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Abstract: The Mueller matrix is a mathematical description
ofhow light is alteredbyanoptical elementor a sampleunder
study. It describesboth intensity (irradiance) andpolarization
changes, including a reduction of the total polarization.
Mueller matrix spectroscopic ellipsometry has gained recent
popularity in the optics and semiconductor communities as
an effectivemeans to characterize complex sample structures
and anisotropic materials. While this method is not new, its
recent expansion to new fields has left many users with only
a pedestrian understanding of the data they collect. This
tutorial provides an overview ofMuellermatrix spectroscopic
ellipsometry with focus on practical aspects for those new to
the technique.

Keywords: ellipsometry; Mueller matrix; polarimetry;
polarization; thin film optical properties.

1 Introduction

The Mueller matrix (M) is a real-valued 4 × 4 matrix
developed in 1943 by Swiss–American physicist Hans
Mueller (1900–1965). It describes an optical system (or, in
our case, a sample of interest) in terms of experimentally
observable quantities and connects the input and output
real-valued 4× 1 Stokes vectors (S) describing light as given
by:

Sout = MS in (1)

HansMueller used thematrix calculation in his lecture
at theMassachusetts Institute of Technology, but it was not
published for general use at that time [1]. Mueller’s algebra
was later introduced to the public by his student, N. G.

Parke, in his dissertation [2] and paper [3]. It is believed that
the name ‘Mueller matrix (MM)’ was first coined by Parke.
Notice that it took almost a century from the time Stokes
(1819–1903) developed the Stokes vector in 1852 [4, 5] until
Mueller took the theory and established a complete
expression for the polarized light andmatter interaction. In
fact, lesser known are French scientists Paul Soleillet [6]
and Francis Perrin [7], who established a similar mathe-
matical formalism based on Stokes vectors before Mueller.

One of the scientific significances of the Mueller cal-
culus is that the algebra uses real-valued elements as
opposed to the Jones calculus [8]. The Jones vector de-
scribes the polarization ellipse of an electric field in terms
of complex numbers related to amplitudes and phases;
thus, it is only applicable to completely polarized light and
impractical to directly measure at optical frequencies. On
the other hand, the Mueller calculus can describe an op-
tical system directly related to measurable intensities.
Because Stokes vectors apply to both partially and fully
polarized light, the MM contains information about depo-
larization caused by the optical element. The experimental
convenience of the Mueller calculus has led to extensive
theoretical research efforts to find the constraints on
Mueller matrices that are physically realizable or non-
depolarizing [9–12]. For depolarizing Mueller matrices,
various methods have been developed to quantify the de-
gree of polarization or depolarization [13–15]. Another
practical index is the Jonesmatrix quality factor describing
the difference between the measured MM and a best-
matching, non-depolarizing MM calculated from a Jones
matrix. This index is applicable even for partial Mueller
matrices [16].

Common MM measurement techniques are MM polar-
imetry [17–19], MM spectroscopic ellipsometry (MMSE)
[20–24], and MM imaging [25–31]. Both MM polarimetry
and MMSE measure the MM of a sample in reflection or
transmission using a polarization state generator and a
polarization state analyzer, the difference being that
polarimetry usually determines the MM from a set of fixed,
defined polarization configurations whereas MMSE ex-
poses the sample to many different polarization states and
detects many different polarization states by continuously
modulating the polarizing optical elements. In other
words, MM polarimetry measures absolute intensities
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whereasMMSEmeasures relative polarization changes and
does not rely on determining absolute intensity values.
MMSE extends its use through modeling to measure film
thickness and index of refraction, mainly on stratified
media [32]. MM imaging combines MM polarimetry or
MMSE with imaging techniques [33].

MM measurement techniques are used in a variety of
applications because of their general suitability tomeasure
many sample types. The MM of anisotropic samples en-
ables access to intriguing optical properties such as the
birefringence or dichroism of flexible polymeric substrates
[34, 35], the retardance and tilt distribution of liquid crys-
tals [36–39], the anisotropic optical constants and dimen-
sional parameters of nanostructured thin films or
metamaterials [40–48], and the 3 × 3 dielectric tensor and
Euler angles of low symmetry crystals [49–54]. MM data
has been used to reconstruct the optical critical dimensions
of diffraction gratings formed by integrated circuit devices
[55–60]. Biomedical applications include the polarizing
phenomena of photonic structures found in beetles [61, 62]
or butterflies [63] and obtaining polarization images of
biological tissues [64].

There are many excellent books and articles that pro-
vide themathematical details of the MM [15, 33, 48, 65–67].
However, it can be difficult to compress this information to
a level needed by those using MMSE for their sample
characterization. They need to understand what data is
contained in the MM and how it can be used to extract
relevant sample properties. The focus of this tutorial is to
provide a concise introduction to the topic without over-
whelming a novice user. We begin with a brief mathe-
matical description. More important, we discuss the
meaning of the MM elements and the corresponding sec-
tions related to light attenuation, diattenuation, polar-
izance, and retardance. There is often a great deal of
“duplicate information” within the MM, such that many
samples can be characterized with only a subset of the full
MM. We describe a few common measurement configura-
tions and which MM elements they can access. We
continue to describe common samples that may be
encountered and how their physical attributes manifest in
different MM shapes. One of the key capabilities of the MM
is that it can handle depolarizing samples, so we devote a
section to depolarization and its causes.

TheMMcanbeused at different levels. At themost basic,
the MM represents a transfer-function for light under the
same conditions as the measurement. This transfer-function
can be used directly in optical modeling of a “device” but
does not provide predictive capabilities or access to deeper
understanding of the sample/material properties. Several
well-known MM decomposition methods [12, 68–75] are

described that can access the phenomenological quantities of
the sample. For a deeper understanding, the MM can be
modeled using Fresnel-based calculations [65, 76, 77] or even
rigorous coupled wave analysis (RCWA) [78–80] to fit the
underlying material and structural properties or sub-
wavelength critical dimensions in periodic samples. This
tutorial concludes with a few brief applications to demon-
strate the diverse areas in which MMSE is used. These ex-
amples demonstrate the current state-of-the-art for what is
possible by skilled users in the field.

2 Mathematical overview

An MM describes any optical element, or in our case the
sample under study, that modifies the properties of light.
Figure 1 shows ameasurement system,where (left-to-right)
unpolarized light enters a rotating optical element, is re-
flected from a sample, travels through a fixed-position
optical element and is then detected. Stokes vectors are
used to describe the properties of light at any point along
this path. An MM is used to describe how each optical
element, or the sample, alters the light. The MM is general
enough to describe how any potential light beam will be
altered. In this section, we introduce the Mueller–Stokes
algebra.

Spectroscopic ellipsometry (SE) measures the polari-
zation change that occurs when polarized light interacts
(reflection or transmission) with a sample of interest [65,
76]. When referring to ellipsometry measurements, it is
common to differentiate between electric fields that are
vibrating parallel to the plane of incidence (p-polarized)
and those perpendicular to the plane of incidence (s-
polarized), as shown in Figure 2. The measured quantity in
so-called “Standard SE” is a complex number ρ̃ typically

Figure 1: Ellipsometry measurement setup with unpolarized source
light traveling through a rotating optical element, reflecting from a
sample at oblique angle of incidence, continuing through a fixed
optical element, and arriving at a detector. Stokes vectors can
describe the light properties at each point along this optical path,
whereas an MM can describe the transformation of light by each
optical element and the sample under study.
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expressed in terms of two parameters, Ψ and Δ, related to
the ratio of the p- and s- polarized sample interaction:

ρ̃ = tan ΨeiΔ = R̃p

R̃s
(2)

where R̃p and R̃s are the complex total reflection co-
efficients. Here,Ψ is related to the amplitude ratio and Δ is
related to a phase difference between p- and s-polarized
light resulting from interaction with the sample.

Standard SE measurements are typically used to
characterize isotropic materials, i.e. those with the same
optical properties for light polarized in any direction.
Anisotropic materials, with different optical properties for
different polarization directions, require more advanced
measurements such as generalized spectroscopic ellips-
ometry or MMSE. Generalized spectroscopic ellipsometry
measurements determine the normalized Jones matrix
including cross-polarization, i.e. mixed output polariza-
tion states for a pure p- or s-input polarization state, which
often occurs when measuring anisotropic samples [65].
However, MMSE measurements are the most general
ellipsometry measurement type, not only providing access
to cross-polarization but also being applicable to depola-
rizing samples – where the detected light is no longer
completely polarized. Section 6 in this tutorial is dedicated
to phenomena which involve depolarization.

The Mueller matrix is a 4 × 4 matrix describing the
transformation from incoming to outgoing Stokes vectors, as:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
S′0
S′1
S′2
S′3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
out

=

⎡⎢⎢⎢⎣
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎤⎥⎥⎥⎦ ⋅⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ S0
S1
S2
S3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
in

(3)

The Stokes vector (often called Stokes parameters as it is
not a true vector but rather a column matrix) describes light
with four intensitymeasurements fordifferentpolarizationsas:

S =
S0
S1
S2
S3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦ =

Ix + Iy
Ix − Iy
I+45° − I−45°
IR − IL

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦ (4)

where Ix, Iy, I+45, and I−45 are the intensities of linearly
polarized light oriented along the x, y, +45°, and −45° di-
rections, respectively; and IR and IL are the intensities of
right and left circular polarizations, respectively. The x and
y orientations are often matched to the measurement co-
ordinate system, which in the case of MMSE are the p and s
polarization directions for the sample.

Before proceeding further, it is important to note the
conventions used within this paper. We will be following
what is referred to as the “Nebraska Convention” by the
ellipsometry community [65, 81]. As such, the time
dependence of the electric-field oscillation will be:

E ∼ exp(iωt) (5)

and the rotation of the electric field for elliptical or circular
polarization is determined by watching the electric field at
a fixed location looking toward the source of light. If the
electric field rotates clockwise, it is referred to as “right”
circular or elliptical, whereas counterclockwise is referred
to as “left” circular or elliptical.

As shown in Figure 3, the MM describes the trans-
formation of light upon interaction with an optical
element (which we will now refer to as our sample under
study). The MM can describe how light is altered upon
reflection or after transmission through the sample.
While the MM describes the properties of the sample
regardless of the incoming light properties, it only de-
scribes the sample under the same measurement condi-
tions – reflection or transmission at a specific angle of
incidence.

