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Abstract: In recent years, the precision of the manufac-
turing process for optical surfaces has improved tremen-
dously. As a result, freefrom surfaces have become more 
attractive options for imaging applications with increased 
accuracy requirements. However, with regards the inte-
gration into an optical system, performance is often lim-
ited due to surface imperfections, such as mid-spatial 
frequency errors and alignment errors. This demonstrates 
the need for a more holistic description of systems, includ-
ing multiple freeform components, which enable perfor-
mance predictions based on the system as a whole. In this 
work, a solution for such a simulation is presented and 
verified by a comparison with the experimental data. This 
procedure not only predicts system performance but also 
supports tolerancing and easier alignment.

Keywords: freeform surfaces; optical design; optical 
fabrication.

1   Introduction
Technologies that are capable of manufacturing reflective 
or refractive optical surfaces without remaining symmetry 
are becoming increasingly available [1]. Non-rotational 
symmetric, high-performance systems can profit tremen-
dously from the additional degrees of freedom offered by 
these optical freeform surfaces during the design process 

[2, 3]. For imaging applications, the manufacturing 
process typically involves diamond turning in combina-
tion with additional polishing methods [4, 5]. However, 
especially when dealing with shorter wavelengths, the 
requirements have increased for both the manufactur-
ing and the optical design, along with the strongly corre-
lated tolerancing for such systems. The limited precision 
of the turning process has resulted in surface deforma-
tions, such as more localized figure errors and charac-
teristic, regular ripples within the mid-spatial frequency 
(MSF) range [6, 7]. This remains to be a limiting factor 
and should be considered when designing an optical 
system. Currently, there exist several comprehensive 
approaches for the analysis and simulation of different 
fabrication processes [8, 9], the theoretical description of 
surface imperfections on the point spread function (PSF) 
and the modulation transfer function (MTF) [10–13]. 
However, despite the introduction of these approaches, 
there remains a need for a more holistic simulation of 
even complex systems in order to close the gap between 
the optical design and the manufacturing. Our solution is 
based on an analytical description featuring a reasonable 
number of coefficients, thus allowing for the combined 
analysis and tolerancing of manufacturing deviations 
and alignment errors for multiple freeform components. 
In this paper, we present the verification of the approach 
for imaging systems. The description for real surfaces was 
introduced and discussed in our previous work [14]. For 
this purpose, the approach is applied in the current study 
to an anamorphic imaging telescope in the visible wave-
length range [15], and the simulated wavefront – includ-
ing the impact of real components – is compared to the 
measurements for the different fields.

The manuscript is structured as follows. In Section 2, 
the theory for describing real freeform surfaces is intro-
duced. Section 3 discusses the integration of the manufac-
tured components and the simulation of the system for an 
anamorphic imaging telescope. In Section 4, the results 
are analyzed and compared to the measured wavefronts 
from the assembled system. Afterwards, two examples 
are presented on how to tolerate the system based on this 
approach.
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2   Theory
Our approach for the efficient integration into a simu-
lated system of real optical surfaces, manufactured by 
diamond turning, is dependent on an analytical descrip-
tion based on a reasonable number of coefficients. This 
section briefly introduces the approach to make the fol-
lowing explanations more comprehensive, although more 
detailed analysis and discussion are provided within our 
previous work [14]. In general, the sag of the real surface 
zreal is decomposed into the ideal surface zideal and the devi-
ations zdev, which occur during manufacturing. Here, zreal is 
calculated using the equation

 real ideal dev .z z z= +  (1)

The ideal surface profile description, a result of the 
design process, typically comprises global polynomials, 
such as the Q- or Zernike-Polynomials [16, 17]. In com-
parison, the deviations are represented in our approach 
by the radial basis functions (RBFs) φRBF, which are used 
to describe the localized figure error zfig and the addi-
tional MSF-functions zMSF to also describe the regular, 
characteristic ripples resulting from the diamond-turning 
process. The calculations are performed using the equa-
tions below

 dev fig MSF( , ) = ( , ) ( , ),z x y z x y z r ϕ+  (2)
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RBFs can, for example, be Gaussian-functions with 
a certain shape εn, laterally shifted on a grid (xn, yn). The 
height of each function cn is determined by a least-square-
approximation [18]. The MSF-functions in polar coordi-
nates (r, ϕ) are a linear combination of radial symmetric 
rings, multiplied by an azimuthal dependent term with 
order m. An additional function y(r) is necessary to over-
come the singularity at r = 0. In general, the center of the 
description does not need to be coincide with that of the 
surface aperture. The coefficients an, bn and cn are approxi-
mated by using least squares, and the spatial frequencies 
kn are determined directly from the power spectral density 
function (PSD) of the corresponding surface measure-
ments. This can be done in a one-dimensional or in an 
extended two-dimensional representation [19], where the 

azimuthal dependencies are also considered. In Figure 1, 
the resulting fit of an example surface based on the PSD 
is shown. The low spatial frequencies are covered by 
the RBFs, with this range being further extended by the 
additional MSF functions. The deviations seen are mostly 
caused by the unstructured deformations. The detailed 
results for the studied system are discussed within the 
next section.

