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Abstract: In everyday traffic, pedestrians rely on informal
communication with other road users. In case of auto-
mated vehicles, this communication can be replaced by
light signals, which need to be learned beforehand. Prior to
an extensive introduction of automated vehicles, a
learning phase for these light signals can be set up in
manual driving with help of a driver intention prediction.
Therefore, a three-staged algorithm consisting of a neural
network, a random forest and a conditional stage, is
implemented. Using this algorithm, a true-positive rate
(TPR) of 94.0% for a 5.0% false-positive rate (FPR) can be
achieved. To improve this process, a personalization pro-
cedure is implemented, using driver-specific behaviours,
resulting in TPRs ranging from 91.5 to 96.6% for a FPR of
5.0%. Transfer learning of neural networks improves the
prediction accuracy of almost all drivers. In order to
introduce the implemented algorithm in today’s traffic,
especially the FPR has to be improved considerably.

Keywords: automotive lighting; learning signals; recurrent
neural networks; time sequence processing; vehicle-
pedestrian-communication.

1 Introduction

In today’s traffic, communication between traffic partici-
pants is absolutely necessary in order to guarantee traffic
flow, solve unclear situations and signalize yielding [1, 2].
Especially pedestrians rely and depend on interactions
with drivers. When crossing the street, they seek eye

contact with drivers of approaching vehicles to make sure
that they have been seen or that the driver yields them the
right of way [3]. Pedestrians’ trust in other road users and
their perceived safety decreases when there is no commu-
nication present [4, 5]. Thus and because pedestrians are
the most vulnerable road users in traffic, authorities such
as the NHTSA recommend to establish eye contact before
crossing the street [6].

Recent development in the automation of vehicles
continuously increases the number of automated and
autonomous vehicles in our everyday traffic [7]. As the
automation level of vehicles increases, the driver becomes
more and more a passenger instead of actively taking part
in the traffic [8]. This results in a low acceptance of auto-
mated vehicles, as there is no active communication part-
ner for pedestrians. Thus, they lose trust when sharing
space in traffic with the automated driving systems [9].

It is now the task of automated vehicles to communi-
cate with other road users, especially with pedestrians, to
give them certainty about their intention and restore trust
(see Figure 1) [10]. Unfortunately, recent surveys regarding
the vehicle-pedestrian-communication show that the
intuitivity of signals used for this task is quite low and
mostly not sufficient for this task. Participants in these
surveys often cannot interpret signals correctly in first
place [11–13]. Especially simple signals, such as when
utilizing led-strips, are not intuitive [11]. In this context, a
survey regarding the supporting role of colours for the
intuitivity of symbols shows that it enhances the partici-
pants’ confidence only for certain situations. Most often
white and green show the best results, while blue-green is
not favourable for the communication of automated vehi-
cles [12]. Blue-green is currently under discussion in stan-
dardization organizations (SAE, GTB, ISO and GB
standard) although this colour is not intuitive for traffic
participants.

This shows clearly that we need a method to introduce
a huge portion of the population to the new signals prior to
the introduction of automated driving systems. A possi-
bility requiring little effort to teach others is the
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introduction of these newly developed signals in manual
driving mode of today’s vehicles. Therefore the light sig-
nals are shown to other road users, while the driver is
communicating as usual. Thus, for example, pedestrians
can still rely on drivers’ cues, while vehicles display new
light signals in parallel. This way, other road users and
especially pedestrians can learn to associate both modal-
ities, build an inner model for the vehicle-pedestrian-
communication and be prepared for a more frequent con-
tact with automated driving systems.

In order to predict the driver’s intention to show light
signals automatically, algorithms utilizing artificial neural
networks have proven suitable for this task. This is because
they can interpret temporal dependencies especially well.
Such algorithms were already developed in recent years,
still inheriting the disadvantage of being trained on a
general dataset and thus, an average driving profile [14, 15].
Artificial neural networks are especially well suited for
predicting and processing time series. In literature, they
clearly outperform other algorithms such as hidden Mar-
kov models [16], Gaussian mixture models [17], auto
regressive (integrated) moving average or Box-Jenkins [18].