Both Stokes vectors and Mueller matrices are often
normalized to retain the polarization-dependent informa-
tion irrespective of absolute intensity. We use lowercase

Figure 2: Ellipsometry measurement at an
oblique angle, θ. The plane of incidence
contains the incident light, the reflected
light, and the sample normal. The
p-polarized and s-polarized electric fields
are vibrating parallel and perpendicular to
the plane of incidence, respectively, and
form a frame of reference for the electric
field polarizations. Linearly polarized
incident light with both p- and s-
components will most generally become
elliptically polarized light upon reflection.
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elements for normalized Stokes parameters (Eq. (6)) and
normalized Mueller matrices (Eq. (7)).⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S0/S0
S1/S0
S2/S0
S3/S0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
1
s1
s2
s3

⎤⎥⎥⎥⎦ (6)

⎡⎢⎢⎢⎣
1 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤⎥⎥⎥⎦, where mij = Mij

M11
(7)

Because we normalize to the total intensity, the
remaining Stokes parameters are restricted between ±1.
Similarly, the normalized MM elements, mij, are con-
strained between±1.Wewill consider the general shapes of
MM for common optical elements in a later section. A few
common normalized Stokes vectors are shown in Table 1.

When intensity information is desired, an unnormal-
ized MM can be measured. This is the only situation that
requires the absolute intensity of light to be determined in
an MMSE measurement while all other MM elements are
determined from the relative polarization change and in-
dependent of absolute intensity levels. In this tutorial, any
unnormalized MM will still be written in normalized form,
but with the M11 value retained:

M11

⎡⎢⎢⎢⎣
1 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤⎥⎥⎥⎦ (8)

M11 is often misinterpreted as describing the reflectance or
transmittance of a sample. However,M11 only describes the
reflected or transmitted intensity for unpolarized light. The
actual reflectance or transmittance depends on the
incoming polarization state and the entire first row of the
MM. Themeasured intensity will also depend on the type of

detection – is it considering the intensity of all transmitted/
reflected polarization states or just a specific polarization
direction. When M11 is measured, we can calculate the
transmitted or reflected polarized intensities (Iij) for any
like or crossed polarizations, where i is the incoming po-
larization direction and j is the detected polarization
direction:

Ipp = M11(1 +m12 +m21 +m22)
2

(9a)

Figure 3: The transformation of light (as
described by a Stokes vector) by an optical
element or sample under study can be
described by an MM. This transformation
may result from transmission through or
reflection from the optic/sample in
question. The MM is valid for a specific
measurement configuration but can
describe the transformation of any
incoming light beam.

Table : Example normalized Stokes vectors for common polariza-
tion states of light.

Polarization Normalized stokes vector

Linear x-polarized light
2
664








3
775

Linear y-polarized light
2
664


�





3
775

Linear +° polarized light
2
664








3
775

Linear −° polarized light
2
664




�



3
775

Right circularly polarized light
2
664








3
775

Left circularly polarized light
2
664






�

3
775

Unpolarized light
2
664








3
775
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Iss = M11(1 −m21 −m12 +m22)
2

(9b)

Ips = M11(1 −m21 +m12 −m22)
2

(9c)

Isp = M11(1 +m21 −m12 −m22)
2

(9d)

Figure 4 compares M11 to the polarized reflectance
from a bare silicon substrate versus angle of incidence. In
this case theM11 value can either be larger or smaller than
the measured reflectance depending on the polarization of
the incoming light wave. This is resolved by the fact that
the normalized MM elements can be positive or negative
(bounded by ±1). A single reflection from a substrate will
have a negative m12 value, which will remain negative
when multiplied by an incoming p-polarization – reducing
the intensity of the outgoing light (compared to M11) and
resulting in the expected minimum of p-polarized reflec-
tance, Rp, at the Brewster angle.

One hurdle to using the Mueller matrix is under-
standing what an individual MM element represents. Each
MM element maps one input property of light (MM column)
to one output property of light (MM row). It shows if and
how a certain light polarization will be altered based on
specific incoming light properties. We demonstrate this
concept using the M23 element in Figure 5. This single
element will only influence incoming light that contains a
linear polarization component oriented at ± 45° (described
by S2 of the incoming light). If the incoming light contains
±45° polarization, the m23 element will describe how that
light may be altered to form linearly polarized light along
the x/y directions (described by S′1 of the outgoing light).
The overall description for the outgoing x/y polarization
properties, described by S′1 will also depend on the entire
second row of theMMand the incoming light properties, as
shown in Figure 5. In thismanner, eachMMelement is only
a single piece of the overall puzzle.

3 Sections of the Mueller matrix

Different sample properties will populate different ele-
ments of the MM. Thus, it can be helpful to understand the
general MM “shapes” that may be encountered, i.e. which
groups of MM elements are populated for different sam-
ples. We start by separating the MM into four sections
shown in Figure 6: unpolarized attenuation (gray), dia-
ttenuation (red), polarizance (blue), and retardance
(yellow).

The M11 value describes the attenuation of outgoing
intensity for an unpolarized input light beam, or the
contribution to attenuation for the outgoing intensity from
the unpolarized portion of the incoming light beam. When
the incoming light beam is completely unpolarized the S1,
S2, and S3 elements are all zero (see Table 1) and the M11

value completely describes the intensity change:

S′0 = M11S0 (10)

However, if the incoming light is polarized, thenM11 is
only “one piece of the puzzle” and must be considered in
the full equation for the outgoing intensity:

S′0 = M11S0(1 +m12s1 +m13s2 +m14s3) (11)

Here, M11 adjusts the outgoing intensity based on the
amount of unpolarized light in the incoming light beam,
but the entire first row of the MM may also influence the
outgoing intensity for a polarized input light beam.

Figure 4: The reflectance for p- and s- polarized light compared to
M11 versus angle of incidence simulated from a bare silicon surface.

Figure 5: Visual representation of a single MM element and how it
relates specific incoming light properties to specific outgoing light
properties.

Figure 6: MM divided into sections for light attenuation (gray),
diattenuation (red), polarizance (blue), and retardance (yellow).
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The diattenuation section (red) consists of m12, m13,
andm14 from the first row of theMM. Attenuation describes
the reduction of light intensity, whereas diattenuation
describes the preferential reduction of one polarization
relative to its orthogonal counterpart. As shown in Figure 7,
m12 describes the diattenuation between horizontal (x) and
vertical (y) linear polarizations; m13 describes the diatten-
uation between +45° and −45° oriented linear polariza-
tions, and m14 describes the diattenuation between right
(R) and left (L) circular polarizations. When the diattenu-
ation section is combined with the M11 value, we can
completely describe the outgoing intensity for any
incoming light (Eq. (11)).

The polarizance section (blue) consists ofm21,m31, and
m41 from the first column of the MM. These elements
describe the ability of the sample to polarize the unpolar-
ized portion of the incoming light beam, as shown in
Figure 8. If the sum of the square of these three elements is
equal to 1, then unpolarized light will become completely
polarized.

The retardance section (yellow) consists of the bottom-
right nine elements, as shown in Figure 9. They indicate
how the “directions” of polarization will be modified upon
interaction with the sample. The diagonal elements (m22,
m33, and m44) relate the polarization property of incoming
light to the same property for outgoing light. If these di-
agonal elements equal +1, then those polarization states
will not be changed by the sample. For example, ifm22 = 1,
horizontal (x) and vertical (y) lightmust stay horizontal and
vertical, respectively. The amplitude and phase of hori-
zontal light may still be altered, but horizontal light will

remain horizontal. If m44 = 1, right and left circular light
will remain right and left circular, respectively. At the
opposite limit, when a diagonal element is equal to −1 the
corresponding polarization states are completely con-
verted to their orthogonal counterparts. If a diagonal
element is ±1, the remaining MM elements in the same row
and column of the retardance section will be zero because
all the incoming light of that type is already described by
the diagonal element.

When the diagonal elements are not equal to ±1, the
outgoing polarization might be converted (“cross-polari-
zation”) between the referenced directions. This “cross-
polarization” is further described by the off-diagonal ele-
ments in the same row and column of the retardance sec-
tion. These elements can also be non-zero andwill describe
entirely what happens to the incoming polarization. This is
often best understood by considering the equations that
involve the retardance section:

S′1 = M11(m21S0 +m22S1 +m23S2 +m24S3) (12a)

S′2 = M11(m31S0 +m32S1 +m33S2 +m34S3) (12b)

S′3 = M11(m41S0 +m42S1 +m43S2 +m44S3) (12c)

These equations combine with Eq. (11) to completely
describe the transformation from incoming to outgoing
light properties. Whereas Eq. (11) described the outgoing
intensity, Eqs. (12a–c) describe the polarization properties.
Each row of the retardance section is related to a specific
outgoing polarization property. Each column of the
retardance section is related to a specific incoming polar-
ization property. For example, the three elementsm22,m23,
andm24 combine to describe the resulting x-y orientation of
the outgoing polarization for any incoming polarized light
(with m21 describing the effects on unpolarized incoming
light).

An MM describing the case where the polarization is
not modified may look different for transmission and
reflection experiments due to our choice of conventions.
The transmitted normalized MM demonstrating no change
in polarization is:

Figure 7: Diattenuation section of the MM describes how light
intensity is affected by the incoming polarization.

Figure 8: Unpolarized light, as described by the incoming Stokes
vector, may become polarized by last three elements in the first
column of the MM, referred to as the polarizance section. Thus,
when the incoming light is unpolarized the outgoing light may be
completely polarized, partially polarized, or unpolarized depending
entirely on these elements.

Figure 9: Retardance section of the MM is shown in yellow. The
diagonal elements are highlighted as they describe the outgoing
Stokes parameter to the same corresponding Stokes parameter for
incoming light.
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⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ (13)

We would expect to see such result when measuring

transmitted MMSE at normal incidence (0° angle of inci-

dence) through isotropic media. However, the normalized

MM for a sample that does not change the polarization state

of light in reflection is written as:⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎥⎦ (14)

This appears to convert ±45° polarizations and right/left
polarizations into their opposite counterparts, as we
described in discussion of the retardance section. However,
the actual polarization is not modified. This is purely a
mathematical necessity due to our choice of convention.
Consider Figure 2 formoredetail regarding thepositivep- and
s- polarization directions for incoming and reflected light.
When the light beamsmove to normal incidence, the electric
field for the incoming p-polarization opposes the reflected
p-polarization direction. Thus, the negative m33 and m44

values are simply there to account for our choice of coordi-
nate system. The transmitted beam shares the same orienta-
tion for p- and s- polarized light as the incoming beam.

