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Abstract: In this paper, we present a cornea deformation
model basedon the ideaof extending the ‘neutral axis’model to
two-dimensional deformations. Considering this simple model,
assuming the corneal tissue to behave like a continuous,
isotropicandnon-compressiblematerial,weareable topartially
describe, e.g., the observed deviation in refractive power after
lenticule extraction treatments. Themodel providesmany input
parameters of the patient and the treatment itself, leading to an
individual compensation ansatz for different setups. Themodel
is analyzed for a reasonable range of various parameters. A
semi-quantitative comparison to real patient data is performed.

Keywords: biomechanics; computer simulation; laser vision
correction.

1 Introduction

A modern refractive surgery treatment is the small incision
lenticule extraction (SMILE) by VisuMAX (Carl Zeiss Meditec,
Jena,Germany) [1, 2] aswell asSmartSightbySCHWINDATOS
(SCHWIND eye-tech-solutions, Kleinostheim, Germany) [3–6]
and CLEAR by Femto LDV Z8 (Ziemer Ophthalmics, Port,
Switzerland) [7–9]. All of these treatments are based on the
change of refractive power of the cornea due to a lenticule
extraction and provide several advantages compared to laser
assisted in situ keratomileusis (LASIK) and photorefractive
keratectomy (PRK). The cuts inside the cornea are performed
by a near infrared femtosecond laser. The surgery is con-
ducted while the cornea/eye is docked to a patient interface
(PI), which isolates the cornea/eye from the laser system, also
electrically. It furthermore neutralizes the refractive power of
the eyedue to a suitable choice of the refractive indexof thePI

material. Since the cornea/eye is docked, the anterior surface
of the cornea is therefore defined and fixed during treatment.

Within [6, 10–12], a postoperative undercorrection of
approximately 9–16% with respect to the planned correc-
tion is observed. This motivates the search for future
treatment improvements.

In this paper, we will focus on the influence of the
docking to the PI on various treatment parameters, e.g.,
refractive power change. The aim is to find amathematically
easy model to describe the deformation behavior of the
cornea up to a certain level. We will especially focus on
transformations like the docking of the eye to the PI but also
the closing of the lenticule. Rather complex mathematical/
computational models are, e.g., elaborated in [13–19], which
make use of FEMmethods that can respect somemicroscopic
fiber/anisotropic structure of the corneal tissue. Further-
more, awhole issuewasdedicated to ‘CornealBiomechanics’
[20]. Other models and estimations of output parameters by
input parameters are, e.g., illustrated in [10, 12, 21]. The initial
starting point of our rather macroscopic model follows the
idea of the ‘neutral axis’, cf. Euler-Bernoulli beam theory or
later extended to Timoshenko-Ehrenfest beam theory [22]. If
the considered transformation of amaterial can be viewed as
a one-dimensional deformation, e.g., 1D bending of a beam,
the principle of the ‘neutral axis’might be applied. This axis
represents the set of points inside the material that do not
experience stretching or compression. Therefore, its length
remains unchanged under deformation of the material. A
schematic visualization is presented in Appendix A. For a
two-dimensional deformation, like the docking of the cornea
to the PI, a different principle has to be employed. The naive
ansatz is to directly translate the principle ‘neutral axis’ to
two dimensions. Whereas when the length of the ‘neutral
axis’ is conserved, the ‘neutral membrane’ experiences a
conserved area. A schematic visualization of a radial slice of
the cornea under a two-dimensional deformation is given in
Appendix A. In reality, the movement/stretching of the
corneal tissue is limited. Effectively, at some distance from
the vertex the cornea is fixed, e.g., at limbus. Therefore, a
modification of the initial scheme has to be developed.

This paper is structured as follows. In Section 2, the
basics of the model considering the fixation of the cornea at
some distance from the vertex are presented. Consequently,
its mathematical description is formulated. In Section 3, the
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results obtained via a list of different scenarios of a variety of
input parameters are provided and later on discussed in
Section 4. In Section 5, we want to give an estimation of
future use of thismodel. TheAppendicesA, B, andCprovide
further details on themethods and thefindings, whereas the
interpretation of the most relevant findings is incorporated
into the main body of this work.

2 Deformation model

The initial schematics of the deformation are describing a
free cornea. In reality, however, the docking of the cornea to
the PI is realized with a complete eye not the corneal tissue
only. Therefore, a fixation of themovement/stretching of the
cornea is realized at some distance from the vertex, e.g., at
limbus. In our model, this will be implemented by a
rescaling of the endpoints of the cornea back to the initial
distance from the vertex.

