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Abstract: Aspheric surfaces, in particular rotationally 
invariant surfaces, can be described according to the ISO 
standard 10110 Part 12 as sagitta functions of the sur-
face coordinates. Usually, such functions are standard-
ized as a combination of conic terms and power series 
or orthogonal polynomials. Similar functions are applied 
for surface forms, which are not rotationally invariant 
as cylindric and toric surfaces. In the following, differ-
ent forms of describing aspheric surfaces as given in the 
standard as well as other forms will be presented and 
compared in an overview, and their special features will 
be discussed.

Keywords: aspheric surfaces; cylindric surfaces; optical 
surface description.

1   Introduction
For describing forms of optical surfaces, several 
 mathematical functions can be applied. Standardized 
forms of description for rotationally invariant surfaces, 
as well as for other surfaces of certain kind of symme-
tries like cylindric and toric surfaces, are determined in 
ISO  10110 ‘Optics and photonics – Preparation of draw-
ings for optical elements and systems – Part 12: Aspheric 
surfaces’ [1], which is under regular revisions. Various 
alternative equations for aspheric surfaces have been 
proposed within the last decades; some of them where 
implemented in optical design software, others have been 
modified and some of them became part of the ISO stand-
ard, partially presented in [2]. Depending on the type 
of aspheric surface and the function within an optical 
system, the different forms of description may be more 

or less useful. Surfaces of lower symmetry like off-axis 
aspheres up to free form or general surfaces have been 
standardized in ISO 10110 Part 19 ‘General  description of 
surfaces and components’ [3]. This overview is concen-
trated on surfaces considered in ISO 10110 Part 12 and will 
show other modified forms and their special properties. 
Furthermore, sets of relevant equations will be provided 
clearly arranged and in an entire structure using a con-
tinuous and uniform nomenclature.

2   Coordinate system and sign 
convention

As a basis for the following explanations, a standardized 
right-handed, orthogonal coordinate system x-y-z is used 
as shown in Figure 1. For on-axis surfaces, the z axis is the 
optical axis. The radius of the curvature is positive if the 
center of curvature is to the right of the vertex, and nega-
tive if the center of the curvature is to the left of the vertex. 
The sagitta of a surface point is positive if the point is to 
the right of the vertex, and negative if the point is to the 
left of the vertex.
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Figure 1: Surface coordinate system.
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3   Surface descriptions
Within the coordinate system, a rotationally invariant 
optical surface can be described one-dimensionally by the 
surface sagitta value in the z direction as a function of the 
surface height

 
2 2h x y= +  (1)
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by a combination of two terms. With the first term, the 
basic conical surface will be described by its curvature ρ 
as the reciprocal of the radius of curvature r0 and a conic 
constant κ. For κ = 0, the basis is a spherical surface, and 
for ρ = 0, the basis is plano. Figure 2 shows the different 
types of conic surfaces corresponding to the values of κ.

3.1   Surface descriptions by conic part and 
power series

The basis term is followed by a series expansion as a func-
tion of the surface height f(h). Figure 3 shows the sagitta 
functions as defined in (2) for a basic sphere, given by the 
surface radius of curvature r0, the basic conic section for 
κ ≠ 0 and the aspheric surface of higher order. As a series 
expansion, a power series (monomials) can be used which 
adds monotone sagitta parts as deviations from the basic 
conic surface defined by the aspheric coefficients An as
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In the most standard way for such aspheric surfaces of 
higher orders, only even powers with A2n starting from n = 2 
are considered only due to rotational invariance, so that
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This formula is ISO standardized for many years 
and used in several optical design softwares as well as a 
 standard description on optical drawings. The disadvan-
tages of this form are that the coefficients have different 
units of the order of (length)1−2n, they normally have very 
different orders of magnitude and they do not remain con-
stant if the surface is scaled.