There are many samples that will produce the MM
values shown in Eqs. (13) and (14) at normal incidence. This
will be true for isotropic substrates such as glass or silicon.
It will also be true for coated substrates, provided all the
materials are isotropic. Thus, a high-low optical stack that
produces a very interesting bandpass filter for intensity
may produce such an uninteresting MM if all the materials
are isotropic, which is often the case for high and low index
dielectric layers. In these cases, the only optical response
of the sample is an attenuation of light, thus the response is
shown solely by the M11 value.

Let us consider a few different sample types that
populate certain elements of the MM. The MM for an ideal
transmitting polarizer aligned with the x-axis is shown in
Figure 10. A polarizer is a diattenuator, with light along
one direction completely attenuated, while the orthog-
onal direction is transmitted without any attenuation.
Here, the prefactor of ½ is shown to explain that the
transmitted intensity of unpolarized light will be reduced
by half.

All light transmitted through this polarizer will be
polarized along the x-direction. If the incoming polarization
state is x-polarized (see Table 1), then all the light intensity
will be transmitted through the polarizer:

S′ = 1
2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦ S,  with  S = S0

1
1
0
0

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦ (15a)

S′0 = 1
2
S0 + 1

2
S0 = S0 (15b)

If this linear polarizer is rotated to polarize all light
along the y-axis, then m21 = m12 = −1 and the outgoing
intensity for incoming x-polarized light would be zero.

Figure 11 shows the MM for an ideal transmitting
retarder, with fast axis aligned along the x-axis. This
retarder will shift the phase of the x-polarization relative to
the y-polarization by an amount, δ, referred to as the
retardance:

Notice in Figure 11 thatm22 = 1 whichmeans the x- and
y- polarized electric fields will remain x- and y- polarized,
respectively. However, their relative phase is shifted,
which causes the polarization changes for incoming light
that consists of both x and y polarizations (such as +45°).

We can apply a transformation, as shown in Figure 12,
to rotate any MM counterclockwise by an angle ϕ with
respect to the original coordinate system:

We can use the expression shown in Figure 12 to also
show the MM for a rotated optical element such as a dia-
ttenuator or retarder by first rotating from the original co-
ordinate system to match the coordinate system of the

Figure 10: MM for an ideal polarizer aligned with the x-axis.

Figure 11: MM for an ideal retarder aligned along the x-axis.

Figure 12: MM for a counterclockwise rotation by angle ϕ with
respect to an original coordinate system.
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rotated optic and then rotating back to the original coor-
dinate system. This will appear as:

Mrotated = R(−ϕ)MR(ϕ) (16)

The more general shapes of a rotated diattenuator or
rotated retarder are shown in Figure 13. It can be helpful to
watch for these regions of the MM to determine whether a
measurement exhibits linear diattenuation or linear
retardance and whether the primary polarization effects
are along the x, y direction or rotated as shown.

Using Eq. (16), we can show the MM for a rotated ideal
polarizer or rotated ideal retarder. The ideal polarizer
rotated counterclockwise from our measurement reference
frame by an angle ϕ becomes:

1
2

1 cos 2ϕ( ) sin 2ϕ( ) 0
cos 2ϕ( ) cos2 2ϕ( ) cos 2ϕ( ) sin 2ϕ( ) 0
sin 2ϕ( ) cos 2ϕ( )sin 2ϕ( ) sin2 2ϕ( ) 0
0 0 0 0

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦
(17)

while the ideal retarder rotated counterclockwise from our
measurement frame by an angle ϕ becomes:

1 0 0 0
0 cos δ( )sin2 2ϕ( )+cos2 2ϕ( ) 1−cos δ( )( )cos 2ϕ( )sin 2ϕ( ) −sin δ( )sin 2ϕ( )
0 1−cos δ( )( )cos 2ϕ( )sin 2ϕ( ) cos δ( )cos2 2ϕ( )+sin2 2ϕ( ) sin δ( )cos 2ϕ( )
0 sin δ( )sin 2ϕ( ) −sin δ( )cos 2ϕ( ) cos δ( )

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

(18)
It is interesting to note thatm44 is independent of the

retarder orientation. Thus, δ can be extracted directly
from a transmitted MM measurement regardless of
sample rotation.

4 Measuring the MM

Instruments that measure the Mueller matrix use optical
elements to produce polarized light to probe the sample of
interest in what is referred to as the polarization state
generator (PSG). After interactingwith the sample, the light
is analyzedwith another set of optical elements, referred to
as the polarization state analyzer (PSA), to determine the
altered polarization state. The PSG must be capable of
producing multiple different polarizations to “fill-in” the
various MM elements. Similarly, the PSA must also be
capable of varying such that the detected intensity is
related to different polarization properties of the light beam
(after interaction with the sample). The combination of
multiple input states and multiple detected states allows
the MM elements to be measured.

An MM ellipsometer continuously modulates a set of
optical elements and the detected information is a
modulated signal. A Fourier analysis of this signal al-
lows extraction of the MM of any unknown sample. Since
ratios of Fourier components are considered, the abso-
lute intensity of the probing and detected light beam is
irrelevant for measurement accuracy. In other words,
relative polarization changes are detected rather than
absolute intensities as would be the case in a reflec-
tometer or polarimeter. This allows MM ellipsometry
measurements on samples which scatter part of the light,
warped samples, or samples smaller than the probe
beam diameter.

Not all ellipsometers, polarimeters, or MMSE in-
struments measure the complete MM. As we have seen,
there is plenty of duplicate information in the commonMM
shapes from simple samples. The types of optical elements
used in such devices will determine which of the MM ele-
ments can bemeasured. Themost common optical element
is a linear polarizer, which can populate (or analyze) the s1
and s2 elements of the Stokes vector depending on the
orientation, ϕ, of the polarizer relative to the sample
measurement “frame of reference”:

Figure 13: Demonstration of the MM elements that are populated
when common optical elements are rotated.
(A) When a linear diattenuator (red) oriented along x/y axes is
rotated about the z-axis (shown by the blue rotational “box”) it to
moves the MM content for the rotated diattenuation into the upper-
left nine elements (purple). (B) When a linear retarder (yellow)
oriented along the x/y axes is rotated about the z-axis (shown by the
blue rotational “box”) it moves the MM content for the rotated
retarder into the lower-right nine elements (green).

66 J.N. Hilfiker et al.: MMSE



⎡⎢⎢⎢⎣
1
cos(2ϕ)
sin(2ϕ)
0

⎤⎥⎥⎥⎦ (19)

A fixed polarizer would only produce or detect one
type of polarization. However, rotating the polarizer
changes the relative intensity in the s1 and s2 elements and
allows many measurements. In fact, this over-determines
the specific MM elements of interest. In this manner, a
simple rotating polarizer allows measurement of the top-
left nine elements of the MM, as shown in Figure 14A for
rotating polarizer ellipsometer or rotating analyzer ellips-
ometer configurations. The polarizer does not produce
circularly polarized light – always with s3 = 0, so an in-
strument using only polarizers in the PSG/PSA lacks the
ability to measure the last row or last column of the MM.

Tomeasure the last row or column, a compensator can
be added to the PSGor PSA. A compensator shifts the phase
of one electric field relative to its orthogonal electric field,
potentially populating the s3 Stokes vector. Again, rotation
of the compensator allows many different s3 values to be
produced in the probe light andmany different s3 values to
be analyzed. Thus, a rotating compensator ellipsometer is

often used to determine additional properties of theMM.As
shown in Figure 14B and C, a rotating compensator before
the sample provides access to the first three rows of the
MM, whereas a rotating compensator placed after the
sample can measure the first three columns of the MM. If
rotating compensators are placed both before and after the
sample, as shown in Figure 14D, the complete MM can be
measured. The interested reader is directed to reference
[77] for a thorough discussion of instrumentation.

5 Mueller matrix sample properties

5.1 Optical properties

To understand how a sample will influence the polarization
of light, we need to consider the optical properties of a ma-
terial. Optical properties are described by either the complex
refractive index (ñ) or complex dielectric function (ϵ̃), which
we define using the “Nebraska conventions” [65]:

ñ = n − ik (20)

ϵ̃ = ϵ1 − iϵ2 (21)

ϵ̃ = ñ2 (22)

The complex refractive index consists of the index of
refraction (or simply index), n, and the extinction coeffi-
cient, k. The index describes the phase velocity of light
within a material. The extinction coefficient describes the
absorption of light, with the following relation to the op-
tical absorption coefficient, α, at wavelength, λ:

α = 4πk
λ

(23)

Together, n and k can describe how light is reflected,
transmitted, and absorbed by a material. Using the optical
properties of each material, we can describe the overall
optical response from multilayers or three-dimensional
features.

An isotropic material will have the same optical
properties in all directions. Anisotropic materials can have
different optical properties for different directions, and as
such are described by a dielectric tensor. The optical
properties describe how the electric field of light is affected.
Thus, anisotropic optical properties describe the polariza-
tion direction that will be affected. A linearly anisotropic
material may have different optical properties for x-polar-
ized and y-polarized electric fields. Circularly anisotropic
materials would differentiate between right and left polar-
ized electric fields.

Figure 14: A few common ellipsometry configurations and the
corresponding MM elements they can access.
(A) Rotating analyzer and rotating polarizer ellipsometers are
prevented fromdetermining the last rowand last columnof theMMbut
can measure the upper-left nine elements. Rotating compensator
ellipsometers can measure (B) the first three rows or (C) the first three
columns of the MM, depending on whether the rotating compensator
is before or after the sample, respectively. (D) If rotating compensators
are before and after the sample, the entire MM can be measured.
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The distribution of atoms, molecules, or material
structure gives rise to the optical properties of a material.
When these properties are direction-dependent and con-
strained over a large volume, anisotropy may occur.
Figure 15 depicts an anisotropic material using different
spring tensions in orthogonal directions to describe how
the material will respond differently to electric fields
depending on orientation relative to the polarization
direction.