We start by introducing our terminology and co-
ordinates usedwithin this paper to describe themathematics
of the deformation model. Most of the time, we will present
2D slices of the cornea rather than 3D plots. This is possible
due to the rotational symmetry that a non-astigmatic cornea
experiences,1 on which we restrict our analysis. In 3D, we

define its coordinate system as ( e→rx, e
→

ϕ, e
→

z) (cf. Appendix
A), whereas we drop the angular direction in the definition

of our two-dimensional coordinate system ( e→rx, e
→

z). The
z-axis is defined to be parallel to the optical axis of the eye,
whereas rx is defined as the radius in the x-y-plane with
origin at this optical axis. The vertex (in our model the center
of the anterior surface of the cornea) is located at a height
z = 0 mm and at ‘radial distance’ rx = 0 mm. Since we are
working in a 2D coordinate system, a profile p can be simply
parametrized by defining its height zp(rx,ϕ), whereas for
rotational symmetric profiles, zp(rx) is sufficient. In 3D, the

parametrization vector x→p is given by

x→p(rx,ϕ) = ⎛⎜⎝ rx cos(ϕ)
rx sin(ϕ)
zp(rx)

⎞⎟⎠
= Rz(ϕ)⎛⎜⎝ rx

0
zp(rx)

⎞⎟⎠,  0 < rx, 0 ≤ ϕ < 2π, (2.1)

which can be interpreted as a rotation around the z-axis
(obtained by Rz(ϕ)) of a 2D vector consisting of an rx- and
z-component, (rx, zp(rx)). We assume all relevant profiles p
to follow a paraboloid with height

zp(rx) = z0, p − r2x
2rp

. (2.2)

This parametrization can be mapped approximately to
the one of a spherical profile via their curvature radius rp

zp(rx) = z0, p +
̅̅̅̅̅̅
r2p − r2x

√
− rp = z0, p − r2x

2rp
+ O (r4x). (2.3)

In Table 1, we present a list of various parameters that
will appear in our model.

In order to provide a better overview, this list is given
already at this point. The parameters, rca, rcp, rcap and rlent,
are the curvature radii of the various profiles related to the
cornea, whereas rPI is the curvature radius of the PI. The
central thickness of the cornea (at vertex) is denoted by dcc
and the central thickness of the cap and lenticule by dccap
and dclent, respectively.

In order to make use of the ‘neutral membrane’ prin-
ciple, we have to define this ‘central surface’ at height

zcent(rx) = zcp(rx) + q(zca(rx) − zcp(rx)), 0 ≤ q ≤ 1, (2.4)

where q defines the relative position of this neutral
membrane inside the cornea. q = 0 corresponds to the
posterior cornea and q = 1 to the anterior cornea. The
value of q depends on material properties like density
and the structural composition of the corneal tissue.
Since the area of this central surface will be conserved

Table : List of parameters considered in our model.

Symbol Master
value

Description

rca . mm Curvature radius of the anterior cornea
rcp . mm Curvature radius of the posterior cornea
kcp . /m ‘Optical distance’ between the anterior and

posterior cornea, see Eq. (.)
dcc . mm Central thickness of the cornea at vertex
nc . Refractive index of corneal tissue
rx,limb . mm Half limbusdiameter, radial distance of limbus

to vertex
rcap . mm Curvature radius of the cap/upper cut
kcap . /m ‘Optical distance’ between the anterior cornea

and the cap/upper cut, see Eq. (.)
Rcap . mm Half diameter of the cap/upper cut, radial

distance to the vertex
TZ . mm Half diameter of the transition zone, intersect

of lenticule boundary/lower cut and cap/up-
per cut

dccap . mm Central thickness of the cap/flap at vertex
Dplan − dpt Aimed refractive power change
rPI  mm Curvature radius of the patient interface (PI)
q . Relative thickness (from posterior cornea)
θ ° Incision angle between tangent on the anterior

cornea and tangent of the incision
1 Note, that for an astigmatic cornea two 2D slices can be plotted. One
of each at minimal and maximal curvature radius.
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under deformations, we use it as reference points to
describe the rest of the profiles inside the cornea.
Therefore, a local reference frame on the central surface
is defined as ( x→T , rx, x

→
T ,ϕ, x

→
N)

x→T , rx =
∂rx x

→
cent⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒

∂rx x
→

cent

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ = 1̅̅̅̅̅̅̅
1 + z′2cent

√ ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ cos(ϕ)
sin(ϕ)
z′cent

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

x→T ,ϕ = ∂ϕ x
→

cent⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
∂ϕ x

→
cent

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ = ⎛⎜⎝−sin(ϕ)
cos(ϕ)

0

⎞⎟⎠, (2.5)

x→N = ∂rx x
→

cent × ∂ϕ x
→

cent⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
∂rx x

→
cent × ∂ϕ x

→
cent

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
= 1̅̅̅̅̅̅̅

1 + z′2cent

√ ⎛⎜⎝−z′cent cos(ϕ)
−z′cent sin(ϕ)

1

⎞⎟⎠, (2.6)

where x→T, rx and x→T,ϕ denote unit tangent vectors in rx- and
ϕ-direction and x→N the normal vector on the central sur-
face. Using 3D coordinates, a profile p can be parametrized
by

x→p(rx) = x→cent(rx) − dp(rx) e→z ,

dp(rx) = zcent(rx) − zp(rx),
(2.7)

and in the local reference frame by

x→p(rx) = x→cent(rx) − dp(rx)̅̅̅̅̅̅̅
1 + z′2cent

√ [z′cent x→T , rx + x→N]. (2.8)