An elegant way to overcome these disadvantages is, 
instead of describing the sagitta values as a function of 
the surface height, expanding the power series in the 
surface aperture with the surface aperture angle ϕ:

 sinhρ ϕ=  (5)

so that a normalized power series is added to the basic 
term
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Figure 2: Conic surface forms.

Figure 3: Surface sagitta form as a function of surface height.
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The standard power series (4) and the normalized 
power series (6) can be converted easily from and to each 
other by

 
1 2

2 2
n

n nB A ρ −=  (7)

The coefficients B2n of this normalized power series 
are now free from units and have normally much lower 
differences in order of magnitude, and they remain con-
stant while scaling, so that aspheric surfaces described in 
that way are much better comparable, independent from 
the surface focal length. This form is only limited to non-
planar base surfaces with ρ ≠ 0, which is not a general 
disadvantage. The application of this type of power series 
was proposed and published a long time ago (see [4–6]) 
and was implemented in optical design software at the 
Optical Institute of the Technical University Berlin and in 
the commercial software WinLens [7].

3.2   Surface descriptions by conic part and 
Zernike polynomials

In both power series versions, monotone interdepend-
ent series parts are applied to describe the sagitta devia-
tion from the basic conic surface. This means that also 
the power coefficients are interdependent. Alternatively, 
to describe the deviation from a basic conic surface, 
 orthogonal polynomials can be used, which was also pro-
posed and published in [4–6] and implemented in optical 
design software long ago. Here, Zernike polynomials are 
used, which are defined as
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for which v > 0, w > 0, v ≥ w and (v − w) is even, u is the radial 
and ϕ is the azimuthal coordinate. Because of rotational 
invariance, for the surface description, only the Radial 
Zernike polynomials ( )w

vR u  are used, which are defined as
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For rotationally invariant surfaces, even powers of the 
radial polynomial part of grade w = 4  was selected with 
the variable v = 2n, which results in
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As the Zernike polynomials are defined for the unit 
circle, the variable parameter u is the normalized surface 

height for which the maximum surface height has to be 
specified by

 max max

h hu
h h

ρ
ρ

= =  (11)

The selection of the orthogonal Zernike polynomi-
als corresponds to the nomenclature standardized in 
ISO/Technical Report 14999-2 ‘Optics and photonics – 
Interferometric measurement of optical elements and 
optical systems – Part 2: Measurement and evaluation 
techniques’ [8] for the Zernike order Z and N as listed in 
Table 1.

Following the normalization on the surface aperture 
as in (6), the sagitta function of an aspheric surface using 
the Zernike expansion normalized to the surface aperture 
hmaxρ with respect to the maximum surface height hmax can 
now be written as
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with C2n as Zernike coefficients. Without normalization to 
maximum surface height, the Zernike expansion can also 
be written as

 

2
4

2 22
2

  ( )
1 1 (1 ) )

(
(

)
N

n n
n

hz h C R u
h

ρ

κ ρ =

= +
+ − +

∑  (13)

with the Zernike coefficients
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Table 1: Zernike polynomial orders according to ISO/TR 14999-2.

Z   N  v  w  Radial part of 
Zernike polynomial

16/17  8  4  4/−4  4
4 ( )R u

27/28  10  6  4/−4  4
6 ( )R u

40/41  12  8  4/−4  4
8 ( )R u

55/56  14  10  4/−4  4
10( )R u

72/73  16  12  4/−4  4
12( )R u

91/92  18  14  4/−4  4
14( )R u
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which represent the aspheric polynomial part as the 
sagitta deviation from the conic section at the surface 
edge for

= → = = → =4
max 2
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h

The Zernike polynomials 4
2nR  can be computed simply 

using the short form (9) or for higher numerical stability, 
which is only necessary for extremely higher orders, by 
using recursion algorithms in the following way:
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Applying (10) or (15) for the computation of the 
Zernike polynomials up to the order of 2n = 14 results in
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The main advantage of using the Zernike polynomials 
for the description of the deviation from the basic conic 
surface is their orthogonality and, therefore, their inde-
pendence from each other. This series expansion is a sum-
mation of non-monotone-independent parts, which can 
be used especially for the optical design process as shown 
in [4–7]. In this way, a targeted correction of zonal aber-
rations is possible in a much better way than using the 
standard power series.