Optical anisotropy comes in different forms. If there
are two uniquely defined optical properties, the material is
uniaxially anisotropic. Materials with three uniquely
defined optical properties are biaxially anisotropic. Both
uniaxial and biaxial anisotropies can be further divided
based on whether their anisotropic planes are orthogonal.
For simplicity, we will only consider uniaxial and biaxial
anisotropy where the anisotropic symmetry planes are
orthogonal. Each can be rotated to match the x-y-z coor-
dinate system (where z points into the sample perpendic-
ular to the surface), using a sequence of coordinate system
rotations called the Euler angles as shown in Figure 16. The
Euler angle transformation is used to match the sample
axes to the measurement coordinate system. The dielectric
tensor of a uniaxial material is written as:⎡⎢⎢⎢⎣ ϵ̃x 0 0

0 ϵ̃x 0
0 0 ϵ̃z

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣ ϵ̃o 0 0
0 ϵ̃o 0
0 0 ϵ̃e

⎤⎥⎥⎥⎦, (24)

where the two orthogonal directions with the same op-
tical properties are referred to as ordinary (designated
with “o”) and the remaining direction with different
optical properties is referred to as extraordinary (desig-
nated with “e”). The dielectric tensor for a biaxial ma-
terial is written as:

⎡⎢⎢⎢⎣ ϵ̃x 0 0
0 ϵ̃y 0
0 0 ϵ̃z

⎤⎥⎥⎥⎦ (25)

Materials with directional-dependent index are
referred to as birefringent. Because the index is related to
phase velocity of light in a material, birefringence (Δn) can
produce a phase difference between orthogonal light
waves traveling through the material, often referred to as
the retardance. In Figure 17 there are two polarized light
waves traveling in the same direction (parallel to the z-
axis). The left electric field is polarized along the x-axis and
is subject to nx. The electric field on the right is polarized
along the y-axis and is subject to ny. Assuming the frequency

of both electric fields is the same, then nx < ny and the x-axis

is the so-called fast axis. The retardance between x- and
y-axes is measured as the total phase difference between
these directions and is dependent on both the birefringence
and the path-length. Retardance will appear in the bottom-
right nine elements of the MM, as shown in Figure 13B,
depending on the orientation of the axes relative to the
measurement coordinates.

When the extinction coefficient (absorption coeffi-
cient) is direction-dependent, the material is referred to as
dichroic. Dichroism will produce diattenuation of light
traveling through such material, with the resulting effect
shown in the MM depending on the orientation of the di-
chroism relative to the measurement coordinate system.
The total diattenuationwill also be path-length dependent.

5.2 MM for isotropic samples

With this basic introduction to optical properties, we turn
our attention to how light may interact with a sample –
primarily reflection, transmission, or absorption. We start
with the most common example encountered in ellipsom-
etry – the reflection of light from an isotropic sample. The
sample can consist of a substrate or the substrate can be
coated with thin films. The substrate and thin films can be
transparent or absorbing. Regardless, if all the materials in
the sample are isotropic, the p- and s- polarizations will be
eigenmodes. In other words, these two polarization di-
rections will remain the same upon reflection (or trans-
mission) from the isotropic surface/films. The p-polarized
incident light will remain p-polarized upon reflection or
transmission and the same will hold for s-polarized light.
This may not be true for incoming light of other polariza-
tion states. For example, an incident light beam polarized
at +45° will most generally convert to elliptically polarized

Figure 15: Depiction of anisotropic material, where the optical
properties are analogous to springs with different tension along
orthogonal axes. The interaction between the anisotropic material
and incident light depends on the polarization (direction of the
electric field vibration) relative to the material orientation.
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light upon reflection or transmission (which is where
ellipsometry gets its name).

Before proceeding we consider the special case of
normal incidence. When the light beam enters an isotropic
material at normal incidence, the plane of incidence aswell
as the p- and s- orientations are undefined. Thus, at normal
incidence the p- and s- electric fields cannot be differenti-
ated and the incoming polarization state does not convert
to a different polarization state. The result at normal inci-
dence can be described by the MM of Eqs. (13) and (14) for
transmission and reflection of light, respectively. As dis-
cussed, we need to account for a 180⁰ phase shift in
reflection due to the change in our frame of reference [81].
The only physical alteration to light at normal incidence
will be a reduction of light intensity (attenuation) that will
be shown in the M11 element.

At oblique angles of incidence, the p- and s- polariza-
tions will experience different attenuations (diattenuation)
and different phase shifts (retardance). The measurement
coordinate system is defined such that the p- and s- po-
larization directions are the x, y directions, as described
earlier. The MM for reflection from an isotropic sample is
written as:

⎡⎢⎢⎢⎣
1 −N 0 0
−N 1 0 0
0 0 C S
0 0 −S C

⎤⎥⎥⎥⎦, (26)

where N, C, and S are related to our ellipsometry parame-
ters from Eq. (2) as [65]:

N = cos(2Ψ) (27a)

C = sin(2Ψ)cos(Δ) (27b)

S = sin(2Ψ)sin(Δ) (27c)

For this isotropic case, the n, k values are the same for
all directions, yet the MM shows diattenuation between p-
and s- polarized light. This is due to the difference in re-
flected (or transmitted) intensity for p- and s- polarizations
as shown in Figure 4. Similarly, the p- and s- polarizations
will each experience a different phase change upon
reflection (or transmission) which is described by the Δ
parameter for standard SE.

The rotation shown in Figure 13 does not cause any
change to isotropic samples in reflection or transmission.
The optical properties are the same in all directions, thus
rotating the sample does not change the experiment. The
newplane of incidence still differentiates between p- and s-
polarized light, which are defined by the measurement
coordinate system. Thus, rotating the sample produces the
same measurement based on Eq. (26) for any sample
orientation. Measurements at multiple sample orientations
can be used as a test for some types of anisotropies. When
the MMSE data are the same for all sample orientations, we
cannot conclude that the sample is isotropic, but we can
rule out certain types of samples with “in-plane”
anisotropy.

Figure 16: Three Euler angles are a sequence of transformations to match the sample coordinate system to the measurement frame of
reference. The choice shown is one of 12 possible sequences, so caution should be used to correctly apply the order and direction of each
rotation. Here, the first angle ϕ is a rotation of the x and y axes around the z-direction, which is pointing into the sample surface. The second
angle θ is a rotation of the new y direction, y′, and z directions around the new x direction, x′. The final angle ψ is a rotation of the y′ and x′
directions around z′. All rotations follow the right-hand rule with thumb pointed along the rotation axis.

Figure 17: Two electric fields traveling in the same direction
experience different refractive indices in an anisotropic material.
Thus, each light wave experiences a different phase velocity.
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5.3 MM for linearly anisotropic samples

When measuring anisotropic materials, the resulting MM
depends on the type of anisotropy and the orientation of
the anisotropic axes relative to the measurement coordi-
nate system. If the symmetry axes of the anisotropic ma-
terial are aligned parallel and perpendicular to the plane of
incidence, the MMwill take the form of an isotropic sample
(Eq. (26)). This is demonstrated in Figure 18, where the
sample lines represent the anisotropic alignment direction
of thematerial. Thus, the optical propertieswill be different
for electric fields parallel and perpendicular to these lines.
In Figure 18A and C the lines are parallel and perpendicular
to the plane of incidence, respectively. In both cases, the
measured MM will only contain information in the “block
on-diagonal” elements as shown in blue. If the sample is
rotated such that the anisotropic symmetry axis is no
longer parallel/perpendicular to the plane of incidence, the
“in-plane” anisotropy can produce “cross-polarization”
and populate the “block off-diagonal” elements of the MM
as shown in purple for Figure 18B.

It is often desirable to measure MM in transmission at
normal incidence, where isotropic materials will not alter
the polarization and the measurement is only affected by
the anisotropic materials. Figure 19 shows the transmitted
MM measured at normal incidence for an α-quartz crystal.
The crystal is transparent at the measured wavelengths, so
the only optical effect is linear retardance between the fast-
and slow-axes, producing MM elements in the “rotated
retarder” section per Figure 13B. The MMSE data in
Figure 19 is sensitive to the in-plane retardance and in-
plane orientation. The retardance results from the in-plane
birefringence (Δn) and the path-length (d) through the
crystal. If the thickness (path-length) of the crystal is
known, the measured retardance (δ, in units of degrees,

waves, or nm) can be related to the underlying birefrin-
gence through:

δdeg. = 360°
λ0

dΔn (28a)

δwaves = 1
λ0

dΔn (28b)

δnm = dnmΔn (28c)

where λ0 is the wavelength of light in vacuum. For every
peak in the retarder section of the MMSE data of Figure 19,
there is 360° retardance. MMSE is only sensitive to the
relative retardance over a 360° range, as the absolute phase
is not measured. However, certain assumptions can be
used to infer the absolute retardance. This works best when
theMMSE data are collected over awide spectral range and
the overall retardance “order” (total number of 360° phase
shifts) is small. The sample’s retardance and fast-axis
orientation can be directly extracted from the data with the
help of Eq. (18). The resulting retardance for this quartz
crystal is shown in Figure 20. The MMSE measurement at
normal incidence is insensitive to the value of the refractive
index along each direction. For a more complete charac-
terization, the crystal would need to be studied at different
angles of incidence, in reflection and transmission, and
possibly at different sample orientations.

Figure 21 shows the transmitted MM at normal inci-
dence for a 24 μm thick uniaxially-anisotropic substrate
with optic axis (i.e. extraordinary direction) parallel to
the sample surface. The data are graphed with measured
wavelength along the horizontal axis and sample
orientation (rotation about the sample normal) along the
vertical axis. The colors correspond to the measured MM
element values between ±1. Rotation MMSE data often
provides excellent visual hints about the sample’s

Figure 18: Representation of a sample with in-plane anisotropy. As the sample is rotated about the sample normal, the sample axes change
relative to the measurement coordinate system. For sample rotations with anisotropic symmetry axes aligned parallel or perpendicular to the
plane of incidence (A, C), theMMmeasurementwill be confined to the “block diagonal” elements shown in blue. Any sample orientationwhere
the anisotropic symmetry axes are rotated between the plane of incidence and its orthogonal direction (B) can produce MM data in the “block
off-diagonal” elements shown in purple.
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optical symmetry behavior. Whenever the sample’s optic
axis is aligned parallel or perpendicular to the mea-
surement plane of incidence, the measured MM will be
contained within the block-diagonal terms of an unro-
tated diattenuator or an unrotated retarder (see Fig-
ures 10 and 11). The four horizontal dashed lines in
Figure 21 were added to show the four azimuthal orien-
tations where the sample and measurement coordinate
systems coincide. Given the wide spectral range, we can
divide the data into two regions based on observed linear
properties. The vertical dashed lines around 900 nm
separate these two regions. At wavelengths shorter than
900 nm, the upper left 3 × 3 block of the MM is active as

described in Figure 13A for a rotated linear diattenuator.
At wavelengths longer than 900 nm, the lower right 3×3
block of the MM is active, matching that of a rotated
linear retarder per Figure 13B.

