but instructive and easy 
to draw method to create white light). The new setup is 
shown in Figure 5.

In Figure 6, we show how color superposition works 
from a phase space point of view, restricted to the x, kx 
dimensions for visualization. To obtain the spectral irradi-
ance E

λ
 at a point x, we integrate the spectral radiance L

λ
 

over the angular dimension kx according to Eq. (9) (Figure 6, 
left). At P2, the result is light gray in the center, and darker 
at the edges, from where the LEDs subtend a smaller angle 
(Figure 6, right). In addition, the result is slightly cyanish at 
the edge of a plane between P1 and P2 at x = −2. As seen from 
there, the cyan LED is closer and contributes more light, 
relative to the red LED (vice versa for the x = +2 edge).

We will revisit the phase space view when we analyze 
the action of various optical elements for color mixing.

3   Illumination design for 
homogenization

3.1   Where is light mixing needed?

Color mixing and homogenization are required and widely 
applied in diverse fields, such as

 – General lighting: Office, architectural, museum
 – Transport: Automotive, airplane, train lighting
 – Consumer products: data projection, VR glasses, head 

up displays
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Figure 6: In the 2D phase space diagrams, we can visualize how spectral irradiance is obtained by integrating spectral radiance over the 
angular dimensions of phase space. Colors are matched between this figure and Figure 5. The dotted vertical arrows show the integration 
direction. Color and brightness of the dots at the bottom visualize the integration result.
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 – Stage and studio lighting
 – Medical lighting: Surgical microscopes, endoscopes 

and luminaires
 – Pump light shaping for laser activated remote phos-

phor (LARP) [8, 9]
 – Solar collection [10, 11]
 – Solar simulators [12–14]
 – Sensors and measurement: distribute light equally to 

a variety of detectors

In the first five fields, the purpose is to create a ‘good’ 
visual impression, both for consumers and professionals. 
In the last four fields, the purpose is of a technical nature: 
homogeneity is required here to avoid destruction, to 
increase efficiency or to ensure measurement accuracy. 
However, we often find similar optical elements and archi-
tectures across these fields. Obviously, application is not 
what differentiates between approaches so much. We will 
have to find other questions which can we ask about a 
system to help us arrive at good solutions.

3.2   Design goals

Let us begin with the target, i.e. the required properties of 
the final light distribution. In most consumer electronics 
applications like projection, VR/AR displays, in architec-
tural lighting (wall washing), but also in technical systems 
like concentration of sunlight on a PV cell, or illumina-
tion of a sensor, homogeneity of irradiance/illuminance 
and color is required. In phase space terms, this is a 2D 
problem. As long as the integration over angular dimen-
sions (see Figure 6) yields spatially homogeneous results 
at the target, it is not important how strongly radiance, 
luminance and color vary over angle. For such systems, 
different color subsystems may even be fully separated at 
the luminaire side, as long as they all deliver nearly the 
same illuminance distribution on the target (see Figure 7). 
Far field homogeneity of intensity or color falls into the 
same category, as it is equivalent to illuminance or color 
homogeneity on a very distant screen.

Sometimes, however, more mixing is needed, e.g. for 
spot light lamp heads for movie set lighting, studio and 
stage lighting, or for lighting sculptures in museums. In 
addition to the common requirement that the light should 
look ‘good’ on a planar screen, it is also desirable for these 
systems that they create homogeneous, soft shadows, 
which are cast onto the background by foreground objects 
in more complex scenes. Such soft shadows can only be 
obtained if the lamp’s exit pupil looks homogenous, as 
seen from the target.

Thus, homogeneity is required here both in spatial 
and angular coordinates at the target. To achieve such 
4D homogeneity, the light must be fully mixed in phase 
space, which requires devices like mixing rods, fly’s eye 
condensers (FECs) and/or scatterers (all of which will be 
discussed below) as necessary prerequisites.

Other key considerations relate to flux, étendue and 
luminance. Obviously, the available flux from the source 
must exceed the required target flux, and the source étendue 
must not be too large, compared with the available target 
étendue. (For details on the interplay between sufficient flux 
and sufficient étendue, especially for strongly inhomogene-
ous sources, see [15].) Finally, the source luminance must be 
sufficient to achieve the required illuminance at the target, 
which may be a limiting factor for automotive headlamps or 
for wall washing systems. These considerations, treated in 
more detail, e.g. in [6], are beyond the scope of this paper, 
however. What is important here is: Do we have an étendue 
limited system, where target étendue is just large enough to 
squeeze the light in (e.g. projection), or do we have a system 
where the target étendue is large (e.g. office lighting)? The 
difference is that in the latter case, we may use more or less 
diffuse scattering, while in the former case, scattering may 
be used only as a final touch-up, if at all.

