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Traditional methods for estimating the number of grape clusters in a vineyard generally

involve manually counting the number of clusters per vine in a subset of the vineyard and

scaling by the total number of vines; a technique that can be laborious, costly, and with

an accuracy that depends on the size of the sample. We demonstrate that traditional

cluster counting has a high variance in yield estimate accuracy and is highly sensitive

to the particular counter and choice of the subset of counted vines. We propose a

simple computer vision-basedmethod for improving the reliability of these yield estimates

using cheap and easily accessible hardware for growers. This method detects, tracks,

and counts clusters and shoots in videos collected using a smartphone camera that is

driven or walked through the vineyard at night. With a random selection of calibration

data, this method achieved an average cluster count error of 4.9% across two growing

seasons and two cultivars by detecting and counting clusters. Traditional methods

yielded an average cluster count error of 7.9% across the same dataset. Moreover, the

proposed method yielded a maximum error of 12.6%while the traditional method yielded

a maximum error of 23.5%. The proposed method can be deployed before flowering,

while the canopy is sparse, which improves maximum visibility of clusters and shoots,

generalizability across different cultivars and growing seasons, and earlier yield estimates

compared to prior work in the area.

Keywords: viticulture, field robotics, computer vision, machine learning, early yield prediction

INTRODUCTION

Despite advances in vineyard management techniques, one of the most challenging aspects in
viticulture involves accurate estimation of grapevine yield. Yield estimates are used prior to harvest
to allocate resources such as labor, tank space, and packaging, as well as to predict revenue. Progress
in yield estimation methods—either through cost reduction or increased precision—could have
a significant impact on the economic well-being of the viticulture industry. For example, after a
drought in 2016, anecdotal reports from grape growers in the Finger Lakes region of NY in 2017
suggested most yield estimates only accounted for approximately two thirds of the actual yield
at harvest.

Most techniques for yield estimation are manual and/or destructive (Atzberger, 2013; Ma et al.,
2016), and involve counting clusters and assessing average cluster weight. One such method, called
the Largest Cluster Weight Method, is simply multiplying an estimate of the number of clusters
in the vineyard by the historic average weight of a single cluster. The inherent weakness of this
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method is that it relies on long-term averages and does not
consider the often dramatic annual fluctuations in environmental
conditions that impact the number of clusters and average cluster
weight. Other methods, such as the Lag-Phase Method and
the Growing Degree Day Method (Dami and Sabbatini, 2011),
attempt to predict the final berry weight based on early-stage
cluster weight and environmental conditions. These methods
offer an alternative method only for the final berry weight
estimate and provide no superior method for cluster number
estimates (Dami and Sabbatini, 2011). Estimating the number
of clusters in the vineyard is often accomplished by manually
counting a subset of the vineyard and extrapolating the average
of this subset over the size of the entire vineyard. This method
is laborious and time consuming and may result in lost revenue
due to inaccurate estimates. It can also be highly inaccurate
for vineyards in cool climates where environmental conditions
year to year result in significant variation in cluster weight and
number of clusters per vine.

To automate yield prediction many researchers have
turned to vision-based sensing for cluster and berry counting
as well as weight estimates. Specifically, there has been
significant focus on imaging vines from the side of the
trellis as described in a comprehensive recent review (Seng
et al., 2018). Current methods tend to rely on systems such
as high precision LIDAR and RGB, stereovision, and/or
near infrared cameras. Such systems can cost thousands
or tens of thousands of dollars. These methods achieve
reasonable success in warm climates with small vines
(Rose et al., 2016; Rist et al., 2018), but in regions such
as the Northeastern U.S. where grapevines are highly
vigorous due to high organic matter in the soil and ample
precipitation, foliage often impedes visual assessment resulting
in inaccurate measurements.