Here we constructed a profile p starting from the

neutral membrane and adding a distance dp(rx) in z-di-

rection. A basic property of our model, cf. Figure 6, is that

the local components ( x→T , rx ⋅ e
→

z , x
→

T ,ϕ ⋅ e→z , x
→

N ⋅ e→z) are
conserved under deformations. This can be interpreted as

follows. The interior of the cornea is transformed with

respect to its location in relation to the central surface,

based on the initial position for a non-deformed/natural

cornea. If we now define the deformed state of the cornea,

based on a change from zcent,pre to zcent,post, we arrive at the

following expression

x→p,post(rx,post) = x→cent,post(rx,post) − dp(rx,pre)̅̅̅̅̅̅̅̅̅̅
1 + z′2cent,pre

√
[z′cent,pre x→T, rx ,post + x→N ,post]. (2.9)

The parameters rx,pre and rx,post define the rx values of

parametrized points on the central surface before and after

the transformation. In addition to this equation, based on

the definition of the local reference frame of the central

surface, we can now add the restriction of the conserved

area of the neutral membrane. Formally, it is the following

integral equation2

Apre = 2π ∫
rx,pre

0

ρ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + z′cent,post(ρ)2

√
dρ

= 2π ∫
rx,post

0

ρ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + z′cent,post(ρ)2

√
dρ = Apost. (2.10)

Next, we implement our ansatzes of parabolic profiles.
The advantage compared to spherical profiles is that sums
of polynomials are again polynomials. Therefore, we can
also assume

zcent,pre/post(rx) = z0,cent,pre/post −
r2x

2rcent,pre/post
. (2.11)

with this definition, the area restriction Eq. (2.10) and the
two component equations of Eq. (2.9) can be simplified to

Apre/post(rx,pre/post) = 2π
3
r2cent,pre/post

((1 + r2x,pre/post
r2cent,pre/post

)3
2

− 1), (2.12)

⇒rx,post(rx,pre) = rcent,post̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 + r2cent,pre

r2cent,post
((1 + r2x,pre

r2cent,pre
)3

2

− 1))2
3

− 1

√√
, (2.13)

rx, p,post(rx,post) = rx,post + dp(rx,pre)̅̅̅̅̅̅̅̅̅̅̅̅
r2cent,pre + r2x,pre

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅
r2cent,post + r2x,post

√
[rx,prercent,post − rx,postrcent,pre], (2.14)

zp,post rx, p,post( ) = zcent,post rx,post( )
− dp rx,pre( )̅̅̅̅̅̅̅̅̅̅̅̅

r2cent,pre + r2x,pre
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅

r2cent,post + r2x,post
√

rx,prerx,post + rcent,prercent,post[ ]. (2.15)

with Eqs. (2.14) and (2.15) we can set up an implicit
equation for zcent,post that can be solved numerically. We
simply identify the profile of the anterior cornea with the
one of the PI

2 The factor of 2π arises from the integral over ϕ. For astigmatic cor-
neas, the integrand has to be extended to derivativeswith respect toϕ.
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zca,post(rx, ca,post) = zPI(rx, ca,post), (2.16)

and solve for rcent,post. This describes the eye in the state
docked to the PI. The curvature radius of the central surface
before the deformation can be obtained by

zcent,pre(rx) = z0, cent,pre − r2x
2rcent,pre

= (q − 1)dcc − r2x
2
( q
rca

+ 1 − q
rcp

)⇒ 1
rcent,pre

= ( q
rca

+ 1 − q
rcp

). (2.17)

In Figure 1, both states of the free and docked cornea

are presented for a certain choice of parameter values. We

use Python as our coding and graphics environment.

By design, the endpoints of the cornea canmove freely

while obeying Eq. (2.9) from Figure 1A to B. This is valid for

a free corneal tissue that is adapting to a desired profile, the

PI. In contrast, in reality, the cornea of an eye that is

docked to the PI is not exhibiting free endpoints. Therefore,

our model also consists of the following consequent

transformation.
Since at some radial distance the cornea is fixed in

position, we introduce a rescaling that brings the end-
points of the deformed free cornea back to their initial
position.We suggest this to happen at the limbus at about
rx,limb = 6.5 mm. Since we still focus on a 2D trans-
formation, i.e., the transformation of the neutral mem-
brane, also the rescaling, is based on areas. For the
profiles of the anterior/posterior cornea and the central
surface, we fit second order polynomials. The ratio of the
area before and after the rescaling defines the scaling
factor κ. For simplicity, we assume the curvature radii to
be conserved during rescaling. For

zfit(rx, rfit) = z0, fit − r2x
2rfit

,A(rx, rfit)
= 2π

3
r2fit((1 + r2x

r2fit
)3

2

− 1), (2.18)

we can define

Figure 1: In (A) the cornea is shown in its normal state, whereas in (B) the cornea is docked to the PI with free ends and in (C) with fixed ends at
constant rx.
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κ = A(rx, end, rfit)
A(rx, limb, rfit) = A(rx,pre, res, rfit)