3.3   Surface descriptions by conic part 
and Qcon-polynomials

An equivalent orthogonal surface form description for the 
deviation from a basic conic surface is proposed by Forbes 
[9–12] using the so-called Qcon-polynomials as modified 
Zernike polynomials as
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With n = m + 2 the equivalence of both orthogonal 
 polynomial forms is given by
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So, this means that the Qcon-polynomials are just 
Zernike polynomials for which the factor u4 is separated in 
front of the expansion sum, while the coefficients am are 
the correlated Zernike coefficients.

The polynomial form according to (17) is represented 
in the ISO 10110 Part 12, in which the computation of the 
orthogonal Qcon-polynomials is defined only using recur-
sion algorithms. They are equivalent to the algorithms 
used for Zernike polynomials shown in (15) and are listed 
here in a simplified form as
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starting with
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and following for m > 0 with

 ( ) 2 ( 4)(2 2)a m m m m= + +  (20c)
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 ( ) (2 2)(2 3)(2 4)c m m m m= + + +  (20e)

 ( ) 2( 1)( 3)(2 4)d m m m m= − + +  (20f)

Also, here, a much easier way for computing the 
 Qcon-polynomials for moderate orders is given similar to 
(10) by
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For the sake of completeness and in accordance 
with  (16) and ISO 10110 Part 12, the computation of the 
 Qcon-polynomials up to the order of m = 5 results in
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Furthermore, as for the Zernike polynomial form, 
the coefficients am of the Qcon-polynomials represent the 
aspheric polynomial part as the sagitta deviation from the 
conic section at the surface edge for
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3.4   Conversion of series expansions

An important fact is that the orthogonal polynomial forms 
shown here as Zernike polynomials (13) and equivalent 
Qcon-polynomials (17) can be directly converted to the 
standard power series given in (4) and (6) using coeffi-
cient comparison by
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This shows that a standard surface description, which 
allows maximum comparability of aspheric surfaces, is 
possible by using the power series as standardized in ISO 
10110 Part 12. After using an orthogonal expansion form 
for the optical design process, the power series coeffi-
cients can be converted easily from them for the optical 
surface drawing.

3.5   Surface descriptions by conic part 
and Q-polynomials for base fits

An additional surface form description for the deviation 
from a basic conic surface is also proposed by Forbes [9–
11] using the so-called Qbfs-polynomials. This form is also 
present in ISO 10110-12. The special features of this form 
might have advantages for the design, the manufacturing 
and the measurement of aspherical surfaces. Again, the 
description of the sagitta values of a surface splits into two 
terms, the basic conic term and a sum of polynomials, as
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As modification to the ISO standard, the polyno-
mial Q is initially indexed here with ∗, which implies the 
characteristic deviation from the base surface, which 
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can be conic or plano, in a way that the deviation fits the 
base at the surface vertex and the center at h = 0, respec-
tively, and the surface edge given by hmax. Again, u is the 
normalized surface height defined in (11).

Using the cosine of the local surface aperture angle ϕ 
as defined in (5) as a reciprocal factor in the series expan-
sion of (25) as
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the sagitta function can be written as
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so that in a first approximation, the remaining function
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can be interpreted as the surface deviation from the basic 
surface in normal direction. This may create advantages 
for surface manufacturing and measurement.

A further important feature of this description form is 
the orthogonality of the first derivatives of the polynomial 
term, which describe the slopes of the surface around the 
basic conic form.

Besides the explicit standardized option of applying 
this form also for a non-spherical base surface, the main 
usage is proposed for a spherical base which is declared 
as the ‘best fit spherical’ surface. This only means that, 
again, the expansion term just fits the spherical surfaces at 
the surface vertex and its edge, as for fitted conic or plano 
surfaces. So, for a ‘best fit sphere’ (bfs) base with the curva-
ture ρbfs in this sense here, the equation (25) is changed to
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From another point of view, a real best fit spheri-
cal surface generally is defined as a spherical surface 
with minimum deviation from the real aspheric surface 
described by the whole equation.