In pursuit of a more accessible and effective yield estimation
technique for use in cool climate vineyards, we propose to
leverage standard computer vision techniques (machine learning
and optical tracking) on videos captured from a comparably
low-cost smartphone carried through the vineyard by a vehicle,
robot, or person. The goal is to achieve more accurate cluster
counts than averaging a subset of manually counted vines, while
keeping the cost affordable to small vineyard owners and below
alternative computer vision methods. Instead, a small subset
of manually counted vines and/or previous years data is used
to calibrate computer vision generated estimates from videos,
offering higher accuracy than manual counting alone. Our key
insight is that by deploying these techniques at the early stages
of the growth cycle, between Eichhorn-Lorenz (EL) stages 12–
15 (Eichhorn and Lorenz, 1977), there are significant benefits
to be gained. First, early cluster counts gives the grower more
time to capitalize on the yield prediction insight. Second, this
phenological stage occurs before the canopy has fully closed,
allowing for greater visibility of the clusters. Furthermore,
different cultivars of grapes share greater visual similarities earlier
in the year. As the vine develops, features that visually distinguish
different cultivars become more prominent, requiring more
training data and a more complex computer vision model to
accommodate the visual variations among them. Lastly, during

EL 12–15, the shoots are relatively short and the ends of the
shoots are new growth, which has distinct visual features.

Specifically, we implement a machine learning (ML)
framework, testing a variety of classifiers and trackers, and
show that early clusters have a high likelihood of being detected
and that their numbers correlate with final harvest data. We
further use training data from videos collected by one user to
count clusters in videos collected by another to show general
applicability. We also explore the reliability of manual counting
techniques and the challenges associated with variations between
different counters, and how augmenting these counts with
computer vision can improve the reliability of these cluster
count estimations.

MATERIALS AND METHODS

Experimental Overview
This work was undertaken at the Cornell teaching vineyard
in Lansing, NY (42◦34′22.32′′N, 76◦35′48.22′′W). Mature Vitis
vinifera L. grapevines with vine spacing of 6 ft × 9 ft were cane-
pruned and vertically shoot-positioned according to regional
practices (Wolf, 2008).

Four separate datasets were collected to investigate cluster
number counting in the vineyard. The first dataset was used to
evaluate yield estimates given a manually counted subset of the
vineyard. For all counts collected, counters were given a handheld
tally counters and instructed to count the number of shoots
and clusters in each panel (composed of four vines each). In
2019, the counters were Cornell undergraduate student in the
summer Cornell Orchards intern program. They were instructed
to touch each shoot and cluster they counted, moving their hands
through the vine to push aside foliage, increasing the visibility
of the cluster. In 2019, manual counts of 70 panels (280 vines)
were performed by four different counters, counting the entire
set of vines twice, each count being performed by a different
individual. In 2020, one manual count of 78 panels (312 vines)
was performed by a single graduate student who had a strong
background in viticulture and data collection.

The second dataset, collected in June 2019, measured the
number of clusters per shoot. This was done by randomly
selecting 400 shoots from the vineyard and counting the number
of clusters on each shoot. 200 shoots were counted manually in
the field, the other 200 were counted using images taken of the
vine with a smartphone camera. To ensure no counting bias,
equal samples were taken from the west and the east side of the
rows for both datasets.

For the third dataset, four different individuals were tasked
with counting the same panel, containing four Riesling vines,
during the same week that the 2019 automated cluster count data
was collected. They were instructed to count this single panel
with the same efficiency as the rest of the dataset. The purpose of
this relatively small investigation was to determine the variance
in clusters counts amongst different counters.

The last dataset consisted of videos of a drive by for
each panel, to be used for generating automated counts of
vine features. The aim was to use these automated counts,
with calibration from manual counts, to estimate the number
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of clusters better than a simple average of a subset of the
vineyard as proposed by Pool (2001), Dami and Sabbatini
(2011). To validate total yield predictions for the manual and
automated counting methods, each panel was counted a second
time during harvest and used as a baseline for measurement.
The harvest count is considered to be the most accurate
manual count for two reasons. First, every grape cluster in
the vineyard must be harvested, and very few are missed,
minimizing undercounting. Second, once a cluster is harvested,
it is removed from the vine and placed into a bin. This eliminates
the potential for double counting any cluster, minimizing
over counting.

Video footage of the vines was captured in late May—
early June, corresponding to EL phenological stages 12–15.
These phenological stages were chosen because clusters are
visible but minimally occluded by foliage, maximizing the
ability to count clusters visually. Manual counts of shoots
and clusters as well as video data were collected during 2019
on 78 panels (312 vines) of Riesling and during 2020 on
40 panels (160 vines) of Riesling and 30 panels (120 vines)
of Pinot noir. In 2019, video data was collected with the
camera and lights mounted to an ATV which was driven
down the row. In 2020, video data was collected with the
camera and lights being held by a person walking down
the row.