A(rx,post, res, rfit) , (2.19)

rx,post, res = rfit

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 + 1

κ
((1 + r2x,pre, res

r2fit
)3

2

− 1))2
3

− 1

√√
, (2.20)

for each of the three profiles. For other profiles like the cap,
lenticule boundary and the incision, we define their posi-
tionwith respect to their relative locationwithin the cornea
before the deformation

rx, p,post, res = rx, cp,post, res

+ zp(rx,pre) − zcp(rx,pre)
zca(rx,pre) − zcp(rx,pre) (rx, ca,post, res

− rx, cp,post, res), (2.21)

zp,post, res = zcp,post, res

+ zp(rx,pre) − zcp(rx,pre)
zca(rx,pre) − zcp(rx,pre) (zca,post, res

− zcp,post, res). (2.22)

As a result of all these transformations, we obtain
Figure 1C, displaying the transformation of the cornea with
fixed endpoints at rx,limb. The diopters planned for a free
cornea before docking to the PI are given in Figure 1A as an
initial parameter denoted by Dplan. Afterwards, the change
in refractive power is computed by

D = (nc − 1)( − 1
rcap

+ 1
rlent

). (2.23)

Drel of Figure 1C is defined as Drel = Dpost, res

Dplan
− 1, where

nc = 1.3765 is the refractive index of the cornea. In Figure 1C,
we realize that for this parameter choicewewould expect an
undercorrection of about 9.73% if 100% are planned for a
corneadocked to thePI. This is alreadyahint in thedirection
towards 9–16% undercorrection described in [6, 10–12].

Another improvement of the estimation of corneal
deformation in our model is the description of the closing

of the lenticule by the same mathematics as explained
above. The anterior cornea is still the upper profile of
the moving tissue, whereas the lower profile is now the
cap/upper cut itself.

In Figure 2, the closing of the lenticule is presented.
Here, the change in refractive power is computed from the
change in curvature of the anterior cornea

D = (nc − 1)( 1
rca,post

− 1
rca,pre

). (2.24)

From this part of our model, we expect 3.44% under-
correction compared to the planned refractive power
change for a free cornea. In total, starting from 100%
planned for a docked cornea, we arrive at an under-
correction of 12.82% after the closing of the lenticule. In
Appendix B, residuals of the fits of the previously described
models are shown. Overall, the deviation is of the order of
the spot size of the surgical femtosecond laser.

In order to test different possible patient scenarios, a
variation of various parameters is performed in Sections
3.1 and 3.2.

Figure 2: From (A) to (B) the lenticule is closed by the same mathematical formalism as used before in Figure 1.

Table : List of parameter values considered for the model test.
Bold numbers represent the ‘master value’ of a parameter.

rca [mm] . . . . .
kcp [/m] −. . . . .
rcp(kcp,rca) [mm] (see Eq. (.)) . . . . .
dcc [mm] . . . . .
rx,limb [mm] . . . . .
kcap [/m] −. −. . . .
rcap(kcap,rca) [mm] (see Eq.
(.))

. . . . .

Rcap [mm] . . . . .
TZ [mm] . . . . .
dccap [mm] . . . . .
Dplan [dpt] − − − − −
rPI [mm]     

q . . . . .
θ [°]     
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3 Results

In the previous section, the mathematical description of
the docking to the PI and closing of the lenticule is defined.
In the following, an analysis by a variation of multiple
parameters is performed.

3.1 Model application– docking to PI

In this section, we partially evaluate the parameter space
of the deformation model described in Section 2. It

turned out to be practical to introduce alternative vari-

ables for the curvature radii of the cap and posterior

Figure 3: Docking to PI, Section 3.1. Various parameter variations for the ratio of Dpost/Dplan, Rcap,post/Rcap and TZpost/TZ, the deviation in
incision angle Δθ and maximal absolute fit residue maxabs,res. In order to model the ratios and the deviation in incision angle, second order
polynomials ya(x) = a0 + a1x + a2x2 are fitted to the five scenarios.
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cornea. Their ‘optical distances’ to the anterior cornea

are defined as

kcap/cp =
1
2
( 1
rcap/cp

− 1
rca

). (3.1)

The choice of parameter values is presented in
Table 2.

As defined in Eq. (2.4), q = 0 represents the posterior
cornea and q = 1 the anterior cornea. For each parameter, we
define a so-called ‘master value’ and four additional values.
These values should be related to standard eyes that are
found in society [23–29]. To keep computation time low, we
only varied one parameter at a timewhile keeping the others
fixed at their master value. A selection of variations is given
in Figure 3, whereas the rest is listed in Appendix C.

Figure 4: Closing lenticule, Section 3.2. Various parameter variations for the ratio of Dpost/Dplan and maximal absolute fit residue maxabs,res.
In order to model the ratio, second order polynomials ya(x) = a0 + a1x + a2x2 are fitted to the five scenarios.
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3.2 Model application – closing lenticule

Similar to Section 3.1, an analysis of various parameter
value choices is performed for the model describing the
closing of the lenticule. The choices of parameter values
for rca, kcap, TZ, dccap and Dplan are identical to the ones
defined in Table 2. Only for q we chose a different set,
q ∈ {0.36,0.44,0.48,0.52,0.60}, since the cap consists of a
different composition of layers than the full cornea, where
q = 0 represents the cap and q = 1 the anterior cornea.
Therefore, since, e.g., the density distribution is different
to Section 3.1, also the neutral membrane of the corneal
cap is located at a different relative thickness with respect
to the cut.

