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Editorial on the Research Topic
Multicomponent reactions (MCRs) towards scaffolds with versatile
applications

For a long time, multicomponent reactions (MCRs) have been known in the quickly
developing field of organic chemistry. Already in 1850 Strecker reported the first three-
component synthesis of α-amino nitriles (Strecker, 1850) which later on became a powerful
entry to the steadily increasing demand for synthetic α-amino acids (Shibasaki et al., 2008;
Wang et al., 2011), key building blocks for peptides, pharmaceuticals, and food additives.
However, for a long time MCRs have rather been considered to be laboratory curiosities,
where all starting materials were combined in the same reaction vessel and transformed,
without intermediate isolation, into a final product. Many venerable name reactions, such as
Hantzsch dihydropyridine synthesis (Hantzsch, 1881) or Gewald amino thiophene synthesis
(Huang and Dömling, 2011), have evolved to evergreens in heterocyclic chemistry. But it was
not before 1959, when Ivar Ugi introduced his four-component extension of the Passerini
synthesis of α-acyloxyamides (Banfi and Riva, 2004) to α-aminoacylamides, i.e., peptoids,
and recognized the powerful synthetic concept of multicomponent reactions as an enormous
development potential for combinatorial chemistry, diversity-oriented synthesis, and,
thereby, for the exploration of structural and functional space (Ugi, 1997; Dömling and
Ugi, 2000; Ugi et al., 2003). As a consequence MCRs have become a valuable tool for the
preparation of all kinds of functional molecules.

MCRs are often considered as one-pot methodology, which sets the first prerequisite
(Posner, 1986; Tietze and Beifuss, 1993; Tietze, 1996; Hulme and Gore, 2003). This
experimental setup warrants high convergence, high diversity, and preferentially easily
available starting materials for enabling the explorational potential. In its earliest form,
MCRs have been assigned to be domino processes, where all starting materials are
introduced from the beginning of the process. However, according to Tietze’s more
general definitions (Tietze and Beifuss, 1993; Tietze, 1996), which also encompass
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Posner’s one-pot approach (Posner, 1986), the quite narrow domino
approach can be considerably expanded by also allowing stepwise
addition of substrates and further additives (catalysts, cosolvents,
and effectors) by maintaining the initial conditions (temperature
and pressure) in a sequential fashion or by altering them in a
consecutive approach. All these three scenarios—domino,
sequential and consecutive MCRs—fulfill the in sensu stricto
definitions of all one-pot methodologies: all transformations
proceed in the same reaction vessel without a change of the
reaction medium, three or more reactants are employed to form
two or more new bonds, and a significant number of atoms from the
starting materials are embedded in the product. All this makes
MCRs per se highly atom economical (Trost, 1991; Trost, 1995;
Sheldon, 2000). The practical aspect of the one-pot concept avoids
intermediate workup as well as purification after each reaction step,
finally leaving a single purification process after completion of the
sequence.

Besides the enormous practical aspects of MCRs the
underlying reactivity principle is the perpetual generation of
functional groups and their selective transformation according
to their relative reactivities. (Müller, 2014). As clearly outline by
Tietze (Tietze and Beifuss, 1993; Tietze, 1996), the exploratory
potential for developing new synthetic methodologies based upon
one-pot transformations lies in the sophisticated combination of
elementary processes and reactivities that can be either polar or
unpolar, concerted processes proceeding via pericyclic transition
states, radical and photochemical processes, and the vast
manifold of organometallic reactivity in stoichiometric or
catalytic fashion.

In the Research Topic “Multicomponent Reactions (MCRs)
Towards Scaffolds with Versatile Applications” we have compiled
various aspects of modern MCR chemistry. Three contributions
place a special emphasis on methodological developments by
metal-free MCR syntheses of trifluoromethyl-1,2,4-triazole
scaffolds (Wang et al.), by Pd-catalyzed asymmetric MCR
synthesis of α-arylglycine derivatives (Jakob et al.), and by
summarizing advancements of metal-mediated MCR syntheses

in general (Sakthivel et al.). The fourth contribution takes a
conceptual approach and summarizes and outlines the
application of MCRs for accessing chromophores, which as
functional π-systems are the molecular key constituents in
photonic and electronic applications (Brandner and Müller).
We hope that this Research Topic will inspire to follow the
exciting path of MCRs, which inevitably have become a
playground for developing superior, sustainable methodologies
allowing to tackle scientific challenges with tailored molecules
in a broad scope from life to materials sciences.
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