Optimizing the developed algorithms to predict a
driver’s intention to stop, they can be adapted to driver and
vehicle specific behaviours. Therefore mostly transfer
learning methods show excellent results [19]. Adapting the
algorithm is especially important in order to decrease the
classification’s false-positive rate (FPR). False-positives
result in potentially dangerous situationswhere the vehicle
indicates an expected stop, while the driver wants to
continue driving. Using transfer learning, algorithms can
apply knowledge from a previously learned domain in a
second novel task [19]. Utilizing driver and vehicle specific
data, a general algorithm can be adapted to the driver after
delivery of the vehicle to the customer. Here, already little

training kilometres can be used to generate a suitable
dataset to personalize neural networks for the driver
intention prediction. The more data we collect, the better
the neural network can adapt to the driver and the vehicle.
Nevertheless, we expect the transfer learning’s training
effect to plateau as the amount of data increases.

Therefore, an algorithm predicting a driver’s intention
at pedestrian crossings is implemented. Using transfer
learning, the algorithm is adapted to driver- and vehicle-
specific behaviours to predict whether a driver wants to
stop or continue driving more reliable.

2 Technical background

Neural feedforward networks process, as most deep
learning algorithms, input variables at a single point in
time without considering previous time steps and infor-
mation. Recurrent neural networks (RNNs), especially
LSTMs (long short-term memories) use feedback loops in
their architecture to analyze sequences of data such as time
variant signals [20]. LSTMs are gated RNNs that use mul-
tiple gates and an inner cell state to determine which in-
formation to store in the LSTM cell, which to output or
forget. Because of these gates, LSTMs are capable of
avoiding vanishing and exploding gradients, which typi-
cally occur in RNN architectures. This is essential to train
deep neural networks and classify the driver intention
reliably [20, 21].

Transfer learning is used to apply already learned
knowledge inherited in a model to train a task specific,
modified model. Thus, the classification accuracy can be
increased using only a small amount of data [19]. De-
velopers often use transfer learningwhen there is only little
data available for the specific task and high accuracies are
to be achieved. For neural networks, there are multiple
ways of utilizing transfer learning, for example fine-tuning
all layers of the architecture, retrain certain layers or
adding new layers. Fine-tuning the network and adding
new layers requires in comparison to only retraining
certain layers more data and training effort. Retraining
layers is often used for similar tasks, where little data are
available [22, 23].

As in the previously developed algorithm, we semi-
automatically label the data with 39 rules that we obtain
from manually reviewing multiple time series. Utilizing
these rules to train a random forest, we can predict whether
the driver wants to stop or continue driving. For most
stopping situations, vehicles do not come to a full stand-
still, which is whywe need to use a stopping velocity below
7 km/h. Therefore, classifying whether the vehicle will

Figure 1: Symbol-based vehicle-pedestrian-communication [12].
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come to a stop within the prediction horizon, we use a
velocity threshold of 7 km/h [14]. This threshold is also used
for detecting stops in automatic start–stop systems [24].

3 Driver intention prediction
algorithm

Figure 2 depicts the driver intention prediction algorithm,
which consists of three stages [14]. In stage one, a recurrent
neural network with four LSTM layers and two fully con-
nected layers predicts from all 22 input signals 5 output
signals’ time series over a prediction horizon of 2 s. These
output signals are velocity, break pressure, steering wheel
angle, longitudinal and lateral acceleration. The second
stage implements a random forest classifier,which predicts
from the 5 output signals (each spanning over 2 s) of stage
one the driver’swillingness to stop, i.e. driver’s intention to
stop in the next 2 s. Therefore, the random forest consists of
25 decision trees with a depth of 12 each. At the end of stage
two, their prediction probabilities are averaged and pro-
cessed with a threshold. The first two stages are trained
independently from each other. The third stage compares
the vehicle’s speed at the end of the prediction horizonwith
the velocity threshold of 7 km/h, which is also used for
automatic start–stop systems. Herewith, stage three pre-
dicts consecutive to the driver’s willingness to stop, if the
vehicle will come to a stop in the prediction horizon of 2 s.