Like before in Section 3.1, we only vary one parameter
at a time while keeping the others fixed at their master
value. A selection of variations is given in Figure 4,
whereas the rest is listed in Appendix C.

4 Discussion

We modeled the ratio Dpost/Dplan for both the docking and
the closing of the lenticule. Combining both steps, we
obtain the chains of D values below. The predictions of the
model provide the following exemplary estimate:

Reading this chain from right to left, one can interpret
the undercorrection emerging from the nominal value,
which is defined under docking (100%), to the output value
that is achieved after the lenticule has closed (87.18%). In
contrast, reading this chain from left to right, one can
interpret the compensation based on the nominal value
which is aimed after the lenticule has closed, finally
reaching the output value that is the value used under
docking. This corresponds to the general interpretation as
described in [10].

Since we did no comparison to patient data on an in-
dividual basis yet, we do not know the numerical appli-
cability of ourmodel to reality. This is one of the near future
steps we will investigate. Nevertheless, the corridor of
9–16% undercorrection [6, 10–12] is achieved.

It is important to understand how the established
corneal deformationmodel can be used in the prediction of
the refractive effect in the postoperative cornea. The first
thing one should know is whether the system in use has
any corneal deformation model built in. Similarly, one
should also knowwhether the system in use comprises any
empirical nomogram whether or not visible to the user, at
least for the refractive power of the correction.

Provided this is not the case, i.e., no corneal deforma-
tion model or non-visible nomogram is already built in, one
can apply the particular model to determine all geometric
and refractive deviations. These include the impact of
docking on the resulting lenticule shape (both power and
diameter); the impact of docking on the resulting cap shape
(diameter); the impact of docking on the resulting incision
(angulation) as well as the impact of reflecting/reposition-
ing the cap on the anterior corneal shape (refractive power).

However, the overall provided values shall serve, at

least, as a ball-park figure to check and refine the planning

parameters of the treatment. Important aspects are the

impact of docking on the resulting lenticule shape, e.g., an

increase of +11% for power (∼0.5 dpt) and decrease of −3%
in diameter (∼0.2 mm). Moreover, the impact of docking on

the resulting cap shape, e.g., a decrease of −4% in diameter

(∼0.3 mm), on the resulting incision (increase angulation

by +18°) as well as the impact of reflecting/repositioning

the cap on the anterior corneal shape, e.g., an increase of

another +3.5% of the refractive power (∼0.25 dpt).
As mentioned before in the beginning of Section 2, our

model is restricted to rotational symmetric corneas,
i.e., non-astigmatic. Even if the local curvature radius of an
astigmatic cornea of the form,

zast(rx,ϕ) =
̅̅̅̅̅̅̅
r2sph − r2x

√
− rsph +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2cyl − sin2(ϕ − ϕ0)r2x

√
− rcyl ≈ −r

2
x

2
( 1
rsph

+ sin2(ϕ − ϕ0)
rcyl

),
(4.1)

is non-trivial, one could simply apply our model to both the
cornea with minimum and maximum curvature radius
separately. Therefore, as a first step of estimation, one could

closed lenticule → free cornea → docked to PI
model: −4.83 dpt −5.00 dpt −5.54 dpt

rel.D (rel. deviation): 87.18 % (−12.82 %) ← 90.25 % (−9.75 %) ← 100 %
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combine the model predictions obtained for the two ‘sub
scenarios’ to determine the effects of refractive astigmatism
or corneal toricity. Moreover, the magnitude of the toricity is
in general far below ±10% of the total refractive power of the
cornea with about 43 dpt and therefore less influential. We
have used a reduced model with rotational symmetry as an
initial approach in order to reduce the mathematical
complexity of the expressions. This shall serve us to deter-
mine the feasibility of the model, which could be then
extended to more general corneal geometries and morphol-
ogies. The typical corneal toricity (∼1 dpt) represents merely
∼2% of the corneal curvature ∼43 dpt, so that astigmatic
effects are expected to correspond to a second order correc-
tion beyond the basic rotational symmetric effect.

A simple approach to deal with astigmatic shapes
(whether these are, e.g., corneal toricity, or a sphero-
cylindrical correction) would involve determining the merid-
ional curvatures of the two principal meridians of the cornea,
given by, e.g., the keratometry readings of the cornea at two
main meridians perpendicular to each other. Moreover, the
meridional corrections of the two principal meridians of the
treatment are defined by spherical and cylindrical refractive
defects which are to be corrected. Our model is then applied
twice, once for each pair of values corresponding to the same
meridian. One time for the flat meridian (and corresponding
meridional correction power) and another time for the steep
meridian (and corresponding meridional correction power).