Automated Counting
Automated counts were acquired through a combination of
machine learning object detection and optical tracking. The
videos were collected using an iPhone R© XR shooting at
240 frames per second in 1080 by 1920-pixel resolution.
This frame rate allows for better visual tracking of vine
features to eliminate double counting. The phone was held
in a Zhiyun Smooth-Q 3-Axis Gimbal ($80) for stabilization,
reducing the effects of bumpy ground and/or footsteps. The
gimbal was mounted to an ATV using a tripod as shown
in Figure 1. Two battery powered Neewer CN-160 LED light
panels ($24), each capable of producing 900 Lux at 1 meter,
were mounted above and below the phone to illuminate the
vines and reduce shadows cast by the leaves. Videos were
captured shortly after sunset (10 p.m.) to maintain reproducible
lighting conditions, reducing the amount of training data and
model complexity needed for the object detection algorithm.
Nighttime also provided less windy conditions, reducing rapid
movement and motion blur of clusters and shoots. An ATV
(all-terrain vehicle) was driven down the row at ∼1.6 km/h,
taking anywhere from 2.5 to 3.5min per row (10 panels or
40 vines).

A system overview of the counting software is given in
Figure 2B. Our software framework used a Faster Region-based
Convolutional Neural Network (Faster R-CNN) (Ren et al., 2016)
with a ResNet50 (He et al., 2016) feature extractor for automated
object detection. Detected objects were then tracked from frame
to frame using a Kernelized Correlation Filter (Henriques
et al., 2014) to prevent double counting. New detections were
associated with previous trackers using an intersection over
union metric (IOU).

The Faster R-CNN was implemented using a TensorFlow1

model which was pretrained on the COCO dataset
(cocodataset.org). Using a pretrained model reduces the
amount of new training data and time needed to detect clusters
and shoots. The final network was trained on 611 images
containing 4,580 clusters and 1,158 images containing 6,746
shoots. Performance metrics were validated on 108 images
containing 829 clusters and 204 images containing 1,201 shoots.
To test the transferability of the system across different years
and cultivars, the network was separately trained on images
collected on Riesling vines from 2019 and validated on Riesling
and Pinot noir vines from 2020, however the final network was
trained on images from both growing seasons. The images were
labeled by two student interns and reviewed and edited by a third
person to ensure quality. Image labels were generated using an
open-source Python-based utility called LabelImg2. Bounding
boxes were selected to minimally enclose the entirety of the
visible part of the grape cluster and the largest white leaf at the
top of the shoot. Training the network took ∼5.5 h on an 8-core
Xeon workstation with a Nvidia GeForce GTX 1080; a computer
that costs∼$1,500 U.S.

The Faster R-CNN is composed of three main models as
shown in Figure 2C. First, high level image features are extracted
using a ResNet50 feature extractor. The ResNet architecture has
been proven to perform well on a variety of computer vision
tasks, winning first place in the 2015 ImageNet classification,
localization, and detection competitions as well as the 2015
COCO detection and segmentation competitions. These image
features were then passed, in conjunction with a set of anchors,
into a region proposal network (RPN). Anchors are a set of
uniformly distributed bounding boxes of various size and ratio.
The RPN (a fully connected CNN), uses the ResNet50 generated
features to select and finetune the anchors that most closely
resemble an object, generating object proposals including a
bounding box and objectness score. The 256 × 256 anchors of
stride 16; scale factors of 0.25, 0.5, 1, and 2; and aspect ratios
of 0.5, 1, and 2. Because these anchors were used by the RPN
to propose cluster and shoot locations, the anchor parameters
were selected to resemble the bounding boxes in the training and
validation data. This reduces the amount of learning the RPN
needs to do during training. The size and shape of the grape
clusters and shoots are relatively similar within the frame because
the distance between the camera and the vine is relatively steady,
allowing us to reduce the number of anchors and simplify the
model. The features generated by the ResNet50 backbone which
correspond to the object region generated by the RPN, are then
passed into a traditional neural network classifier to determine
the object class.