These optical phenomena originate from the sam-
ple’s uniaxial optical properties. MMSE data from mul-
tiple angles of incidence and sample orientations
enables us to find the direction-dependent complex
refractive index. Figure 22 shows the MMSE modeling
results, revealing the nx, ny, kx, and ky of the sample in
the measured wavelength range. The sample is trans-
parent for wavelengths above 900 nm and the refractive
index in the x-direction is smaller than that in the y-
direction. Therefore, the electric field oscillating in the
x-direction penetrates faster than the electric field
oscillating in the y-direction (linear birefringence),
resulting in a phase delay (linear retardance) between
the two. While the material is still birefringent at shorter
wavelengths, it is also absorbing, and the extinction
coefficient of the y-direction is substantially larger than
the extinction coefficient of the x-direction. Therefore,
most photons associated with the electric field oscil-
lating in the x-direction transmit while the electric field
oscillating in the y-direction is absorbed. This explains
the linear diattenuation behavior observed in the MMSE
data at shorter wavelengths.

Figure 19: Measurement of transmitted MM at normal incidence through a high-order linear retarder made from α-quartz crystal.

Figure 20: Retardance in degrees for the MM data of the α-quartz
crystal shown in Figure 19.
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5.4 MM for circularly anisotropic samples

Samples that differentiate between the circular properties of
light include circulardiattenuators andcircular retarders. The
underlying properties that lead to these phenomena are
related to different absorptions for right-circular light
compared to left-circular light (circular dichroism) and
different refractive indices for right and left circular polari-
zations (circular birefringence). The circular polarizing
properties of thematerial canbe formedat themolecular level
(chiral molecules and certain crystals without mirror sym-
metry) or at a structural level (helical formation of layers). In
either case, the circular optical response is found in the ele-
ments of the MM shown in Figure 23.

Here, the green elements show the effects of circular
dichroism and the yellow section shows the effects of cir-
cular birefringence. In an ideal circular polarizer/retarder,
the m44 element would be 1.

One common sample that can exhibit circular optical
phenomena is a liquid crystal film. Liquid crystal mole-
cules are generally uniaxial and can be arranged to pro-
duce both linear and circular optical effects. When the

liquid crystal molecules are aligned in a single plane, they
can form a linear retarder. However, when liquid crystals
arrange in a twisted manner, they can produce circular
anisotropic effects. If the twist forms a repeated helical
structure, such as in a cholesteric liquid crystal, it can form
a Bragg reflector for circularly polarized light. The helical
structurewill selectively reflect either right or left circularly
polarized light and allow the opposite polarization to
transmit. The wavelengths affected by such structures
depend on the average refractive index for the liquid
crystal and the pitch (thickness required for the liquid
crystals to twist 360°).

Figure 24 shows the transmitted MM measured at
normal incidence for a cholesteric liquid crystal film with
nominal 10 μm thickness sandwiched between glass sub-
strates with thin (∼30 nm) polyimide alignment layers on
each substrate. At normal incidence, the isotropic mate-
rials can be ignored as they don’t alter the polarization. The
liquid crystal is transparent at all measured wavelengths
and yet rejects right-circularly polarized light (negativem14

forms a left-circular polarizer) in a band around 900 nm
wavelength. This is accomplished by the cholesteric liquid

Figure 21: Transmitted MM at normal
incidence plotted versus wavelength for a
full rotation (sample orientation rotated
about the sample normal) of an anisotropic
substrate with extraordinary axis parallel to
the sample surface. The MMSE data show
the linear retardance at longer wavelengths
and linear diattenuation at shorter
wavelengths.

Figure 22: Anisotropic optical constants for the substratemeasured
in Figure 21.

Figure 23: MM sections associated with circular sample properties,
including circular diattenuation (green) and circular retardance
(yellow).
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crystal orientation turning 18 times between the two sub-
strates. The prominent properties of this MM occur in cir-
cular elements shown in Figure 23.

Figure 25 shows the transmitted MMSE data from
another sample that produces a circular response. This
sample consists of a 90 nm thick achiral polymer film
blended with a chiral small-molecule helicene additive
(F8T2:aza[M]) on glass substrate [83]. Unlike the chole-
steric liquid crystal, which derives its circular optical
response from structural rotation of the molecule, the
chiral properties in this thin film originate from natural
optical activity. A transmission MM ellipsometry mea-
surement alone is not sufficient to distinguish between
structural or chiral circular properties, but an additional
reflection-type measurement can help to distinguish the
two cases [84].

6 Depolarization

A key feature of MMmeasurements is the ability to describe
the depolarizing capability of a sample. A depolarizing
sample converts polarized light into partially polarized or
unpolarized light, i.e. after interactionwith the sample, the
phase of the electromagnetic wave varies either spatially,
temporally, or spectrally. Thus, the electric field vector is

no longer well-defined and can only be described statisti-
cally [48]. The Mueller–Stokes formalism can handle
depolarizing samples because it represents polarized light
in terms of intensities defined as the time-average of
different electric field components:

I ∼ 〈E E∗〉 (29)

The components of a physical, normalized Stokes
vector fulfill the condition [33]:

0 ≤

̅̅̅̅̅̅̅̅̅
s21 + s22 + s23

√
≤ 1 (30)

where the limiting cases of 0 and 1 apply to unpolarized
and completely polarized light, respectively. Conse-
quently, theMM for an ideal depolarizerwould be given by:⎡⎢⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ (31)

which creates the normalized Stokes vector shown in Ta-
ble 1 for unpolarized light regardless of the incoming light
properties. No real sample shows the ideal shape for the
MM in Eq. (31).

In an ideal experiment, all the light within the mea-
surement beam experiences the same sample interaction.
In this case, each ray of light witnesses the same MM and

Figure 24: Transmitted MMSE through a cholesteric liquid crystal, 1:1 (Ch-N)GLC, formed between glass substrates. The twisted nature of the
liquid crystal produces a circular response as shown in corresponding elements of the MM [82].

J.N. Hilfiker et al.: MMSE 73



the measured MM is the same as the ideal MM without any
lossofpolarization (“depolarization”).Depolarization is often
the exception, not the rule. Many samples can be measured
with negligible depolarization; in which case MMSE mea-
surements are not required (generalized ellipsometry or
standard ellipsometry would suffice). However, MMSE mea-
surements allow accurate characterization for any sample,
even those that are depolarizing. Thus, we consider the
common causes of depolarization. In practice, the loss of
polarization is typically associated with the superposition of
different beamsof light that experience a different interaction
with the sample, often described as a “smearing” of polari-
zations. Superposition can either be coherent, i.e. electric
fields sum together as described by the Jones formalism, or
incoherent, i.e. intensities sum on the detector as described
by the Mueller–Stokes formalism. For the description of de-
polarization, the incoherent case is more relevant. Two
different scenarios occur: spatial incoherencewhere different
light beams are separated laterally to prevent coherent
interference and temporal incoherence where the distance
traveled by twowaves is longer than the coherence length for
the specific wavelength.

Some of the most common causes of depolarization in
ellipsometry are shown in Figure 26. In each figure, the
incident light is represented as linearly polarized. When
multiple beams are shown, they are all rays within the

same collected measurement beam, used to describe some
variable property of the light beam or sample that will be
simultaneously measured in the reflected beam. In all
cases, the resulting polarization after interacting with the
sample is a combination ofmultiple polarization states and
the detector averages over this variety of different beams
which are overlapping incoherently. While these figures
are all drawn in reflection, the same principles can apply to
a transmitted measurement.

Figure 26A represents a non-uniform film thickness.
Different portions of the incidence beam interact with
different thicknesses, resulting in different reflected polari-
zations. The thickness variation is within the area of the
measurement beam, but spatially separated enough to result
in incoherent interference between beams. This thickness
variation should not be confused with surface roughness,
where the thickness variations occur at a much smaller
spatial separation and would not lead to depolarization.

Figure 26B illustrates the effect of a focused measure-
ment – different portions of the measurement beam arrive
at different angles of incidence relative to the sample. As
such, there can be variation in the measured polarization
due to the angular spread of the beams. The measured MM
can be considered as coming from the average angle with
the depolarization helping to quantify the amount of
angular smearing.

Figure 25: Transmitted MM at normal incidence through a thin achiral polymer film blended with a chiral small-molecule helicene additive
(F8T2:aza[M]) [83].
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Figure 26C illustrates the effect of instrumental band-
width. Each incoming light beam has a different wave-
length. For samples that have a strong specular response,
the resulting polarization change for each wavelength can
be quite different. If the measurement detects these beams
as one, the instrument “bandwidth”may have a significant
depolarizing effect.

Finally, Figure 26D shows the light beam reflecting
from both front and back surface of a thick substrate. If
these two beams are combined at the detector, they can
produce depolarization when the reflected beams interfere
incoherently. This occurs when the path-length is longer
than the coherence length of the beam. For most MMSE
measurements at ultraviolet, visible and near infrared
light, the substrate becomes incoherent at thickness
greater than 50–100 μm. Thus, common glass substrates
and semiconductor wafers would produce depolarization
when the backside reflections are collected simultaneously
with the top-surface reflection.

Of these effects, thickness nonuniformity and backside
reflections are sample-related nonidealities, whereas
angular spread and wavelength variation (bandwidth) are
instrument-related nonidealities.

Most depolarization-causing characteristics can be
approximated in a model as a weighted sum of individual
MM (Mn) of a varying characteristic such as a layer thick-
ness, and by assuming some weight function (fn with
∑fn = 1) for each MM:

Mmodel = f1M1 + f2M2 + ... + fnMn (32)

Matching the smeared, generated MM to the measured
MM allows extraction of relevant sample properties such as
the thickness nonuniformity or the contribution from back-
side reflections in the measured data. More importantly, the

modeling of nonidealities can increase the modeling accu-
racy for the other sample properties, such as layer thickness
and optical constants.