Finally, it is important what ‘sufficiently homogene-
ous’ means. For technical illumination, e.g. concentrated 
photovoltaics, a typical requirement is Emin/Emax > 1 – ε, 
which is fairly easy to use as an optimization target, even 
if the requirement is strict (small ε). Other fields may use 
different uniformity [16, 17] and color quality definitions 
[18]. For many lighting applications, a typical requirement 
is having homogeneous color while illuminance gently 

Figure 7: A small cell phone flash LED with a cold white (top right) 
and a warm white (bottom left) LED chip, with identical Fresnel lenses 
for each LED. Perfect color mixing of these two sources is achieved, 
except at very close distances which are not relevant for this 
application. (Image courtesy OSRAM Opto Semiconductors GmbH.).
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falls off towards the edge. Thus, different problems often 
require different solutions, but not always: 4D homo-
geneity implies 2D homogeneity, and good color mixing 
generally implies good illuminance homogeneity for inho-
mogeneous single color sources, too.

With perfect sources, little work would be necessary. 
But in the real world, we have real world sources with 
imperfect distributions. Let us now look at these.

3.3   The problem – inhomogeneous sources

Widely used light sources, examples of which are shown 
in Figure 8, comprise white LEDs (partial phosphor con-
version of blue light), multi color LEDs (cold white/warm 
white, RGB, RGB+), and traditional lamps (incandescent, 
high intensity discharge (HID) lamps).

Neglecting polarization and diffraction, a complete 
description of an inhomogeneous source would be given 
by spectral radiance, L

λ
(x, y, kx, ky, λ) in 4D phase space. 

This is what near field goniometry is about, effectively. 
Visualization, however, usually happens in 2D, showing 
either spatial (see Figure 8) or angular distributions 
(intensity plots, given in most LED data sheets).

For illumination design purposes, it is more instruc-
tive to look at the distribution in a mixed 2D plot – the 
phase space diagram introduced in the preceding chapter. 
Here, structured sources would appear as shown in 
Figure 6 (left) for the case of a red LED chip next to a cyan 
LED chip. Phase space diagrams of some other sources are 
shown schematically in Figure 9.

Traditional light sources show similar problems. Incan-
descent lamps with coil shaped filaments are homogeneous 
in the angular domain, but very inhomogeneous spatially, 
giving rise to August Köhler’s illumination principle [20].

Compound sources (the bare source combined with 
some primary optical element) may show inhomogeneities 
that are due to the optics. Lamps with parabolic or elliptic 
reflectors, such as HID burners for projection, or incandes-
cent spot lamps, effectively have a ring shaped aperture 
with a central hole, and angularly dependent magnification 
[21]. An example (LED with reflector) is shown in Figure 10.

From a phase space point of view, this is the taxon-
omy of source inhomogeneities:

 – Which kind of inhomogeneity has the source? Spatial, 
angular or both?

 – Is there inhomogeneity in color, luminance or both?
 – How finely grained is the inhomogeneity? Does the 

source have many small features like in large white 
multi-sapphire-chip LED light engines or incan-
descent filaments? Or does it consist of very few 

homogeneous sub-blocks like the four chip LED pack-
age shown in Figure 8, bottom?

When the phase space structure of the source inhomoge-
neity is understood, the optical designer can choose from 

Figure 8: Various inhomogeneous sources. Top: Arc of a HID 
lamp with hot spots and halo [19]. Center: White LED with blue 
emitting LED chip embedded in phosphor matrix (insert shows unlit 
package). Bottom: Multi color LED package, with white, red, green 
and blue LEDs. Top and center pictures by the authors, bottom 
picture courtesy OSRAM Opto Semiconductors.
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various tools in the toolbox to transform the source light 
into the desired homogeneous output. However, tools are 
only useful when it is fully understood what the tools actu-
ally do. Therefore, it is necessary to study the optical func-
tion first, before we look at individual optical elements.

4   Design patterns: basic principles
First, we present basic principles which provide light 
mixing either by themselves, or in combination with other 

elements. Then, we will describe several design elements 
which use these basic principles in various ways.

4.1   Propagation

Propagation in free space or in a medium causes a spatial 
light distribution to mix, as long as an angular extent is 
present. As seen in Figure 4, propagation causes shear 
in phase space. Ray intersection points move spatially 
(sideways), whereas the angular distribution remains 
unchanged. It may well be sufficient to let a spatially inho-
mogeneous distribution propagate a certain distance, to 
obtain some light mixing. A well-known example is to use 
defocus as a means to improve the homogeneity of a dis-
tribution. However, regions of phase space ‘stay together’ 
under propagation, and they keep their étendue. Only 
their shape in phase space changes.