In summary, this approach allows for a description of 
real surfaces by using a reduced number of coefficients to 
make a re-import into the design, and simulation by ray 
tracing possible. For the typical surface deformations, 
figure error and regular MSF ripples are included within a 
remaining rms-deviation in the range of 1%–5% compared 
with the measurement. This corresponds to an rms-error 
in the range of a few nanometers for the examples in this 
contribution.

3   System integration and 
simulation

The integration of real surfaces into the performance 
simulation is demonstrated here using an afocal, anamor-
phic imaging telescope in the visible wavelength range as 
an example [15]. Such a system is typically used as front 
optics for spectrometers in space applications. Figure  2 
illustrates the basic layout of this system. The goal of 
mapping a rectangular entrance pupil onto a square 
shaped exit pupil is achieved by using four freeform-
shaped mirrors (M1 to M4). The individual surface of each 
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Figure 1: The normalized, one-dimensional power spectral density 
for the measured surface deformations (blue) of M1 (see Figure 2), 
the corresponding fit based on 250 RBFs (orange) and the fit with an 
additional 75 MSF-functions (green).
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mirror is a freeform [15], even if their ideal surfaces are 
described in the optical design by the off-axis, anamo-
rphic aspheres. The system is designed for a ±3.22° field 
of view along the x-axis and ±0.47° along the y-axis. The 
mirrors are manufactured through a diamond turning 
process. To reduce the degrees of freedom involved in the 
assembly and alignment process, the mirrors M1 and M3, 
as well as mirrors M2 and M4, are manufactured on the 
same substrate.

To analyze the impact of deformations on the manu-
facturing process, the measured surfaces are fitted and 
reimplemented into the optical design. This is achieved 
through the analytical description explained within 
Section 2. In Figure 3, the measurements of the manufac-
tured mirrors, captured by interferometry, are presented 
together with their corresponding analytical descriptions. 
The residual rms-error of the deviations between the 
measurement and fit is in the range of a few nanometers. 
These are mostly unstructured errors that are not captured 
by this approach, although they may still be included by 
statistical methods or as an additional optical path length 
error of the rays [20]. Notably, the quality of the descrip-
tion is strongly dependent on the measurement. For 
example, the bump in the center of M4 or the horizontal 
line on M1 are artifacts of their measurements, which are 
verified later when comparing the results with a measured 
wavefront.

The analytical expressions of the mirrors are imple-
mented back into the optical design in the next step. This 
can be done, for example, in the Zemax OpticStudio 
[21], along with a dynamic link library (DLL). The limited 
number of surface profile coefficients allows for a fast sim-
ulation by ray tracing.

4   Results
The performance of the system can be evaluated by inte-
grating the simulation with the real surface profiles. It is 
common to analyze the wavefront in the exit pupil as a 
criterion for the quality of high-performance systems. 
The presented approach can also be used to study the 
modulation transfer function (MTF) or the geometric spot 
diagrams.

Prior to including any manufacturing deformations, 
the wavefronts of the ideal designed surface shapes and 
their corresponding perfect component adjustments 
for the anamorphic telescope are shown in Figure  4. 
The wavelength is 632.8  nm. The results for the three 
exemplary fields are shown. The central field intersects 
the entrance pupil at 0°, and the angle of the two outer 
fields is ±0.235° along the y-axis. The rms-error of the 
wavefront for the central field is 43  nm with pv-error of 
385 nm. For the two outer fields, the rms-errors are 43 and 
44 nm for ±0.235° and −0.235°, respectively. The pv-errors 
differ slightly from the central field by 257 and 496  nm, 
respectively. Therefore, the system can be considered 
 diffraction-limited for the specific wavelength.

The next step considers the real surfaces, as described 
in Section 3. The geometric spot diagrams of the central 
field for the ideal and the real systems are shown in 
Figure  5. The rms-radius is increased by a factor of 6 to 
0.06  mrad. Figure 6 shows the simulated wavefronts for 
the exemplary fields in the upper row with the same wave-
length of 632.8 nm. As expected, the performance of the 
system has decreased due to the impact of the manufac-
turing deformations on the mirrors. For example, the rms-
error of the wavefront for the central field has increased 
by a factor of 6.5 to 281 nm. Both the impact of the figure 
error as well as the influence of the characteristic MSF-
ripples from the turning process can be clearly investi-
gated. Considering the deformation of the mirror M4 (see 
Figure 3), the ‘blue bow’ is almost directly mapped into 
the wavefront. This is because M4 is closest to the exit 
pupil. With increasing field angle, a shift of the structures 
coming from the more field correlated mirrors M1 and M4 
is investigated.