With the obtained model predictions, the overall
treatment effect can be composited back to sphero-toric
surfaces providing a reasonable estimate.

The model we have up to now, described in this paper,
originated from a discrete ‘mesh’ version. The central sur-
face was considered to be sliced in concentric conical ring
surfaces (CCRS),whereas eachCCRSareawas kept constant.
The remaining profiles of, e.g., anterior cornea, cap and
lenticule boundary are defined via constant ‘distance’ and
angle to the central surface, similar to the reference frame in
Eqs. (2.5) and (2.6). The fit procedure of aligning the anterior
surface of the cornea was based on the set of tilt angles of
each CCRS. The computation time for about 20 mesh points
is about a factor of 100–1000 longer than the one for the
continuousmodel. The fit procedure of the model described
in this paper is basically limited to the determination of the
curvature radius of the central surface.

Nevertheless, the fit of parabolic surfaces to profiles like
the cap and lenticule boundary seems to be acceptable by
considering the residuals for Figures 1B, C and 2B presented
in Figure 7. For the graphics Figure 1B and C, the residuals
Figure 7A and B are below ±4 μmwhich is of the order of the
spot size of a surgical femtosecond laser. For Figure 2B, the
residuals Figure 7C are even one order ofmagnitude smaller.

Therefore, we can consider the profiles to be described by
parabolas even after deformation and rescaling. One could
speculate that the shape of the residuals hints spherical
aberration errors.

Comparing Figure 1B with Figure 1C, the main influence
on the ratio Dpost/Dplan seems to originate from the rescaling
and not the deformation of the free corneal tissue. We
assumed the cornea tobefixedat limbus. In reality, the sclera
is not rigid, and its stiffness is not modeled in this paper. The
rescaling along the same ‘macroscopic’ radius of curvature
together with the conservation of the area, ‘microscopically’
results in folds in the corneal tissue. Furthermore,we chose a
vertical line for the intersection between the cornea and the
sclera in our simple model. In the future, more physiological
shapes of this intersection could be evaluated. Nevertheless,
the influence is expected to be low, since because the
thickness of the cornea is small compared to rx,limb, the center
of the intersection is more important than the actual shape
around this center. By comparing Figure 1 with Figure 2, the
contribution of the closing of the lenticule is smaller than the
actual deformation due to the docking to the PI.

The cap collapses onto the stromal bed, after the lenti-
cule has been removed. This does create the refractive
change. The anterior cornea (the cap between the anterior
cut and the anterior cornea) is the moving tissue, and the
posterior cornea (the residual stroma below the posterior
cut) is the ‘fixed’ tissue. In reality, though, both will likely
move (although the anterior shall move relatively much
more down, compared to what the posterior moves up). The
relative contribution of the cap moving down and the re-
sidual stroma moving up can be estimated from the ratio of
the following products. The first product is the amount of
tissue in the cap (definedby, e.g., thickness or volume) times
some sort of biomechanical resistance (this can be, e.g.,
Young modulus or tensile strength). The second product
consists of the amount of tissue in the residual stroma times
its biomechanical parameter.

In Table 3 we present qualitative results of our model,
based on Figures 3 and 4, and compare themwith results in
[11]. In [11], lenticule extraction treatments of 2564 eyes
from three different countries were analyzed. For rca, TZ
and dccap, the qualitative result of [11] and our model
coincide. For dcc, Rcap and Dplan (marked with *), no sig-
nificant discrepancy can be found.3 For the parameters

3 Official diopter measurements are performed with a step size of 0.
25 dpt, which corresponds to about ±5% uncertainty for 5 dpt planned
refractive power change and about ±2% uncertainty for 12 dpt.
Therefore, it is acceptable to say that a contribution to the ratio of
Dpost/Dplan below about ±2% can be classified as not significant. Even
for large cohorts like in [11], it is hard to reach significance.
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anterior curvature radius rca, radius of the lenticule TZ and
the central thickness of the cap dccap, our observations
coincide with observations in [11]. For dcc Figure 9A, we
have to note that a trend in undercorrection is significant
but rather small. Moreover, in [11], where no significant
trendhas been found, the pachymetry lies between 482 and
663 μm which is a narrower range than we analyzed. For
the cap radius Rcap, we have to mention that in our model
Rcap and TZwere varied independently, whereas in reality,
i.e., [11], both parameters are rather collinear. This could
result in the fact that Rcap shows low significance also in
reality. For the parameter Dplan, we analyzed its relative
change. But if we consider the absolute change in diopters,
we would conclude to the same result as in [11], where both
relative and absolute diopter changes are referred to.
Overall, our model seems to fit quite well to the qualitative
description of real treatments presented in [11].