4.2   Étendue transformation

Optical systems can provide a transformation of the phase 
space region where the inhomogeneous distribution is 
located. The best known example is the area to angle con-
version provided by a positive lens imaging a source to 
infinity: The angular distribution of the source shows up 
on the lens aperture, and the spatial distribution of the 
source is imaged into far field directions. This amounts 
to rotation in phase space. So one can often use the most 
useful source property, i.e. its homogeneous far field 
instead of an inhomogeneous near field (spatial distribu-
tion), and put that onto the target. This is the basic idea 
of Köhler’s illumination principle [20]. For demonstration, 
we apply Köhler illumination to the now familiar red/cyan 
LEDs (see Figure 11).

4.3   Étendue expansion

If the inhomogeneity is associated with a small étendue 
source to be propagated to a large étendue target, the 
task is to spread the light into the latter. With propaga-
tion and smooth optical surfaces only, the small source 
étendue will be conserved, and the target étendue will be 
only partly filled: There will be bright regions in the target 
phases space, surrounded by dark regions. This provides 
the opportunity to increase the source étendue, e.g. by 
scattering, and achieving homogeneity at the same time.

Consider an automotive HUD (head up display), with 
a reflection from the windshield and with a virtual image 

Figure 9: Schematic phase space diagrams of various LEDs. Left: 
White LED (blue chip embedded in phosphor matrix) as shown in 
Figure 8, middle, with its spatial color distribution. Center: Multi 
color LED package with adjacent red, green and blue chips. Right: 
Thin film white LED (blue thin film, surface emitting chip covered 
with thin phosphor layer), with its spatial homogeneity and its 
typical color over angle distribution.

Figure 10: Far field distribution on a distant screen of a white 
LED in a parabolic reflector (see insert). The LED is the same as 
shown in Figure 8 (middle). The parabolic reflector images the 
inhomogeneous spatial source distribution into the far field. As 
a light source to be used with further optics, this device is both 
spatially and angularly inhomogeneous. As a cheap consumer flash 
light (what it actually is), this device is an example of a particularly 
bad optical design for the given source and the given purpose.
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somewhere in front of the car. Commonly, the étendue 
of the projector is considerably smaller than the target 
étendue defined by the size of the virtual image, its dis-
tance and the size of the eye box from where it should be 
viewable. Without any further measures, étendue conser-
vation would cause the eye box to be rather small. The 
solution is to place a weak scatterer into the light path, 
to adapt the projector étendue to the target étendue and 
to distribute the light of each pixel homogeneously across 
the eye box.

In street lighting and in office lighting, the primary 
task is to spread the light of a high luminance source to 
a prescribed spatial distribution. But to avoid glare, it is 
preferred if the light leaves the lamp from a not too small 
exit pupil.

Scattering surfaces or volumes can be applied for 
pump light shaping (de-peaking) for LARP where defocus 
only is just not reliable enough [22, 23].

The étendue expansion itself can be achieved effi-
ciently by scattering, both random (e.g. injection molding 
with eroded mold inserts, ground glass) and deterministic 
(e.g. single sided micro lens arrays, faceted reflectors). A 
notable class of plastic materials uses volume scattering 
by embedded clear particles, which exhibit small scatter-
ing angles and nearly no backscattering, making efficient, 
simple systems possible.

All these measures provide limited phase space trans-
formations: shear, rotate or stretch, all of which can bring 
up the better side of a light source’s distribution, but 
cannot provide full 4D homogenization without étendue 
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increase. To realize such a complete homogenization, we 
need other measures.

4.4   Étendue splitting

This technique is the key to efficient and effective light 
mixing in étendue limited systems. The design pattern is 
to:

 – split the source étendue into parts
 – transform the parts appropriately
 – recombine them to the target étendue

The ‘treatment’ can mean to:
 – throw away some parts
 – redirect each part, e.g. to different regions of the 

 target. This is a shift in phase space.
 – spread each part on the whole target. This is a phase 

space transformation.

Étendue splitting means that adjacent rays which 
started out from nearly the same point in phase space 
(having nearly identical starting points and directions) 
end up at very different points in another phase space 
later in their path: The mapping between phase spaces 
that is dictated by ray propagation physics becomes 
discontinuous.