We chose this three-staged approach in order to make
the algorithm more interpretable. Deep neural networks

are quite complex and very difficult to interpret [25], which
is why we decided to use a more interpretable algorithm, a
random forest, for stage two. In this stage, the actual pre-
diction of the driver’s willingness to stop is made. The
decision whether the vehicle will comes to a stop or con-
tinues driving is based on a simple rule set, which is easy to
interpret. Dividing the algorithm into several smaller sub-
sections is based on the divide and conquer approach [26].
We totally excluded an end-to-end system, which is
considered to be uninterpretable [27], as this algorithm
applies to a safety related task.

The dataset for a general driver intention prediction
algorithmat pedestrian crossing consists of 7114 time series
from multiple test drivers [15]. These time series build a
training dataset with a total length of approximately 120
hours and contain 1114 stops at zebra crossings. Test
drivers had collected the data from April 2017 until May
2018. The dataset consisting of time series spanning over a
full year guarantees to have diverse training samples. In
total, we use 22 relevant signals with a temporal resolution
of 10 ms, including vehicle speed, breaking pressure,
steering wheel angle, camera objects, etc. We normalize all
data with a min–max normalization in order to have
similar orders of magnitude for all signals and therefore
similar influence on the training process [28].

With this implemented algorithm and dataset, stage
two achieves a false-positive rate (FPR) of 5.0%with a true-
positive rate (TPR) of 93.6%. After processing it with the
7 km/h threshold, the algorithm results in stage three in a
TPR of 94.0% at the same FPR (see Figure 3). While
training, the algorithm reaches aminimum validation-MSE

Figure 2: Architecture of the driver intention prediction algorithm [14].
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(mean squared error) of 3.16 × 10−4 and therefore stops
training after 47 epochs. With the resulting TPRs and FPRs,
visualized by the ROC curves (receiver operating charac-
teristic) in Figure 3, the algorithm misses the requirements
set by the authors with TPR≥95 and FPR≤5% slightly.

The results of the algorithm after stage three show
higher accuracies than after stage two. This is because of
the filtering and comparison with the 7 km/h threshold,
with which some uncertain classification results are set to
label “continue driving”. Above 5.0% FPR both curves
converge. None of both ROC curves has a smooth shape
and especially the graph of stage three shows a saddle
point around an FPR of 1.0%. This can be explained with
the small test dataset with a low diversity of test samples.
We use quite a small test set in order to have a higher
number of training sequences to result in a well-trained
algorithm.

4 Personalized neural networks
using transfer learning

As described in chapter 2, transfer learning can help
personalizing neural networks in order to get task-specific
models. Therefore, a specialized dataset is necessary,
which can be much smaller than the dataset for the pre-
trained algorithm. Essential for this task and for getting a
personalized driver intention prediction is the develop-
ment of a representative dataset, which contains as many
driver-specific characteristics as possible.

The first stage of the driver intention prediction algo-
rithm needs to be adapted to driver and vehicle specific
properties, which could be driving behaviour, breaking or
steering characteristics. Preferably, an as small as possible
dataset is to be used, in order to allow a relevant and most
practical application in later series application. Therefore,

we collect the data of four randomly selected drivers on a
reference route in and around Ingolstadt, Germany. The
recorded data have the same format and feature set as the
above-described dataset for pre-training the algorithm. The
reference route is 36.6 km long and consists of 56.2% city
traffic, 31.0% country roads and 12.8% highways, as
average routes of German drivers do as well [29, 30]. In
total, the test drivers pass six zebra crossings, 47 traffic
lights and nine unsignalized pedestrian crossings.