During the model building phase, we were also
considering spherical caps asmathematical descriptions for
profiles like anterior/posterior cornea, cap and lenticule
boundary. As described in Eq. (2.3), both mathematical de-
scriptions can be referred to each other via the curvature
radius of the profile. The consideration of spherical cap
profiles lead to the same qualitative results while increasing
the mathematical complexity.4 Another modification we
tested is to not consider area conservation of the central
surface as motivated by the idea of the neutral membrane
but following the length conservation as in the 1D neutral
axismodel. This ideawasmotivated by the fiber structure of
the corneal tissue that is influencing the deformation.
Nevertheless, we decided for the model inspired by the
neutralmembrane, since even if the cornea is constructedby

fibers, these fibers are forming a 2D grid of tissue. This tissue
is then assumed to rather behave as an anisotropic material
under 2D deformations than a 1D material. Since our goal
was to set up a mathematically simpler model than, e.g.,
FEM simulations, that can respect anisotropy, we did not
implement any anisotropic behavior in our model. Even
though, it shows the potential of partially compensating the
observed undercorrection of [6, 10–12]. As mentioned
before, this has to be numerically validated by a comparison
to patient data.

Figure 5: Log-log plot of the relation between the ratio of radial
distance of the lenticule TZpost/TZ and the ratio in refractive power
change Dpost/Dplan. The dotted curve corresponds to the model of
conserved volume, i.e., sx/y = s

−1
4

D , whereas the dashed curve de-
notes conserved thickness, i.e., sx/y = s

−1
2

D . Our newmodel described
in this paper is exhibiting an exponent of
−1
2 < ν ≈ −(0.384 − 0.392) < −1

4.

Table : Qualitative results of our model Figures  and  compared to []. *For dcc, Rcap and Dplan, no significant discrepancy can be found.

Input Dpost/Dplan Rcap,post/Rcap TZpost/TZ Δθ

rca Steeper cornea = higher under-
correction (uc.)

Steeper cornea = larger
cap

Steeper cornea = larger TZ Steeper cornea = larger angle devia-
tion (dev.)

dcc* Thinner cornea = higher uc. – – Thinner cornea = larger angle dev.
Rcap* Larger cap = higher uc. Larger cap = smaller cap – Larger cap = larger angle dev.

TZ Larger lenticule = less uc. – Larger lenticule = smaller
lenticule

–

dccap Thicker cap = higher uc. – – –
Dplan* Higher correction = less uc. – – –

4 One example of complexity increase is the following. A sum of two
polynomials is again a polynomial, whereas the sum of two spherical
caps is in general not a spherical cap. Although, in the latter case, one
has the possibility to define a local curvature radius of an effective
local spherical cap profile.
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In addition, a numerical simulation by FEM based on
available models [13] had already been performed (unpub-
lished data) providing qualitatively comparable findings:
the refractive power of the lenticules was reduced upon
releasing applanation (reduced more for flatter applana-
tions); whereas the size (diameter) of the lenticules
increased upon releasing applanation (increased more for
flatter applanations). The FEM model, unlike the presented
model, further predicted a thinning of the lenticules upon
releasing applanation (thinner lenticules after releasing
flatter applanations). But the magnitude of the effect pre-
dicted by the FEM model was larger than that predicted by
the present simplified model.

Corneal biomechanics, including its anisotropic,
nonlinear elastic properties and viscoelastic properties,
plays an important role in the corneal morphology after
operation, in which the cornea experiences a dynamical
process, and then affects the refractive effect. From a
mechanical point of view, an appropriate corneal me-
chanical property is needed to provide a detailed
modeling level. Our approach was less ambitious and
aimed only to provide a simple macroscopic model which
may support a basic understanding of the geometric and
refractive implications of deforming the cornea under a
rigid laser patient interface. A model that is already in use
is based on the idea of volume conservation of the corneal

Figure 6: Scheme of different-dimensional deformations of (A) a free beam and (B) a free corneal tissue. (C) Schematically shows the eye
visualized as a sphere and the cornea highlighted as a blue cap in 3D.
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tissue during deformation, since it is assumed to be
incompressible. A sphere is characterized by its curvature
radius r. Imagine the vertex of a sphere located at the
origin of a coordinate system. In a 2D slice, imagine the
right triangle defined by the points (0, −d), (a, −d) and
(0, −r). From (r − d)2 + a2 = r2, we can obtain the curvature

radius to r = d2+a2
2d . The refractive power is defined as

D = n − 1
r

= (n − 1)2d
d2 + a2

= (n − 1)2d
a2

+ O ((d
a
)3), (4.2)

which we can approximate by neglecting third order in d
a. If

we want to achieve a relative refractive power change of
sD = Dfinal/Dinitial = sz

sxsy
, we could scale the depth of the

lenticule by sz (along z-axis) and the radial distance of the
lenticule by sx/y (along x-y-plane). In order to keep the vol-
ume constant 1 = svol = sxsysz, we have to define the scaling
factors as sz = 1

sxsy
. For a rotational symmetric scaling sx = sy

holds. Therefore, the scaling of the refractive power change
sD = s2z = (sx/y)−4 is equal to the inverse of the one-
dimensional scaling factor sx/y to the power of four along

Figure 7: Residuals of various fitted profiles, e.g., cap or lenticule boundary, of Figures 1B, C and 2B.
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the x-y-plane. Another approach is to define the thickness to
be conserved, which leads in this simple approximation to
the relation sD = (sx/y)−2. Both different functional de-
pendencies of the ratio of the radial distance scaling in the
x-y-plane on the ratio of change in refractive power can be
compared to the ratio of TZpost/TZ versus the ratio of
Dpost/Dplan. In the log-logplot Figure 5, blue points represent
the previously mentioned ratios for several scenarios
defined by Table 2. Fitted exponent, ν ≈ −0.384, lies be-
tween the ones of the other two approaches of keeping
volume constant ν = −1

4 and keeping thickness constant
(sz = 1) ν = −1

2. A better fit is obtained by discarding the
scenarios corresponding to kcp (6–9) and kcap (18–21) from
this analysis, i.e., magenta points, since these parameters
change the refractive power by almost not influencing the
scaling of the lenticule in the x-y-plane.