Visual trackers were used to maintain the unique identity of
each cluster or shoot as it moves across the frame in the video.
As shown in Figure 2A, at each new frame, new positions for
each tracker are predicted using a Kernelized Correlation Filter
(KCF). The KCF tracker was implemented using OpenCV3, an

1tensorflow.org.
2github.com/tzutalin/labelImg.
3opencv.org.
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FIGURE 1 | (A) Diagrammatic representation of setup to perform automated cluster and shoot counts in vineyards. (B) Frame from the recorded video, with example

clusters highlighted in the white box.

open-source computer vision repository. A simple Hungarian
Algorithm (Kuhn, 1955) was used to pair new object detections
with existing trackers based on the Jaccard index (ratio of
intersection over union of bounding boxes) of detection-KCF
prediction pairs. New detections for that frame were compared
against existing tracker position predictions. Tracker prediction-
detection pairs that meet a Jaccard index threshold are updated
in descending order of Jaccard index to reflect the detection
location, minimizing the optical drift that all visual trackers
can be susceptible to. Trackers which remain unpaired to new
detections simply maintain the KCF predicted object location.
Detections which remain unpaired are converted to new trackers.

Failure of the KCF to generate a predicted object location
indicates one of two cases: the object has left the field of view, or
the object has become untrackable due to occlusion by another
object (leaf, post, etc.). In the first case, the track failure occurs
when the track is located near the edge of the frame, so the
tracker object is deconstructed and counted in the tally. KCF
failures that occur closer to the center of the frame are more
likely to be caused by occlusions. We attempted to fix those
errors as follows. Under the assumption that the camera was
moving at a relatively constant speed over a short amount of
time (∼0.5 s), the tracker was propagated forward through time
using the previously observed average velocity of the tracker. This
maintained tracker reenters the Hungarian Algorithm to be re-
paired with a tracker in the event that the associated object is
redetected once it is no longer occluded. The computation for
each KCF tracker location prediction was parallelized to take
advantage of a multicore CPU and increase computation speed.

Estimate Method Description and
Evaluation
Two basic models were used to predict the number of clusters
in the vineyard. Both models use a subset of panels that were

manually counted in June to predict the total number of clusters
in the dataset. The first model, which acts as a null model, takes
these manually counted panels and from it directly determines
the average number of grape clusters per panel. This value is
then multiplied by the number of panels in the vineyard to
determine the number of clusters in the vineyard. While many
small wine grape growers in the Northeastern U.S. do not use
formal methods to generate yield estimate predictions, those who
do yield estimation tend to use this manual method due to the
limited required resources.

The second model starts with automated counts of the entire
dataset generated by the videos and computer vision algorithm.
These counts are then linearly calibrated using a subset of
manually counted panels to help account for any occlusion or
double counting that may occur in the computer vision pipeline.
The total number of clusters is predicted by summing the linearly
calibrated computer vision counts.

The performance of both models depends highly on how
the manually counted panels are chosen from the vineyard, as
counting panels with vines that are “abnormal” can significantly
skew the final cluster count estimate. To evaluate the effectiveness
of these methods, two metrics for cluster count error were
used. The first metric is the Root-Mean-Square-Error (RMSE),
defined as:

RMSE =

√

∑n
i=1 (ŷi − yi)2

n
(1)

Where ŷi and yi are the predicted and actual yield for panel i
and n is the total number of panels in the dataset. This is then
normalized by the actual average number of clusters per panel,
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FIGURE 2 | (A) Overview of tracking algorithm used to reduce cluster recounting. Trackers start in one of the two queues (black outline) and are updated using either

KCF or, in the event that KCF fails, velocity extrapolation and are then paired with new detections. Unpaired detections are converted into trackers and reenter the

queue to be processed in the subsequent frame. (B) System overview of CV software. Video frames are passed into the object detector. These detections are then

passed into the tracking algorithm and tallied. (C) Overview of the Faster R-CNN. Three separate networks are used for feature extraction, object location proposal,

and classification.
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FIGURE 3 | Manual and uncalibrated automated counts of clusters and shoots plotted against the actual number of clusters in each panel with lines of best fit.

resulting in the relative square error as given by:

SE =
RMSE
∑n

i=1 yi
n

× 100 (2)

The relative square error gives a metric for how well these
methods perform at estimating the number of clusters on a panel
by panel basis. The second metric is the relative error of the
estimate of the total number of clusters in the dataset. This
metric gives a better idea of how well these methods perform
on estimating the total number of clusters in the vineyard, and
is given by:

E =

∣

∣

∣

∣

∑n
i=1 (ŷi − yi)
∑n

i=1 yi

∣

∣

∣

∣

× 100 (3)

For the manual estimation of the total number of clusters, the
subset of panels used to find the average number of clusters per
panel was randomly selected and the RMSE, SE and total error
and relative error were calculated. To investigate the sensitivity
of the estimated error to which panels were chosen to be counted,
the process was repeated 1,000 times, selecting a different random
subset each time. This process was repeated for the automated
technique, each time randomly selecting the subset of panels used
for calibration.