The phase space of an incident light distribution may 
be split by:

 – area
 – angle
 – spectrum
 – polarization

In a simple, but not very practical example, we start with 
a simple relay lens that images a square source onto a 
target. The goal is to illuminate a 2:1 aspect ratio. This is 
achieved by cutting the lens into to halves, each of them 
slightly decentered (Figure 12). This simple example 
shows that splitting the étendue requires discontinuities 
in the optical surfaces: Steps, or kinks, serve as knives 
in phase space, cutting étendue into pieces which then 
proceed separately through the system.

An extreme ‘Gedankenexperiment’, jokingly called 
the spaghetti design, means to collect every étendue bin 
of a source étendue by a suitable optical fiber (the single 
spaghetti) and then combine all those fiber outputs (with 
additional optical elements) into a beam of suitable area 
and angle. For example, we could place the fiber inputs 
densely onto a sphere centered around the source, arrange 
the fiber outputs into a plane, with a lens to each fiber 

end, and thus create a perfectly collimated beam without 
geometrical losses and without étendue increase. This 
line of thought is useful to see if something can be done in 
principle: If it is possible with a spaghetti design, then it 
does not violate physics, and ‘all’ that remains to be done 
is to find a more practical solution.

Facets on a reflector surface work by the same prin-
ciple: the far field of the source is split by the facets and 
each facet provides a different way to send it to the whole 
target. As a result, the target illumination is well mixed. 
However, facets on a single surface increase effective 
étendue: the outgoing ray bundle consists of many small 
bright pieces, one from each facet, with dark phase space 
regions in between, such that the volume of the envelope 
of this outgoing ray bundle has increased by precisely the 
volume of these dark phase space regions.

To conclude this section: Most optical elements in 
illumination systems perform one of these functions. Let 
us now look at them in more detail.

5   Design patterns: elements
Now, we finally describe the toolbox, reviewing practical 
homogenization devices and discussing design aspects.

Figure 12: Top: Étendue split as a means to illuminate a target 
of a different aspect ratio. Bottom: The principle of étendue 
splitting: The large phase space regions (left) are cut into small 
pieces (center) and reassembled in a different arrangement (right), 
which is now homogeneous in 4D: both in angular and in spatial 
dimensions.



24      J. Muschaweck and H. Rehn: Illumination design patterns for homogenization and color mixing

5.1   Rod integrators

A mixing or integrating rod is a lightguide which real-
izes homogenization of the incident light distribution by 
multiple reflections at its side faces. Mixing rods, or rods 
for short, are not complete opticals systems by them-
selves. They are mostly used as a subsystems, to provide 
a spatially homogenous secondary source which then is 
imaged somewhere.

Rods come in two main flavors, both of which have 
pros and cons: They may be made of a transparent mate-
rial such as plastic/glass (see Figure 13), or by assem-
bling mirror segments [24–26]. Solid rods are not only 
relatively easy to make an cheap, they also use lossless 
total internal reflection, whereas highly reflective coat-
ings of a hollow rod’s segments are difficult to realize for 
a wide range of angles of incidence. On the other hand, 
it takes some effort to apply an AR coating on the rod’s 
entrance and exit faces, and if the rod exit is imaged 
directly or indirectly into the far field, special care must 
be taken to keep the exit face perfect, clean and free of 
dust. A hollow rod of a given length is a more effective 
mixer than a solid rod of same dimensions, because 
refraction at the entrance of a solid rod bends the rays 
such that they undergo fewer reflections. Finally, there is 
some effort to hold a solid rod by mechanical elements. 
Sometimes a collar is added to the body of the rod for 
easy mounting [27, 28].

Design parameters of a mixing rod are:
 – length
 – material (hollow or solid)
 – cross-section shape (rectangle, hexagon, edges 

straight or grooved)
 – shape along the axis: straight, tapered, curved

The device acts on the incident light, so we have to take 
into account its spatial and angular distributions [29].

A mixing rod acts as an étendue splitter: it cuts the phase 
space of the incident light into pieces, and the knife cuts 
along constant angle, approximately. The longer the rod, and 
the wider the source angle, the more and smaller the pieces 
get. The pieces undergo individual phase space transforma-
tions, and then are reassembled at the exit surface.

5.1.1   Straight mixing rods

We start with the basic type of a mixing rod, whose rectan-
gular or hexagonal cross-sectional shape does not change 
along the axis. Straight mixing rods work well for spatially 
inhomogenous light at the entrance, but angular inhomo-
geneities, e.g. the color over angle problems of many white 
LEDs, or the ‘hole’ in the center of an arc lamp source (see 
Figure 14) remain unaffected.