In Figure 11, the comparison between the initial values
of kcp and kcap is compared with their pendant after
rescaling. It should give an impression on how different
‘optical distances’/refractive powers in the cornea change
due to the docking procedure.

In our model, we assumed a conservation of the area of
the neutral membrane. By additionally keeping the thickness
constant, we provided also a form of volume conservation
which is related to incompressibility, at least around the
neutral membrane. In total, the effects of thickness increase
anterior to the neutral membrane and thickness decrease
posterior to the neutral membrane are assumed to cancel out
each other, due to deformation with constant area and vol-
ume. Only the location q of the neutralmembrane is expected
to slightly change. The rescaling is defined by scaling the
areas of slices stacked along z-direction. Therefore, the overall
density is no longer conserved. This is a way of effectively/
implicitly modeling observed undulations at the posterior
cornea, see e.g. [30] or https://www.ebc-europe.com/produit/
laser-femto-ldv-z8/, during applanation in our rigid elastic
transformation model. An implementation that can respect
the just mentioned behaviors is again FEM. As stated before,
we explicitly wanted to obtain a mathematical simpler
implementation that can provide enough insights by consid-
ering rigid elastic deformations of the corneal tissue only.

5 Conclusions

In contrast to microscopic models of the cornea like FEM
[13–19], our model of deformation behavior of the cornea is
focused on a rather macroscopic description consisting of
rigid and elastic transformations. Nevertheless,wewere able
tofind a simplermathematicalmodel that could describe the

observed undercorrection as discussed in [6, 10–12]. The
numerical prediction accuracy of our model to be used as a
compensation before the treatment is performed has to be
evaluated in future analysis of patient data.

Future extensions of our model should include astig-
matic corneas as well as hyperopic lenticules. Hints on how
extensions could look like are already given at some points
in this paper.
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Appendix

A Schematics of deformation

As described in Section 1, our model is inspired by the
principle of the ‘neutral axis’, cf. [22]. The schematics of a
1D deformation, e.g., 1D bending of a beam, is presented
in Figure 6A. The dashed line represents the ‘neutral axis’
whose length is not changed under the deformation.
Other axes that are ‘parallel’ to the ‘neutral axis’ are
compressed below and stretched above, see Figure 6A. In
contrast, a slice through a cornea that experienced a 2D
bending is given in Figure 6B. The schematics of our
coordinate system is presented in Figure 6C.

B Residuals

In Figure 7 the residuals of various fitted profiles of
Figures 1B, C and 2B are presented.

C Rest of model application

In Figure 8, Figure 9 and Figure 10, the remaining
parameter variations in addition to Figure 3 are displayed.

Figure 9B shows almost no influence on output
parameters which is in accordance with the results of [31].

For the closing of the lenticule, Figure 12 shows further
evaluations in addition to Figure 4.
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Figure 8: Extension of Figure 3. Various parameter variations for the ratio of Dpost/Dplan, Rcap,post/Rcap and TZpost/TZ, the deviation in incision
angle Δθ and maximal absolute fit residue maxabs,res. In order to model the ratios and the deviation in incision angle, second order
polynomials ya(x) = a0 + a1x + a2x2 are fitted to the five scenarios.
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Figure 9: Extension of Figures 3 and 8. Various parameter variations for the ratio of Dpost/Dplan, Rcap,post/Rcap and TZpost/TZ, the deviation in
incision angle Δθ and maximal absolute fit residue maxabs,res. In order to model the ratios and the deviation in incision angle, second order
polynomials ya(x) = a0 + a1x + a2x2 are fitted to the five scenarios.
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Figure 10: Extension of Figures 3, 8, and 9.
Variation of θ for the ratio of Dpost/Dplan,
Rcap,post/Rcap and TZpost/TZ, the deviation in
incision angle Δθ and maximal absolute fit
residuemaxabs,res. In order tomodel the ratios
and the deviation in incision angle, second
order polynomials ya(x) = a0 + a1x + a2x2 are
fitted to the five scenarios.

Figure 11: Comparison between pre and post
rescaling values of kcp and kcap.
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Figure 12: Closing lenticule, Section 3.2. Various parameter variations for the ratio of Dpost/Dplan and maximal absolute fit residue maxabs,res.
In order to model the ratio, second order polynomials ya(x) = a0 + a1x + a2x2 are fitted to the five scenarios.
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