We obtain the optimal length of the reference route by
evaluating various lengths regarding their test-MSE after
applying transfer learning and selected data to the baseline
network. Figure 4 confirms the expected results that larger
datasets lead to lower MSEs, but also that there is a satu-
ration effect at a certain point. Applying the elbow-method
indicates that a dataset length of approximately 55 min is
optimal for this task. This gives a compromise between
high accuracies and low training efforts. Driving the
reference route takes about 60 min depending on traffic
and driving speed. In order to test the algorithm with an
independent test set, a second reference route in Ingol-
stadt, Germany is set up. This reference route contains only
city traffic and is approximately 3.3 km long.

A comparison of multiple transfers learning methods
shows that personalization of the neural network’s last two
layers is favourable (see Table 1.). The improvement of the
neural network’s validation-MSE shows for adapting the
last two and three layers the best results of the surveyed
transfer learning methods. These two options show almost
identical results for the validation-MSE’s improvement in
comparison to the pre-trained network. The less layers
need to be adapted to driver-specific characteristics, the
faster the training process is. Therefore, we choose to
personalize the neural network’s last two layers. Adding
and training a new layer leads to a less accurate driver
intention prediction than the baseline’s network, most
likely because there is not enough training data to adopt to

Figure 3: ROC curves of the pre-trained driver intention prediction
algorithm after stage two and three.

0,0005

0,0006

0,0007

0,0008

0,0009

0,001

20 40 60 80 100 120 140

Te
st

-
 ES

M
)gninraeL refsnarT(

Length of Training Dataset [min]

.

.

.

.

.

.

Figure 4: Evaluation of the optimal length of the training dataset.
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driver characteristics sufficiently. Retraining of the neural
network’s last layers outperforms the personalization of
the first layer clearly. This is due to the network’s archi-
tecture, where the first four LSTM layers learn temporal
dependencies of certain features, while the last two fully
connected layers combine them to output vectors. For all
drivers, temporal dependencies stay constant or are very
similar for all drivers, while output values of the signal
vectors might differ quite a lot.

Figure 5 shows the ROC curves of the driver intention
prediction algorithm’s third stagewith personalized neural
networks. The network is adapted to one of the four drivers
each. Applying the transfer learning for all drivers, the
algorithm results in TPRs between 91.5 and 96.6% at an
FPR of 5.0%. These values are realistic interpolations of the
ROC curve’s measured values [31]. The transfer learning for
driver four’s dataset shows best results underneath all test
personswith a TPR of 95.2%and FPR of 1.8%. Furthermore,
Figure 5 shows that above an FPR of 2.9%, the personalized
ROC curves and therefore TPRs of almost all drivers (except
driver two) stay clearly above the pre-trained, non-
personalized neural network. For driver two, the person-
alization of the driver intention prediction decreases the
classification accuracy in the entire range. This is mostly
because of unsteady and hardly predictable driving
behaviour in both reference routes. For all drivers, espe-
cially driver one and four, Figure 5 shows a steady increase
of the TPR from 0 to the 1st measurement point. The reason
therefore is a lack of data points due to the small test
datasets. Adapting the algorithm to driver-specific behav-
iour of driver three, the classification accuracy outperforms
the baseline above an FPR of 2.1%. Above this point, the
TPR is higher than 95.5%. Thus, the classification accuracy
is only superior to the baseline algorithm above a TPR of
92.5%, which is for this task sufficient, since the minimal
required TPR is 95% and thus, lies above this point.

After stage two, the ROC curves of the personalized
neural networks show in general similar results to stage
three (see Figure 6). Again, results for driver one and four
show best results underneath these test persons and result
in higher TPRs as the baseline/pre-trained algorithm. TPRs
of driver three and especially of driver two stay clearly

below the baseline algorithm’s ROC curve, which means
that personalization after stage two only works for two
drivers well, while the accuracy for two drivers decreases.