Mixing rods work like caleidoscopes: Imagine your-
self as being a tiny observer at the exit face. When you 
look back into the mixing rod, you see the source, and 
many mirror images of the source. One way to see how 
mixing rods homogenize is to imagine yourself now 
moving across the exit face. What you see while you 
move is the same scene, from slightly varying angles – 
and the same scene will cause the same overall color and 
brightness.

In phase space terms, the edges of the side faces split 
the incoming ray bundle. Rays with increasing angle 
towards the rod axis will undergo an increasing number of 
reflections on the side faces. These pieces are then trans-
formed by free propagation and reassembled at the exit 
face (see Figure 15).

As a note, the beam leaving a straight mixing rod is 
always centered around the axis of the rod; it is telecentric. 
Accordingly, a projection lens that provides an image of 
the rod’s exit face should be telecentric as well.

Figure 13: Integrator rods made of glass (Photo courtesy of Auer 
Lighting).

Figure 14: Rod integrator combined with a lamp in a elliptical 
reflector for use in a projector [30]. See also [31].



J. Muschaweck and H. Rehn: Illumination design patterns for homogenization and color mixing      25

5.1.2   Tapered mixing rods and compound parabolic 
concentrators (CPCs)

Both combine two functions: Homogenization and 
 collimation for large (up to hemispherical) source angular 

ranges. However, CPCs, explained in detail in e.g. [6]) work 
less well: Homogeneity is not nearly as good for sources 
smaller than the entrance area, they are more difficult to 
make, and there is less freedom to adjust the CPC’s length 
independent of angular ranges. Their only advantage is 
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that output is telecentric. Accordingly, not many CPCs are 
actually used in  illumination systems.

Tapered mixing rods, on the other hand, provide a 
flexible, easy to make solution when both homogeniza-
tion and collimation are desired. Figure 16 shows a view 
through a tapered rod whose entrance area is illuminated 
from the side. The virtual images are concatenated at an 
angle, which is caused by the tilted side faces. In effect, 
a tapered mixing rod converts the source into a mosaic of 
sources on a spherical surface, which send their light 
through the exit face. As the virtual source sphere is at a 
finite distance, the resulting ray bundle is homocentric 
and may require an additional field lens at the output.

When used with a field lens, their degree of  collimation 
(i.e. angular exit beam width) depends only on the relative 
size of the entrance and exit faces, while the length can 
be chosen according to homogeneity and  other require-
ments, which adds significant flexibility.

In phase space, tapered mixing rods work similar to 
straight mixing rods (Figure 15). The main difference is 
collimation: the exit phase space region becomes wider in 
x and narrower in kx.

5.1.3   Shape and other design aspects

For a proper mixing function, it is helpful when the cross-
section of a rod allows for the tesselation of the plane (rec-
tangles, hexagons) [32, 33]. Cylindrical rods usually mix 

in the azimuthal domain only, and tend to concentrate 
the light in the center. However, other cross sections may 
work surprisingly well. For example, longitudinal ripples 
on the outer faces ([34], Figure 17) improve the homogeni-
zation function and may be even effective in the angular 
domain. In addition, we mention some recent research on 
chaotic ray propagation in specially shaped mixers [35].

The longer the rod, the better is the homogeneity at 
the exit face. In phase space (see Figure 15), we simply 
get more reflected portions overlaid, and even in the case 
of an inhomogeneous incoming angular distribution it is 
likely to get a spatially homogeneous output.

The incident angular distribution of light is basically 
conserved, perhaps rotated or mixed in the azimuthal 
domain. A really weird angular distribution may even 
disable the homogenizer function [29]. On the other hand, 
harmless incident light distributions such as that of an 
arc lamp in an elliptical reflector for DLP projection [36] 
require very few reflections for a homogeneous output (an 
average of slightly less than one reflection per ray may be 
sufficient).

In practical illumination designs, an angular distri-
bution of around ±30° within the rod is best suited for 
the mixing rod’s function. Narrower beams may require 
extended rod lengths and are often better handled with 
a FEC. On the other hand, focusing an incident beam 
to higher angles (higher numerical aperture) implies a 
smaller rod area and may cause tolerance problems.

Entrance and exit faces do not need to have the same 
shape. A shape changer (Figure 18) may be a smart way to 
adapt between different shapes of source and target area 
[37, 38] as long as some modifications of the angular dis-
tribution are not that important. The exit area may even 
form a skew quadrangle for a better adaptation to a asym-
metric optical system [39].