6.1 MM of an isotropic depolarizing sample

For an isotropic, but potentially depolarizing sample, the
measured MM would have the following shape:

M =

⎡⎢⎢⎢⎣
1 −〈N〉 0 0
−〈N〉 1 0 0
0 0 〈C〉 〈S〉
0 0 −〈S〉 〈C〉

⎤⎥⎥⎥⎦ (33)

where the brackets refer to an average of the quantities N,
C, and S as detected. For a depolarizing sample, the sum of
the squares of these quantities is smaller than 1:

〈N〉2 + 〈C〉2 + 〈S〉2 < 1 (34)

The so-called degree of polarization, P, is defined as the
square root of this relation:

P =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
〈N〉2 + 〈C〉2 + 〈S〉2

√
(35)

It is common practice to define the quantity:

%Depolarization = (1 − P2)100% (36)

where a value of 0% describes a nondepolarizing sample
and 100% describes an entirely depolarizing sample. Note
that in this definition, the MM element m22 remains 1 even
in the case of fully depolarized light, which means that
individual polarization states retain an isotropic MM, but
the superposition of all polarization states smear the in-
formation about the sample properties for that wavelength

Figure 26: A few common scenarios that may
cause depolarization in real samples,
including (A) thickness nonuniformity,
(B) angular spread, (C) instrument
bandwidth, and (D) backside reflections
from the substrate. Figure adapted with
permission from [65].
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[16]. Considering the degree of polarization, the measured
MM in Eq. (33) can be rewritten as:

M =

⎡⎢⎢⎢⎣
1 −PN 0 0
−PN 1 0 0
0 0 PC PS
0 0 −PS PC

⎤⎥⎥⎥⎦ (37)

The parametersΨ andΔ reported in commercial analysis
software are often derived from the “corrected” form of N, C,
and S after the degree of polarization has been separated.
Note, that access to at least the fourth rowor fourth columnof
the MM is required to derive P from the measurement data.

6.2 MM of a general depolarizing sample

While the MM is ideally suited for measuring the depolar-
ization of any sample, the depolarization is not simply
contained in a single MM element. In the previous example
of an isotropic depolarizing sample, we needed to collect
MM elements related to N, C, and S to extract the depolar-
ization. A more general MM may contain 15 normalized
elements, and each may be affected in some manner by
depolarization. Fortunately, there are mathematical cal-
culations to extract information regarding depolarization
from the MM. For a general sample, a single quantity, the
so-called depolarization index (DI) can be defined if the
entire 4 × 4 MM is measured [67]:

DI =

̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ijMij

2( ) −M2
11

3M2
11

√√
(38)

DI varies between 0 for an ideal depolarizer and 1 for a
nondepolarizing sample. If only a partial MM is measured,
the so-called Jones matrix quality factor, QJM, can be
extracted to indicate if depolarization might be present in
the data. This quality factor reports the average difference
between the measured partial MM and a best-matching
nondepolarizingMMas calculated from a Jonesmatrix [16].

The primary complaint for any single-valued depolar-
ization figure is their inability to describe the true
complexity of the depolarization. The single value assumes
the depolarization occurs regardless of input polarization
state, while different polarization states may in fact be
depolarized by different amounts. Chipman states “Of the
16 degrees of freedom in the Mueller matrix, 1 corresponds
to loss, 3 to diattenuation, and 3 to retardance. The
remaining 9 degrees of freedom describe depolarization.”
[15]. Chipman therefore proposed a surface map of the
degree of polarization to represent the dependence on

input polarization state similar to a Poincaré Sphere or the
average of the degree of depolarization averaged over the
entire Poincaré Sphere as a more appropriate measure of
depolarization [15]. Again, these quantities require mea-
surement of the entire 4 × 4 MM. Fortunately, the common
depolarization encountered during MMSE characterization
of thin films and bulk optics are rarely complicated enough
to require more than a single-element representation of
depolarization.

6.3 Examples of depolarizing MM

In this section, we consider the MM of a few depolarizing
samples. Because the depolarization is wrapped within the
information throughout the MM, it can be difficult to
speculate which MM are depolarizing based on visual
appearance. Consider the reflected MMSE data at three
angles of incidence for a 5 µm thickfilm on silicon substrate
shown in Figure 27. Based on which MM elements are
populated, the thin film is either isotropic or anisotropic
with its symmetry axes aligned parallel and perpendicular
to the plane of incidence. Because the MM elements are
confined to the block-diagonal elements, we can use either
Eq. (36) or Eq. (38) to estimate the depolarizing properties
of the sample, as shown in Figure 28A and B, respectively.
Model calculations matched to the MMSE data show the
instrument bandwidth to be approximately 2.6 nm, which
is consistent with the CCD detection scheme for the mea-
surement device.

Next, consider MM measurements from a couple
anisotropic materials. In Figure 25 we showed the normal-
incidence transmittedMMSE datameasured through a thin
chiral polymer film on glass substrate. Figure 29 shows the
reflected MM measurement from a liquid crystal retarder
film on glass at 60° angle of incidence. Bothmeasurements
show activity in the block off-diagonal MM elements.
Visually, it is difficult to ascertain from the MM whether
either sample is depolarizing. Because the MM information
is not confined to the block-diagonals, the calculation from
Eq. (36) would produce erroneous results. Instead, we turn
to Eq. (38) to determine whether these samples are depo-
larizing. The DI for each data set is shown in Figure 30,
where only the splayed liquid crystal whose MM is shown
in Figure 29 exhibits appreciable depolarization (DI < 1).

7 Decomposition methods

There are different approaches to using the measured MM
to extract useful information. The simplest is to directly use
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the MM as a transfer function for light interacting with the
sample under the same conditions. A more advanced
approach is to build a model-based description of the
sample to fit the measured data in hopes of extracting the
underlying material/sample properties that caused the
polarization changes represented in the MM. Such
modeling can produce film thicknesses, anisotropic optical
properties, and structural properties of a sample, but
require significant knowledge and care for all but the
simplest samples. Between these two approaches lie the
decomposition methods. The goal of applying decompo-
sition to the measured MM is to try to separate it into
phenomenological properties.

With the advent of custom-built and commercial
instrumentation capable of measuring the entire 4 × 4 MM,
researchers started to explore many phenomena occurring in
samples that are far from ideal such as biological or medical
specimens. These samples often show large amounts of
scatteringanddepolarizationdue to spatial inhomogeneityor
nonideal structure and are generally difficult, or even
impossible, to model [48]. In other situations, researchers
might be interested merely in phenomenological quantities
describing the nature of a sample, such as linear or circular
dichroism in an augmented reality device. In situations
like these, MM decomposition methods can be applied to
express a complicated experimental MM as a series of

Figure 28: The depolarization from the MMSE measurement in Figure 27 can be calculated using (A) Eq. (33) for percent depolarization or (B)
Eq. (38) for depolarization index. The model-fit shown accounts for the finite-bandwidth of the measurement device.

Figure 27: Reflected MMSE measurement from a 5 μm thick, isotropic dielectric film on silicon substrate.
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simpler components of well-defined polarization proper-
ties, to filter relevant information, or simply to remove
noise or depolarization effects from a measured MM.
Three major decomposition types are distinguished
based on their mathematical characteristics: sum de-
compositions, product decompositions, and differential
decompositions. Each decomposition has its own domain
of validity and knowledge of the physical nature of the
system studied is required to avoid nonsensical results.

Sum decompositions treat a depolarizing MM as an
incoherent addition of nondepolarizing MMs. These de-
compositions are often applied to test the physical realiz-
ability of a measured MM which might not be necessarily

satisfied due to experimental error and to potentially filter
out the effect of nonidealities. In other cases, individual
nondepolarizing MM components might be isolated from a
depolarizing MM. The most common sum decomposition
was developed by Cloude [12, 68]. This decomposition as-
sumes that any depolarizingMM can be decomposed into a
weighted sum of four nondepolarizing MM:

M = λ1M1 + λ2M2 + λ3M3 + λ4M4, (39)

with positive weight factors. The weight factors are derived
as eigenvalues of the so-called covariance matrix [69]. A
negative eigenvalue λi would indicate a nonphysical MM.
By setting negative eigenvalues to zero, nonphysical
components such as measurement errors might be filtered
out. Formore details, the interested reader is referred to the
original publications by Cloude [12, 68] and discussions in
Ref. [69].

Product decompositions express an arbitrary MM as a
product of the elementary MM of a retarder, diattenuator
(polarizer), and depolarizer. Different numbers and orders
of thesematrices are possible, where the order is important
because different elementary MM do not commute. These
decompositions are particularly useful when a system can
a priori be described as a sequence of different optical el-
ements. However, different decompositions were devel-
oped to cope with more complex situations [69]. The most
widely used choice is the Lu–Chipman decomposition [70]:

Figure 29: Reflected MM at 60° angle of incidence for a splayed liquid crystal retarder film.

Figure 30: Depolarization index calculated for the MM data of a
chiral polymer film (blue, MM from Figure 25) and a splayed liquid
crystal retarder (red, MM from Figure 29).
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M = MΔMRMD (40)

which expresses the MM as a sequential product of sub-
matrices for a diattenuator (MD), retarder (MR), and depo-
larizer (MΔ).

A very useful decomposition if phenomenological op-
tical quantities such as linear and circular dichroism or
linear and circular birefringence are of interest is the dif-
ferential decomposition. According to this decomposition,
the space derivative along the propagation direction z of an
MM can be expressed as [71]:

dM/dz = mM (41)

The 4 × 4 differential matrix m contains all the
elementary properties of the medium, i.e. linear and cir-
cular dichroism and birefringence. If the medium can be
considered homogeneous along the surface normal over a
distance d, the differential matrix can be extracted from:

ln M = md = L (42)

Thus, the term logarithmic decomposition is some-
times used for this decomposition type. For a non-
depolarizing sample, we obtain [73]:

L =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −LD −L′D CD

−LD 0 CB −L′B
−L′

D −CB 0 LB
CD L′B −LB 0

⎤⎥⎥⎥⎥⎥⎥⎦ (43)

Here, CB and CD refer to circular birefringence and
dichroism, LB and LD to linear birefringence and dichroism
for horizontal and vertical polarization, and L′B and L′D to
the linear birefringence and dichroism for ±45° reference
directions. Note that the definitions of the birefringence
terms in Eq. (43) contain the effect of sample thickness and
the wavelength, which differs from the common use of the
term “birefringence” for the index difference (Δn). The
interested reader is referred, for example, to Ref. [70] for
clarifications. For a depolarizing MM, sum decomposition
can be performed to first extract a nondepolarizing MM.
Alternatively, ln M can be split into one part with the non-
depolarizing features and a second part carrying depolar-
ization [66, 74, 75].