The comparison between stage two and three shows,
that as for the pre-trained network, stage three can add
certainty to the classification results. Nevertheless, we
achieve the highest TPRs using only stage two, which in-
dicates that distinguishable examples are filtered out in
stage three.

Even though that there is an increase in prediction
accuracies for driver one and four, this increase is not
significant. Nevertheless, not only the networks are
adjusted to a specific driver, but also the truths for data

Table : Improvement of validation-MSE for different transfer learning methods.

All layers First layer New layer Last layer Last  layers Last  layers Ø

Driver  −. −. . −. −. −. −.
Driver  −. −. . −. −. −. −.
Driver  −. −. −. −. −. −. −.
Driver  −. −. . −. −. −. −.
Ø −. −. . −. −. −. −.

Figure 5: ROC curves of the personalized algorithm after stage
three.

Figure 6: ROC curves of the personalized algorithm after stage two.
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labelling are personalized. Thus, the driver-specific algo-
rithms are representing their actual intention better.

5 Summary and outlook

Using a three-staged algorithm, we implemented a driver
intention prediction as part of a vehicle-pedestrian-
communication at pedestrian crossings. The first stage
predicts time series of five different signals, which the al-
gorithm interprets in stage two. In the final stage, the
predictions from stage two are validated and result in a
generalized classifier.

In order to meet the requirements for the driver
intention prediction defined in the study by Reschke et al.
[14], one possibility is to retrain certain parts of the neural
network. For this, a driver- and vehicle-specific datasets are
needed to personalize the neural network. Mostly, transfer
learning is used for this task and in this contribution,
adapting the last two fully connected layers of the neural
network has shown best results. For driver four, whose
personalized data worked best to adapt the network, a TPR
of 95.2% and an FPR of 1.8% result from the evaluation?
The personalization utilizing transfer learning worked
especially well for driver one and four and led to clearly
higher TPRs, but for driver two, the ROC curve showsmuch
lower true-positive rates. Summarizing, the developed al-
gorithm and the personalized neural networks are capable
of predicting a driver’s intention at pedestrian crossings to
realize a vehicle-pedestrian-communication for manual
driving. Thus, it serves as an enabler for the future
communication of automated vehicles and therefore their
acceptance and trust in these systems.

The introduced algorithmclearly outperforms reported
results from literature of similar algorithms. The reported
accuracies by Zhu et al. [32] and Tran et al. [33] reach 80.4
and 90% while our algorithm has an accuracy of 96.6%.
The algorithm of Garcia et al. [34] achieves over a predic-
tion horizon of 2 s a TPR of 65% and an FPR of 10%, which
are clearly below the quality measures of our algorithm.

Even though that the requirements of the driver
intention prediction are fulfilled for three drivers using
personalized neural networks, at least 1.8% false positives
occur. This means that for 1.8% of the positive predictions
to stop, the driver actually wants to continue driving. This
obviously is a serious risk for all traffic participants and
especially for pedestrians.

Therefore, for further development of this and future
algorithms, the FPR is required to stay significantly below
5% or needs to be secured with additional methods. Focus

of future evaluations is the personalisation not only on
both, driver- and vehicle-specific data, but also on each
characteristics separately. This could be advantageous
when multiple people use one vehicle or if one customer
changes vehicles quite often. For this, the collected data-
sets need to be enlarged or enriched. Furthermore, a pre-
diction of time series with help of time-convolutional
neural networks (TCNs) is possible and potentially the
classification accuracy can be increased [35]. Also, the
personalization of neural networks using less data would
be helpful for vehicles’ series development as well as life-
long learning or continuous learning over a full vehicle life
period. Finally, the driver could be integrated in the sys-
tem’s visualization loop and be informed what the systems
predicts. This information can potentially avoid that a
driver continues driving while the system indicates the
pedestrian that the vehicle will stop.
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