A field lens may be provided in the exit face of an inte-
grating rod. It will not affect the light distribution in that 

Figure 16: Look into a hollow tapered rod of square cross section. 
The rod was standing on a table with the rim of the smaller bottom 
face illuminated from the side (Photo courtesy by Markus Stange, 
OSRAM). Figure 17: Rippled mixing rod.
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plane, but may help to direct the light into the next optical 
aperture, while producing a virtual image of the entrance 
face far away (even at infinity) that is not imaged by a sub-
sequent projection lens.

5.2   Fly’s eye condensers

A FEC is a specific microlens array arrangement, where 
the lenslet surfaces are arranged in entrance/exit pairs, 
forming rather thick lenslets. Commonly, the lenslet pairs 
of FECs are laterally arranged in a regular, hexagonal or 
rectangular grid, and the lenslets all have equal shape. 
However, the principle can be realized by a reflective 
design as well [40], the entrance/exit surfaces in each 
lenslet do not need to be of equal size or shape [41], and 
there is considerable and useful freedom in irregular 
arrangements [42]. The oldest FEC reference we are aware 
of is [43].

Whereas mixing rods make distributions spatially 
homogeneous, not much affecting angular distribution, 
FECs make distributions angularly homogeneous, leaving 
the spatial distribution largely unchanged – just the 
other way around. In contrast to a long, narrow mixing 
rod, a FEC is a short and wide plate. It does work well for 
spatially inhomogeneous, but not too finely grained dis-
tributions, and its function is rather independent of the 
incident angular distribution as long as the incoming 
angular distribution is less wide than the design angle of 
the device, which can be up to ±15°.

The principle of operation of a FEC plate is to split 
the area of the inhomogeneous incident distribution into 
pieces or channels, to transform them individually and to 
recombine them in the far field. Homogeneity is achieved 
by the superposition of a sufficient number of different 

individual distributions. This implies a first design rule: 
the number of lenslets should be not too small.

To achieve this, the exit of each channel is formed as a 
lens, designed to provide an image of the channel entrance 
at infinity. Consequently, the shape of the channel (the 
shape of the lenslet), or more specifically its illuminated 
portion, determines the shape of the intensity distribution 
of the considered channel.

Any light from an adjacent channel that hits the exit 
lens under consideration would cause additional light 
in the far field outside the image of the entrance lenslet 
[44]. To avoid this crosstalk, all light that enters a channel 
must be confined in the channel, which is ensured by the 
refracting entrance surface which acts as a field lens.

The working principle of FECs is explained in phase 
space as follows (see Figure 19): Each lens performs a 
separate angle-to-area transformation. The angular dis-
tributions of all channels are added in the far field and 
provide a homogeneous intensity distribution. This works 
fine as long as a sufficient number of completely illumi-
nated channels is involved or partially illuminated chan-
nels compensate each other.

The entrance (field) lens provides an image of the 
source in the area (the pupil) of the exit (projection) lens. 
In this sense, the operation of a channel is related to 
Köhler’s illumination principle [20] and the term ‘Köhler 
integrator’ is occasionally used for FECs. Thus, a FEC can 
be viewed as a plurality of Köhler systems.

5.3   Facets on optical surfaces

Imaging a source to a target plane with a lens or a reflec-
tor is simple and efficient, but any source inhomogenei-
ties are imaged to the target as well. A particularly bad 
example is shown above in Figure 10. So we need a way 
to disturb the optical image. Defocusing is an easy way 
to realize that, but it is not always reliable because of the 
interplay with other aberrations, and its single degree of 
freedom is often insufficient. A safer and more flexible 
method is to implement the étendue split approach intro-
duced above by using facets. To avoid introducing an extra 
optical element, we put the facets on an existing optical 
surface and assign an optical function to each facet. The 
simplest facets are just flat, but they may have any convex 
or concave shape (see Figure 21).

Facets are often used on elliptical or parabolic reflec-
tors. They can simply be applied to the originally smooth 
reflector surface, and each of them will then produce a dif-
ferent image of the source. Their superposition delivers the 
desired homogeneous distribution. For example, faceted 

Figure 18: Shape changer.
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reflectors are used in the still ubiquitious MR16 halogen 
spot lamps, in lamp-based stage lights to provide a smooth 
illuminance distribution on the gate or gobo. Such reflec-
tors are also available for the use with LEDs (Figure 22).

Faceted lenses can be used to spread (laser) pump light 
on the phosphor of a LARP source [22]. This technique is 
somewhat related to MTF shaping in a low beam projec-
tion headlamp by facets on the lens surface (an image of a 
knife edge by an aspheric lens is too sharp) [45]).