We recently used the differential decomposition to
extract chiral properties of sugar solutions, alpha-quartz,
liquid crystals, beetle cuticle, and cellulose nanocrystal
films in comparison with the same quantities as deter-
mined by electromagnetic modeling of the actual material
properties using the Tellegen constitutive relations [73].
Figure 31 shows theCB andCD for a cholesteric glassy liquid
crystal sample determined by differential decomposition of

MM data in comparison to the same quantities as deter-
mined by electromagnetic modeling of the Tellegen
chirality parameter κ.

The reader is guided to Refs. [48, 69, 70] for more
detailed discussions, additional decomposition versions,
and examples.

8 MMSE applications

The applications of MMSE can be quite complex and the
following examples should be considered as demonstra-
tions of what is possible in the field by skilled practitioners.
There are many applications in the literature and their re-
view can be better understood with knowledge of the basic
concepts provided in earlier sections of this tutorial. For
example, a beginner to the field may benefit simply from
matching general “shapes” of the various MM data pre-
sented to those fromSection 3.We startwith theMMSEdata
from a uniaxial MgF2 crystal, which is used as a retarder in
optical experiments. The MMSE measurements can deter-
mine the amount of retardance versus wavelength and
angle of incidence. Next, we consider the MMSE charac-
terization of flexible plastic substrates at infrared wave-
lengths where the polymer exhibits many direction-
dependent molecular vibrations. The third example
covers a nematic liquid crystal where MMSE characteriza-
tion can determine the amount and direction of twisting in
the molecules throughout the layer. Finally, we show

Figure 31: Circular dichroism CD and circular birefringence CB for a
cholesteric glassy liquid crystal sample determined by differential
decomposition of MM data (solid curves). The dashed curves show
CB and CD calculated fromelectromagneticmodeling of the Tellegen
chirality parameter κ. See Ref. [73] for details. Reprinted with
permission from [73].
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results from MMSE characterization of a “Gate-all-around”
or “Nanosheet” FET, the next generation after “FINFET”,
test structure used to determine the critical dimensions
before and after a selective-etch process.

8.1 MgF2 crystal

MMSE measurements are particularly useful in studying
both the optical constants and the resulting optical
response from anisotropic crystals. Here, we consider a
1mm thick disc ofMgF2. TheMgF2 crystal is uniaxial and its
optical axis is normal to the polished surfaces. This is
confirmed with an MMSE measurement in transmission
through the crystal at normal incidence, shown in
Figure 32. The MM resembles that shown in Eq. (13), where
there is no change in polarization as the light travels par-
allel to the extraordinary crystal axis and the electric field,
which is orthogonal to the direction of beam propagation,
only experiences the ordinary refractive index. Considering
M11, which remains above 0.9, we know the crystal is
transparent over the measured wavelength range, which
was from 190 nm in the ultraviolet to 1690 nm in the near
infrared.

To introduce retardance, the crystal can be tilted such
that the electric field parallel to the tilt direction will
experience the projection of the extraordinary axis (and

corresponding ne), while the electric field perpendicular to
the tilt direction will only experience no. Thus, a tilt of the
uniaxial crystal allows controlled retardance between
these orthogonal directions. MMSE data in transmission
through theMgF2 crystal is shown in Figure 33 at 0°, 5°, 10°,
and 15° angle of incidence. While there is no retardance at
normal incidence (0°), the bottom-right 2 × 2 block of the
MM exhibits increasing retardance with increasing tilt
angle. If our goal is to understand the amount of retardance
introduced by the crystal as a function of transmitted angle
of incidence, the MMSE can be directly used to extract the
retardance for each angle, as shown in Figure 34. This
calculation is based on Eq. (18) with no rotation angle,
which reduces to the form shown in Figure 11.

Consider the MM shape from Figure 33 in more detail.
The interesting elements are confined to the bottom-right 2×
2 elements – those of an unrotated retarder. The MgF2
crystal is anisotropic, but we do not witness any cross-
polarization that would informus of this anisotropy. This is
explained by Figure 18 – when we tilt the crystal, the
anisotropic directions are always aligned with the p- and
s-directions of our measurement setup. Thus, we can have
anisotropy without cross-polarization. If we had tilted the
crystal in an arbitrary direction, we could have produced
an MMSE measurement that would have appeared like
that of the rotated retarder from Eq. (18) and shown in
Figure 13B.

Figure 32: MMSE data transmitted at normal incidence through MgF2 crystal.
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TheMMSE data from a crystal can be used to determine
more than just the retardance for light traveling through
the crystal at specific wavelengths and angles of incidence.
The data can also be used to determine the underlying
reason for that retardance – the path length and the bire-
fringence (Δn = no − ne). For unknown crystals, the thick-
ness can often be approximated by a separate
measurement (e.g., digital calipers) to allow model-fitting
for the birefringence. Alternately, if the crystal optical
constants arewell-known, the thickness can be determined
from the MMSE data. MMSE data was collected in both
transmission and reflection for this crystal at a wide range
of angles of incidence. The MMSE data in Figure 35 are

transmitted through the crystal from −20° to +70° at every
0.25°. The data curves are shown versus angle of incidence
at a wavelength of 301 nm. The data are symmetrical
around 0°with only slight activity in the cross-polarization
retarder terms (m23, m24, m32, and m42). The cross-
polarization is the result of a tilt of only 0.128° between
the optical axis and the ellipsometer coordinate system.
This tilt is perpendicular to the plane of incidence, which is
why the cross-polarization terms appear. If the tilt was in
the plane of incidence, the result would be a slight shift in
the data symmetry around the 0° measurement angle.

The MMSE data shown in Figure 36 is for the reflected
angles from 20° to 70° for the MgF2 substrate at a wave-
length of 632 nm. The detected light is collected from both
front and back surfaces of the crystal. Light that travels
through the crystal and returns to the surface will experi-
ence a phase retardance between p- and s-polarizations for
the same reason we have phase retardance at oblique an-
gles in transmission. The data in both transmission
(Figure 35) and reflection (Figure 36) were fit to a model
describing the MgF2 crystal optical constants and thick-
ness. Using published literature values for theMgF2 optical
constants in ordinary and extraordinary direction [85], the
total substrate thickness would need to be adjusted to
1.0654 mm which is a 6.54% deviation from the nominal
thickness. Alternately, we could fix the thickness at the
nominal value and fit for the wavelength-dependent

Figure 33: MMSE data in transmission through the MgF2 crystal at 0°, 5°, 10°, and 15° angles of incidence.

Figure 34: Calculated retardance from the MMSE data of MgF2
crystal shown in Figure 33.
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birefringence of the MgF2 crystal. The result would be an
index difference at 633 nm of 0.01255 instead of the book-
value index difference of 0.01178 – an equivalent 6.54% de-
viation in birefringence. Here, the MMSE measurement

cannot determine which is correct, so we need to turn to
other measurements to distinguish the correct modeling
approach. A digital caliper reading of the substrate
shows a thickness of 1.06 mm, so it appears the reference

Figure 35: MMSE data and corresponding fit for transmitted measurements through MgF2 crystal at 301 nm versus angle of incidence.

Figure 36: MMSE data and corresponding fit for data reflected from MgF2 crystal at 632 nm wavelength versus angle of incidence.
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values for the ordinary and extraordinary refractive in-
dex of MgF2 (shown in Figure 37) are accurate and we
were able to determine the thickness of this substrate.
This shows the importance of an accurate thickness
when measuring bulk crystals in transmission, which
often comes from separate measurements, to extract
accurate Δn values from MMSE data.

The reader may recall that one of the benefits of
MMSE measurements is the ability to also measure
partially polarized light. The transmitted MM measure-
ments remain primarily polarized, except at short
wavelengths and large angles of incidence as shown in
Figure 38, which shows the depolarization index for both
0° and 65° transmitted data. The depolarization index is
also graphed in Figure 38 for 20° and 65° reflected angles.
In reflection, the depolarization is much more promi-
nent, especially at smaller angles of incidence. To un-
derstand this, we can model (and fit) the various effects
that were discussed in Section 6. The model-fitted curves
for each data set are also shown in Figure 38. Our
transmitted measurements are modeled with only the
instrument bandwidth, which is estimated at 2.8 nm. In
addition to the instrument bandwidth, the reflected data
model needs to include the contribution from light

reflecting from the back surface of the substrate and
reaching the detector. This light is incoherent with the
front-surface reflection, which is why it contributes
strongly to the depolarization.

8.2 Flexible plastic substrates

Flexible plastic substrates often show stretch-induced
anisotropy due to the preferred orientations of the polymer
chains. Typical examples for flexible electronics applications
are polyethylene terephthalate (PET), polyethylene naph-
thalate (PEN), andpolyimide sheets, all ofwhich showbiaxial
anisotropy. Thesematerials are transparent in the visible and
near-infrared, so backside-reflected light can have a strong
influence on optical measurements. For example, the phase
shift between thep- and s- polarizations traveling through the
biaxially anisotropic sheet affect the ellipsometry data. Cross-
polarization may occur when the sample’s anisotropy coor-
dinate system is not aligned with the ellipsometer coordinate
system. As flexible sheets are typically very thin, from a few
micrometers to less than a hundred micrometers, reflections
from both front- and back-surfaces can even combine
coherently. This leads to high-frequency, thickness-related
interference patterns in the measured data. In addition, even
a small amount of thickness non-uniformity or instrument
bandwidth can cause significant depolarization. Therefore,
MMSE provides the ideal measurement for a flexible plastic
substrate thatmayexhibit anisotropy, cross-polarization, and
depolarization.

To simplify characterization, one could roughen the
backside to avoid light collection from this surface and
approximate the front surface using the pseudo optical
constants from standard SE data [86]. However, we have
shown that the “apparent index” of a biaxial substrate
obtained from this method is neither the same as any of the
true biaxial indices nor consistent when the sample azi-
muth or angle of incidence is varied [87]. We have
demonstrated proper ellipsometry modeling strategies for
various plastic sheets with different degrees of birefrin-
gence that utilize MMSE data [34]. Data analysis finds the
true biaxial optical constants of flexible plastic substrates
where ñx ≠ ñy ≠ ñz.