As proposed in the beginning, the goal of this man-
uscript is to demonstrate the approach on an example 
system and its verification for tolerancing by a comparison 
with the experimental data. Quantitatively, the wavefronts 
in the exit pupil of the adjusted, afocal telescope were 
measured by interferometry in a double pass arrange-
ment. The corresponding measurements are presented in 
the lower row of Figure 6. For all the studied field points, 

Figure 2: The layout of the optical design for the afocal, anamorphic 
imaging telescope. The rectangular entrance pupil is mapped on the 
square shaped exit pupil by four freeform mirrors (M1–M4).
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good qualitative correlation is achieved. Both the figure 
error and the fine radial ripple structures of the measure-
ment are resolved in the simulation. Quantitatively, the 
rms-error between the simulation and the corresponding 
measurements deviates by only 2.9% for the central field 
and by 2.6% and 3.0% for the outer fields, respectively. 
One reason for the low residual variation is the impact of 

the alignment process. A shift and a tilt between the two 
substrates was considered for the simulation to further 
improve the correlation with the measurements. The 
influence on the optical performance is shown in Figure 7. 
The residual degrees of freedom of the alignment proce-
dure for assembling the experimental system influence its 
actual optical performance. In addition, the experimental 
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Figure 3: In the left column, the measured surface deformations for mirrors M1–M4 are shown. In the remaining columns, the 
corresponding fit and deviations to the measurements are presented. The rms-error and the total number of functions N are included 
in the figures (M1: 250 RBFs + 75 MSFs, M2: 200 RBFs + 50 MSFs, M3: 170 RBFs + 50 MSFs and M4: 200 RBFs + 75 MSFs). The scaling  
of the x- and y-axes is not equal.
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evaluation of the wavefront as well as the measurement 
and description of the mirrors are incorporated with a 
certain error, as discussed in Section 3.

Based on the analytical representation of the real 
surfaces, further analysis and tolerancing of the surface 
shape are possible by adjusting the corresponding coeffi-
cients. This can be done independently for both the figure 
error and the MSF-structures. The following provides two 
cases that are studied based on the imaging telescope. 
For the first example, the figure error of the mirrors M1 
and M3, which are manufactured on the same substrate, 
is reduced by 50%. In Figure 8, the result of the simula-
tion for the central field and a wavelength of 632.8 nm is 
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Figure 4: The simulated wavefronts based on the ideal optical system for an incoming field of −0.235°, 0° and 0.235° in the y-direction. 
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Figure 6: In the top row, the simulated wavefronts based on the real components are shown for a field of −0.235°, 0° and 0.235° along 
the y-axis. The wavelength is λ = 632.8 nm. The rms-errors are 226, 281 and 313 nm, respectively. In the bottom row, the corresponding 
measurements of the assembled system are presented for comparison. The rms-errors are 232, 273 and 323 nm, respectively.
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shown. The rms-error is decreased only slightly to 261 nm 
due to the fact that the figure error of the last mirror, M4, is 
dominating. As expected, the regular ripple structures are 
not affected. The simulated wavefront in the same config-
uration but for tolerating the MSF-structures is presented 
in Figure 9. For this example, artificial surface ripples 

with a spatial frequency of ν = 0.5 mm−1 and an amplitude 
of a = 50 nm were introduced on the second substrate with 
mirrors M2 and M4. The center is defined to be the same 
as that of the manufacturing process. It is important to 
consider that, due to the different positions of the sur-
faces relative to the pupils of the system and their differ-
ent footprints, the sum- and difference-frequencies can 
arise in the wavefront [22]. The resulting rms-error for this 
example is 296 nm. In general, not only can the impact of 
the surface deformations be analyzed and tolerated based 
on this approach, but also the combined effects from the 
adjustment procedure, such as the tilts and shifts of the 
components.

5   Conclusion
In this contribution, our approach for the simulation of 
imaging systems, including the impact of real freeform 
components, was presented and demonstrated for an 
example system. The approach was verified with an rms-
accuracy below 3% by comparing the simulation results 
against a measured wavefront of the assembled system. 
The usage of an analytic description to tolerate the shape 
of the optical surfaces was also demonstrated. The exten-
sion of the approach to high spatial frequency errors and 
the inclusion of even more mechanical degrees of freedom 
into the simulation is part of our ongoing research.
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Figure 8: The simulated wavefront with a 50% reduced figure error 
of the mirrors M1 and M3, manufactured on the same substrate. 
The wavelength is λ = 632.8 nm and the rms-error is 261 nm.
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