The computation of the polynomials Q∗ or Qbfs respec-
tively, is following the more complex recursion formulas 
as
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which have to be solved for m ≥ 2 using the starting values:
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The resulting polynomial functions up to the order 
m = 5 can then be written as
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3.6   Comparison of functional expansions

A graphical presentation of the different expansion 
functions demonstrates the impact of the single series 
parts onto the surface form more clearly. Figure 4 shows 
the sagitta functions z(h) of the different orders 2n = 4 to 
14 or m = 0 to 5, respectively, normalized to the surface 
height hmax = 1. It can be seen and understood that as 

opposed to the monotone power series function, the 
orthogonal function of the Zernike polynomials or Qcon-
polynomials, respectively, and the  Q∗-polynomials, here 
shown in the axial direction and in the surface normal 
direction without the cosine factor, allow better direct 
impacts onto special surface zones. In addition, Figure 5 
demonstrates the corresponding 3-dimensional  function 
for rotationally invariant surfaces more colorfully.

Figure 4: Surface sagitta form deviation from base for the orders 2n = 4 to 14 or m = 0 to 5, respectively, as function of surface height for 
power series, Zernike polynomials and Q-polynomials for normalized surface height.

Figure 5: Two-dimensional surface sagitta form deviation from base for the orders 2n = 4 to 14 or m = 0 to 5, respectively, for power series, 
Zernike polynomials and Q-polynomials for normalized surface height.



274      R. Schuhmann: Description of aspheric surfaces

4   Slope calculation
Besides the general surface form, the variation of the surface slope as a function of the surface height is of special 
interest. The slope variation might be different compared to spherical or conic surfaces for which the slope is always 
monotone. The local slope as the surface gradient is the first partial derivative of the aspheric sagitta function to the 
surface height h. For the power series as defined in (4) and (6), the differentiation yields to
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For the sagitta functions, using the orthogonal Zernike (12) or Qcon-polynomials (17), respectively, the partial deriva-
tives are
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As

 max

( 1 )) (dz h dz u
dh h du

=  (36)

and using the substitution

 max maxsin  t hϕ ρ= =  (37)

the differentiation of the sagitta function using the Q∗-polynomials (25) results in
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Furthermore, the partial differentiation of the expansion function part f⊥ (h) according to (28) determines the slope 
around the base surface in normal direction as
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The partial derivatives for the power expansion, for the Zernike polynomial expansion, which is equivalent to the 
Qcon-expansion as well as for the Q∗-expansion in axial direction and in surface normal direction without the cosine 
factor are shown in Figure 6.
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5   Scaling of aspheric surfaces
In the optimization process, optical surfaces are modi-
fied with respect to the surface form and surface aperture. 
This means that, for example, a surface will be scaled by 
a factor Fs, which changes the conic base with the radius 
of curvature and therefore the surface focal length as well 
as the maximum surface height. To keep the character-
istic aspheric form of such a scaled surface means that 
the sagitta function z(h) will be scaled and that it might 
be necessary to change the aspheric coefficients of the 
series expansion by an equivalent scaling also, depend-
ing on the type of that expansion. Furthermore, in techni-
cal drawings of lenses, the orientation and, therefore, the 
sign of the radius of curvature is dependent on the posi-
tion of the surface and its orientation e.g. as front or back 
surface of a single lens, concerning the sign convention. 
This means that in this case, a factor of Fs = −1 may change 
the aspheric data of the surface.