Figure 20: A FEC transforms any incident angular distribution within 
its design angle into an angularly homogeneous output beam. Note 
that the output beams (right) cover nearly the same telecentric 
angular range, irrespective of the incoming direction, red (0°) 
and cyan (10°). The bottom image shows the far field distribution 
obtained from the two collimated input beams. Each exit lenslet 
surface images the entrance hexagon into the far field. The color 
fringes are a result of the aberrations associated with this image. 
(Images created with LightTools.).
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Figure 19: A FEC splits the incident distribution into pieces, rotates 
them in phase space and transports each one into the far field. 
Here, we use red rays going into lower angles and cyan rays going 
into higher angles, a typical use case when light coming from 
adjacent sources is first imaged into infinity to make it telecentric. 
Note that the angular intensity distribution at the exit aperture 
is now obtained by integration of spectral radiance over spatial 
dimensions, as shown by the dashed arrow. In this integration 
direction, the light is nearly perfectly homogeneous, except at the 
angular edges, due to aberrations – an effect that has been seen in 
Figure 20 already.
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Illumination design software is often assisting the 
user for the generation of facets on a reflector surface. The 
mixing effect can be tuned by the number of facets, their 
shape (plane or curved) and their arrangement [46]. They 
can also be individually tailored freeform reflectors [47], 
an example is shown in Figure 21.

5.4   4D homogenization

For some applications, one needs to homogenize the light 
distribution for a whole phase space region and not for 

just a cross section. For example, a stage light should have 
a ‘nice beam’ everywhere between the exit pupil and the 
target (image). A source which is homogeneous just in 2D 
may produce colored edges if an object in the beam casts 
a shadow. In the condenser optics within a video projec-
tor, angular separation of colors as seen from the homoge-
neously lit digital micromirror device (DMD) imager may 
lead to strange effects due to the complex interplay with 
the color aberrations of the projection lens; we have seen 
similar problems in gobo projectors.

4D homogenization is not easy to realize, especially 
when the system is nearly étendue limited. Except if the 
source is already homogeneous in two dimensions, no 
single optical element will suffice. A two-stage approach 
works well in practice: First, we find a way to illuminate 
an intermediate plane with spatial homogeneity, by using 
a rod integrator or by just aiming several collimated 
beams at the same target. The angular distribution will be 
rather inhomogeneous at this point. Then, we use a FEC 
to thoroughly mix the angular distribution without much 
increase of étendue. The incoming light at the intermedi-
ate plane must then be telecentric and limited in angular 
extent. Another approach would be to operate two inte-
grators in a sequence [29], but is still difficult to get good 
results. The right dose of scattering can help to wash out 
residual artefacts.

5.5   Scattering

In illumination design, weak and strong scatterers are 
widely used as a tool for homogenization. If a source 
(with an inhomogeneous exitance distribution) is simply 
imaged to a target area (‘critical illumination’), the source 
structure will appear on the target. A moderate scat-
terer, e.g. positioned in the exit pupil, may mitigate the 
problem, but may incur an increased target étendue. In 
principle, scattering works for any kind of sources, for all 
homogeneity requirements, even extreme ones. However, 
scattering tends to be inefficient, to increase étendue, and 
tends to make systems large.

Scattering causes an expansion of the effective 
étendue: it is a means to introduce an angular spread to 
a specific phase space distribution in a random way, i.e. 
without introducing obvious patterns. In phase space, the 
scattering of a ray (a single point in phase space) is rep-
resented by the point being spread out over the angular 
dimensions; in the phase space diagram, points become 
vertical lines (see Figure 23). A sufficient amount of 
angular spreading causes homogenization in the angular 
domain, and, after propagating some distance, in the 

Figure 21: Simulation model of a simple reflector with planar 
facets. Each facet serves as an aperture, through which the virtual 
mirror image of the source shines its light. While there will be 
remaining inhomogeneities in each facet’s contribution, they tend 
to average out.

Figure 22: Faceted reflector for LEDs. (Photo courtesy by Auer 
Lighting.).
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spatial domain as well. However, if scattering brings light 
into previously empty regions, it causes an increase of the 
source étendue.

While faceted reflectors or lenses may be viewed as 
étendue splitting systems (see previous section) which 
– in contrast to fly’s eye condensers – also increase 
effective étendue, it is equally appropriate to view them 
as scatterers, if the facets are small and their number is 
large. However, some important points are worth noting: 
(i) Faceted reflectors perform what could be called deter-
ministic scattering: The induced angular spread is given 
by the deterministic facet surface shape, not by random 
surface roughness. (ii) The phase space structures 
induced by faceted reflectors are small, but finite in size: 
When looking closely enough, the full source structure is 
apparent. Consequently, they work well only if any rele-
vant quantity at the target is obtained by integration over 
sufficiently large areas of phase space.