Figure 39 shows the partial MM data of a 50 µm thick
PEN substrate mainly in the near-to-mid infrared spectrum
(wavelengths from 1 to 14.5 µm). The fourth column of the
MM is missing as the infrared ellipsometer used for mea-
surements uses a rotating compensator after the sample
per the configuration shown in Figure 14C. The magenta
curves represent the MM data at normal incidence in
transmission, whereas the blue curves are for an oblique

Figure 37: Uniaxial refractive index for MgF2 crystal, from [85].

Figure 38: Depolarization index for two MMSE data sets in
transmission (0° and 65° angles of incidence) and two in reflection
(20° and 65°).
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angle of 55° in reflection. We selected only a few spectra
from amongst the plethora of data collected at various
angles of incidence and rotational azimuths for illustra-
tion. In general, transmission MMSE data helps find the
azimuthal angle and linear birefringence of the sample.
Before collecting the reflectedMMSE data, the back surface
of the substrate was roughened to scatter reflections from
this surface. However, we still model the sample as a
biaxial substrate rather than using the pseudo optical
constants approach. The two different blue curves show
the MMSE data at two sample orientations rotated by 90°.
Notice that the curves in off-diagonal block elements are
non-zero, especially in the absorbing region, even though
light was only collected from the front surface reflections.
According to the ellipsometry modeling results, these two
measurements are collected when the sample is oriented
at−45° and+45°, respectively. The index of refraction of the
biaxially anisotropic PEN substrate is shown in Figure 40,
revealing the direction-dependent complex IR absorption
features and their Kramers–Kronig consistent counterpart.

8.3 Twisted nematic liquid crystal

Liquid crystals are used in many display technologies to
manipulate the polarization of light. As such, their
polarization-dependent properties are of significant inter-
est.When the liquid crystalmolecules are aligned and their

Figure 39: Infrared MMSE data collected in transmission (magenta) and reflection (blue) from a PEN substrate.

Figure 40: Complex refractive index for biaxially anisotropic PEN
substrate.

84 J.N. Hilfiker et al.: MMSE



movement is confined, they exhibit anisotropic optical
properties. The optical response can be used to produce
phase retarders and switchable devices. We considered data
from a linear retarding crystal of α-quartz in Figure 19.
Compare that measurement to MMSE transmitted measure-
mentof a 6.2 µm thicknematic liquidcrystal inFigure41.Both
MMSE data sets populate the bottom-right nine elements of
the MM, related to their retarding properties. The α-quartz
produces a much larger phase shift than the nematic liquid
crystal, determined by considering the number of data os-
cillations versus wavelength from both Figures. However,

something more interesting occurs in the MMSE data for the
nematic liquid crystal. While it is not easy to visually identify
that the retarder inFigure41 is twisted, the traineduserwould
notice that the amplitudes of the off-diagonal oscillations
vary significantly versus wavelength. Compare this to the
very regular behavior of the linear retarder data shown in
Figure 19 and one can conclude that this sample is “special”.

Rotation MMSE data can offer better visual clues of
whether the in-plane retarder is “twisted”. Consider the
transmitted MMSE data for an untwisted linear retarder in
Figure 42 versus sample rotation. There are four sample

Figure 41: Transmitted MMmeasurement at normal incidence through a nematic liquid crystal film sandwiched between coated glass slides.
The model-fit results are generated from a 6.2 μm anisotropic layer with counterclockwise rotating orientation through the film as looking
along the beam-path.

Figure 42: Rotational MMSE data in
transmission at normal incidence for a
linear retarder.
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orientations where the retarder is aligned parallel or
perpendicular to the plane of incidence (as designated by
the dashed lines). At these four orientations, the block off-
diagonal elements are 0 and m22 = 1 for all wavelengths.

Next, consider the sameMMSE transmitted experiment
for a twisted anisotropic retarder shown in Figure 43.When
the orientation is twisted, we are unable to locate any
sample orientations where the block off-diagonal elements
equal 0 for all wavelengths. This is most evident when
considering the last row and the last column of the MM,
which shows the twisting of the MM elements compared to
Figure 42. Note that m44 is independent of sample orien-
tation for either sample case.

Returning to the MMSE data for our twisted nematic
liquid crystal from Figure 41, recall that normal-incidence
MMSE data is insensitive to the layer thickness, so this
value is fixed at a previously determined value. Modeling
the data with uniaxially anisotropic layer results in the
refractive indices shown in Figure 44. The liquid crystal
orientation (extraordinary direction) is found to be
rotated −3.7° relative to the ellipsometer frame of reference
at the interface with the glass substrate. The liquid crystal
twists counterclockwise as seen looking in the direction of
beam travel by a total of 89.6°.

8.4 MMSE in semiconductor metrology

In recent years, MM ellipsometry was established as an in-
dustry standard for extremely sensitive, non-destructive
metrology of the critical dimensions in semiconductor mi-
croelectronic devices. Modern integration paradigms and
ever shrinking transistor dimensions led to the formation of
periodic, subwavelength size featureswhichact asdiffraction
gratings. The optical contrast between thematerials involved
in the process enables the reconstruction of not only the pitch

and outer dimensions of these gratings, but also determina-
tion of intricate, inner features such as liner and spacer
thicknesses, remaining hard mask thicknesses after lithog-
raphy processes, filling of void spaces, buried layers, etc. [55,
78–80]. The term “optical critical dimension”metrology was
established for optical methods capable of measuring these
parameters. Advanced modeling algorithms such as RCWA,
finite element methods, or finite-difference time-domain are
applied for the reconstruction of the dimension information
from the raw measurement data. With the transition from
planar device geometries to FinFETs and recently to nano-
sheet transistors, measurement of the relative phase infor-
mation between p- and s-polarization contained in the on-
diagonal block elements and the access to the cross-
polarization terms in the off-diagonal blocks of the MM
proved extremely sensitive to slight asymmetries and even
allows characterization of the etching behavior during the
release of buried nanosheet channels [55, 78–80]. As an
example, Figure 45 shows the optical model setup for a test
structure intended to demonstrate the sensitivity to individ-
ual SiGe sacrificial layer indentations created by variations in
this etch process, adapted from Ref. [78].

Figure 43: Rotational MMSE data in
transmission at normal incidence for a
twisted linear retarder.

Figure 44: Anisotropic refractive index for a nematic liquid crystal,
determined from model-fit to the MM data in Figure 41.
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The test structures consist of a cross pattern etched by an
anisotropic etch step into a layer stack of alternating SiGe and
Si nano sheetswhich emulates the dimensions in a typical fin
created during an actual nanosheet transistor device process.
In a selective etch step, the sacrificial SiGe sheet width is
reduced while the Si nanosheet width is not altered. The
parameters of interest for this setup are given in the caption of
Figure 45. While only a single test structure is shown, the
sample consists of a periodic array of the same structures
filling the measurement area. A comparison between

experimental MMSE data and the best matching RCWA
calculation model for a selectively etched sample with
10.5 nm indent in the SiGe nanosheets is shown in
Figure 46. For the etched structures, the amount of SiGe
selective cavity etch, side wall angle of the SiGe and the
curvature of the SiGe etch were successfully extracted.
Close correspondence between values obtained from
optical critical dimension analysis with scanning elec-
tron microscopy (SEM) and transmission electron mi-
croscopy (TEM) imaging analysis emphasized that

Figure 45: Scatterometry model for
(A) unetched nanowire test structure
(B) etched nanowire test structure after
regression analysis. The parameters
floated for analysis for (A) and (B) are: (1)
length (l) of hole; (2) width (w) of the hole;
(3) thickness values of the Si and SiGe
nanosheets, SiN hardmask layer; (4) extent
of rounding (r) of the top SiN layer; and (5)
pitch in x (px) and y (py) directions.
Reproduced from [78], with the permission
of AIP Publishing.

Figure 46: Comparison of experimental and best-matching RCWA model (somewhat misleadingly referred to as “simulated” in Ref. [78]) for
m12,m34,m33,m13,m14 for a selectively etched samplewith 10.5 nm indent, at a nominal azimuthal angle of 45°. Reproduced from [78], with the
permission of AIP Publishing.
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MMSE-based scatterometry has the capability to extract
profile dimensions of complex subsurface features. Please
refer to Ref. [78] for further details.

Recently, model-free approaches based on machine
learning which compares experimental MMSE data with
reference data from alternative slower or destructive
metrology techniques such as SEM or TEM gained impor-
tance. These approaches do not require manual input, fine
tuning of the geometry parameters and inclusion of non-
idealities to match the experimental data closely and rather
relate minute spectral variations to very real changes in the
device structure. It is expected that machine-learning based
MMSE scatterometry in combination with further hardware
improvements will enable accurate process control well into
the future Å-size technology node era.

9 Conclusions

MMSE is increasingly popular as a nondestructive charac-
terization solution for various thin films, nanostructures,
metamaterials, and critical dimensions. TheMueller–Stokes
calculus builds a theoretical foundation to describe the
interaction between polarized light and matter based on
measurable light intensities. MMSE provides access to the
sample’s polarizing, cross-polarizing, and depolarizing
properties upon reflection, transmission, and absorption
and is thus applicable to any conceivable sample type. The
MM of a sample contains information about light attenua-
tion, diattenuation, polarizance, retardance, and depolari-
zation. Knowledge of the MM elements, sections, and
common shapes provide a guide to the interpretation of any
measurement. The optical response of any sample can be
forward calculated by simplymultiplying themeasuredMM
with a defined input Stokes vector without the need for a
model analysis. Phenomenological quantities of a sample
canbe extracted from theMMusingmathematical equations
describing retarders and polarizers, or by applying MM
decomposition methods. MMSE modeling based on Fresnel
equations or RCWA enables determination of the complex
refractive index for isotropic samples, the dielectric function
tensor in anisotropic materials, thin-film thickness, under-
lying material, and structural properties or subwavelength
critical dimensions in periodic samples. We have demon-
strated the power ofMMSEby considering a few case studies
such as linear retarders, flexible anisotropic substrates,
liquid crystals, very thick films with significant depolariza-
tion, and optical critical dimension measurements, to
highlight just a few of the many applications of MMSE.

The interested reader is referred to the many excellent
publications in this ever-growing field. For basic details
regarding ellipsometry, a good place to start are references
[65, 76]. MMSE details are also included in reference [65]
and a great additional resource is reference [48]. To better
understand the Stokes–Mueller mathematics, readers are
encouraged to check out references [15, 33, 67]. If you are
still excited after these excellent texts, the remaining ref-
erences can be your guide to additional details.
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