So, if a surface is scaled in all dimensions by a scale 
factor Fs, then the sagitta function is scaled as

 �( )   ( )sz h F z h=  (40)

Comparing the different types of aspheric descrip-
tions listed above, the following changes of the surface 
data have to be made if the surface is just simply scaled by 
keeping the ‘asphericity’:

Radius of curvature:  sR F R=�  (41)
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It has to be pointed out here that describing an 
 aspherical surface using a normalized power series or 

Figure 6: Slope variations as partial derivatives of power series, Zernike polynomials and Q-polynomials for normalized surface height 
(coloring of orders equivalent to Figure 4).
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normalized Zernike polynomials, the corresponding 
expansion coefficients remain constant while scaling 
[see (45) and (47)], even especially while changing the 
orientation of the surface. This means that in the optical 
design process, the data of the expansion functions are 
 decoupled from the basic surface function. Using one of 
these kinds of description forms might be of great advan-
tage for the optimization of optical systems, and this may 
also avoid errors in the preparation of technical drawings 
corresponding to [1, 13].

6   Aspheric description functions 
for translationally invariant 
surfaces

So far, rotationally invariant surfaces have been dis-
cussed. In a next step, the description forms for such 
surfaces can be applied for translationally invariant sur-
faces like cylindrical surfaces, also in such a way that the 
formalism will be reduced to single dimension x or y. So, 
instead of describing the sagitta function z as a function 
of the two-dimensional surface height h as defined in (1), 
the surface will be described in one shape for x or y only. 
The perpendicular shape is plano with ρx = 0 or ρy = 0. 
Therefore, the base parameters will be modified in the 
following way:

Surface height:   orh x h y= =  (50a)

 max max max maxorh x h y= =  (50b)

 max max

orx y
x yu u u u

x y
= = = =  (50c)

Curvature:  orx yρ ρ ρ ρ= =  (51)

Conic constant: orx yκ κ κ κ= =  (52)

So, the description of non-circular cylindrical sur-
faces can be described using similar formulas as for 
aspheric surfaces, here selected for the x coordinate and 
summarized as
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As for aspherical surfaces according to (29), the 
description using Q∗-polynomials (57) can be based on a 
circular cylindrical form with κx = 0 or κy = 0, for which the 
radius of curvature becomes the ‘best fit cylindrical radius’ 
as ρbfc,x or ρbfc,y fitted to the cylinder vertex line and the 
edges of the surface.

7   Aspheric description functions for 
surfaces of less symmetry

More complex surfaces with less symmetry can be devel-
oped from the 2-dimensional functions above when 
applying the formalism for both directions for curved 
shapes in x and y. If at least one shape is circular, toric 
surfaces can be described in this way. For the general 
case of non-circular shapes in both directions and as a 
special way of describing conoidal surfaces, the aspheric 
description forms can be applied for 2-dimensional 
sagitta functions as
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In principle, also orthogonal polynomials as 
used for rotationally invariant expansions can be 
applied. For  example, using the Zernike polynomials 
 corresponding to (12) and (13), the sagitta function can 
be written as
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Even sagitta functions using Q-polynomials can be 
applied in the same way. More complex surfaces up to free-
form surfaces are not considered within the ISO standard 
10110 Part 12 [1] but can be found in ISO 10110 Part 19 
[3] as generalized surfaces. Furthermore, more complex 
description forms based on (58) but using mixed terms for 
x and y can be found in [14–16] and other publications.

8   Summary and conclusion
In this overview, descriptions of aspheric surfaces from 
types with rotational invariance up to types with less 
symmetry have be presented, which all are based on 
conic terms followed by different series expansions. 
Most of these sagitta functions can be found in the ISO 
standard 10110 Part 12; other modified versions have been 
shown here in addition, which may be of special inter-
est. Furthermore, the exact computation of the different 
polynomials as well as conversion formulas have been 
listed clearly. The special properties of the different types 
of description have been discussed. In conclusion, the 
application of one or another of these types is dependent 
on the characteristics of optical surfaces within a system 
and on the usability for the optical design process, the 
producibility and the measurability as well as for the 
overall qualification and for the comparability of aspheri-
cal surfaces.
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