5.5.1   Integrating spheres

The most extreme scattering configuration is the integrat-
ing sphere, a hollow sphere, whose inside is covered with 
a diffuse white reflector. (In German, the ‘Ulbrichtkugel’ is 
named after Richard Ulbricht, a railway engineer dealing 
with the illumination of train stations around 1900). Inte-
grating spheres are used to homogenize an incident light 
distribution for use with sensors, but also to generate a 
spatially and angularly homogeneous light beam for what-
ever purpose. For example, an integrating sphere illumi-
nates the film gate in a professional movie film scanner 
with red, green, blue and infrared light [48]. At the heart 
of integrating sphere theory is the fact that a small patch 
of a fully diffuse scatterer on the inner surface of a hollow 
sphere acts as a Lambertian source, and will illuminate 
the hollow sphere with perfect homogeneity: incidence 
angles, the cosine intensity distribution of Lambertian 
sources and source-target distances all compensate each 
other. Thus, after the second surface interaction, the 

incoming light has completely ‘forgotten’ where it came 
from.

However, designing good integrating spheres is not 
trivial. Sphere size, location and size of entrance and exit 
ports, internal baffles, reflectivity and diffuseness of the 
white coating all play important roles. The key disadvan-
tage of an integrating sphere used for illumination is the 
fact that efficiency, homogeneity and small phase space 
expansion are conflicting targets. For more information 
on design, theory, history and application of integrating 
spheres, see [49–53].

When used for sensing, the integrating sphere is a 
means to measure just the flux, independent of any spe-
cific angular/spatial distribution of the incident light. 
Instead of sending light from the outside, a light source 
may be placed in or near the center of the sphere, and the 
sensor on the inner surface.

For particular measurement purposes of collimated 
sources, such as for large discharge lamps in parabolic 
reflectors, one can avoid to use of a large and expensive 
integrating sphere, but use just one or two scatterers in a 
sequence in front of a receiver. With the right calibration, 
such a setup may be good enough (see Figure 24).

5.5.2   Other scattering elements

An efficient way is to combine a little bit of scattering 
with other approaches: Often, other ways of cutting phase 
space into pieces are just not really good enough, or just 
too sensitive to tolerances. Then, one would look for a 
location (i.e. a surface, whether real or in free space) in 
the system, from where the pieces of the inhomogeneous 
source look small, i.e. subtend a small angle, and are close 
to each other. In this situation, just a little bit of scattering, 
with small scattering angles, will make the output homo-
geneous (see Figure 25), and make the system less sensi-
tive to tolerances.

Figure 24: The ‘jar’: two scatterers homogeneously distribute 
the incident light, and a detector (right) collects a representative 
portion of incident light. With the right calibration, such a cheap 
device works nearly as good as an integrating sphere.

Figure 23: Scattering increases étendue and decreases luminance, 
but also smoothes out inhomogeneous structure (schematic image).
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In yet another approach, scattering light back onto 
the source itself can be used to increase the luminance 
of the source beyond what it would emit by itself. Several 
examples of this approach are described in [54]. Although 
not intended primarily for color mixing, such systems tend 
emit their light more homogeneously than the sources 
alone.

6   Summary
Color mixing and homogeneity are major challenges in 
many illumination designs. However, it is easy to get 
lost in the labyrinth of often not well-defined require-
ments, optical principles, optical elements, and light 
sources. We have presented the phase space view, with 
its core notion of volume (étendue), as a common, high 
level viewpoint from where similarities and differences 
become clear, and from where it is possible to define 
design patterns: general, reusable solution approaches 
to a commonly occurring problem within a given context. 
In phase space, optical elements used for color mixing 
all perform one of the core functions: (i) propagation 
induces shear in phase space, (ii) smooth optical sur-
faces transform the shape of phase space regions in 
many ways, (iii) scattering surfaces, including single 
surfaces with deterministic micro structures, expand 
étendue, and (iv) surfaces with kinks or other disconti-
nuities split phase space regions into independent parts. 
Equipped with these insights, individual optical ele-
ments like rod integrators, FECs, faceted and scattering 
can all be understood in terms of their optical function 
in phase space, filling the toolbox of the optical designer 

with a full set of useful and well-understood tools. Color 
mixing then is a problem of first understanding the given 
phase space structure of the source, and the desired 
phase space structure of the target, and then choosing 
appropriate elements to perform the necessary functions 
of transforming the former into the latter.
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