RESULTS

We tested several object detection networks, and found that the
Faster R-CNN performed the best with a mean average precision

(mAP) of 0.6357 at 0.5 IOU threshold. For comparison, the
Single Shot Detector with ResNet50 backbone and Single Shot
Detector with MobilNetV1 backbone scored a mAP of 0.501
and 0.3638, respectively. Furthermore, the network trained on
images collected on Riesling vines from 2019 were validated on
Riesling and Pinot noir vines from 2020, yielding a mean average
precision of 0.502 at (0.5 IOU), well within the region needed for
accurate system performance.

In the first dataset, amongst the four counters counting the
same panel, the mean and standard deviation counts were 270.75
± 30.73 clusters, and 113 ± 13.12 shoots. The same panel was
later counted twice more during manual counts of the entire
block and the two counters tallied 377 and 348 clusters, and 140
and 155 shoots. The harvest count, which is considered the most
accurate, was 320 clusters.

There was no inherent counting bias dependent on which side
of the vine the counts were taken from. In 2019, the number of
clusters per shoot was found to be 2.43± 0.640 and 2.42± 0.638
when manually counting 100 shoots from the east side and 100
shoots from the west side in the field, respectively. Similarly, the
number of clusters per shoot was found to be 2.37 ± 0.614 and
2.40 ± 0.550 when counting 100 shoots from the east side and
100 shoots from the west side from images, respectively.

The manual counts and uncalibrated automated counts of
clusters and shoots are presented in Figure 3 with corresponding
R2values inTable 1. Themean, standard deviation andmaximum
error of each method are given in Table 2. The mean number
of clusters per panel as calculated using the entire dataset is
presented in Table 3.
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The average error of manual counts that leverage the null
model vary depending on the specific counter. Analysis shows
that in both 2019 and 2020, the proposed method, on average,
shows less yield estimate error when counting grape clusters
directly, as opposed to counting shoots. Furthermore, on average
across both growing seasons, the calibrated automated counts
of clusters predicted the yield with a mean error of 4.89 and
5.38% using clusters and shoots, respectively. In contrast, manual
methods on averaged predicted yield with a mean error of
7.35 and 10.97% using clusters and shoots, respectively. The
distribution of error for each model is presented in Figure 4.

DISCUSSION

The manual count accuracy greatly depended on the counter.
In our first experiment, we found that for a panel containing
320 clusters, the manual counts spanned from 237 to 309.
Furthermore, the linear correlation between the manual counts
and actual number of clusters in each panel for the entire dataset
had R2 values spanning from 0.18 to 0.83. Likewise, the relative
square error of these counters spanned from 19.36 to 26.31%.
Despite the relatively high error in manually counting panels,
this method is still the most widely used in industry. Current

TABLE 1 | R2 values corresponding to the line of best fit for data presented in

Figure 3.

Year Method R2 value clusters R2 value shoots

2020 Automated 0.7395 0.2582

2020 Manual 1 0.8296 0.2050

2019 Automated 0.2054 0.0689

2019 Manual 1 0.2328 0.2222

2019 Manual 2 0.1803 0.1516

recommendations for overcoming this problem are simply to
sample a larger portion of the vineyard (Pool, 2001).

The automated method outperforms the manual method on
both shoots and clusters. The reason why the automated method
is able to perform with lower mean and max error is that it has a
lower relative square error than themanual methods (Table 2). In
essence, it can better account for the high variance in the number
of clusters per panel than an average of a subset can.

The data suggests that counting clusters rather than shoots
results in better performance for both automated and manual
methods. While there is a positive correlation between the
number of shoots and the number of clusters in a panel, the
accuracy of the manual shoot counts were not able to be verified
in the same way that the cluster counts were; it is unknown
whether the poor performance of counting shoots was due to
error on the part of the counter, or high variance in the number
of clusters per shoot. For the automated counts, the difference
in shoot counting error from 2019 to 2020 may be explained by
the video capturing techniques. In 2019 the videos were captured
with the camera mounted to an ATV, and the camera was further
from the vines, capturing the entirety of all of the shoots. In
2020, the videos were collected by a different individual that held
the camera and lights as they walked down the row, and on
average the camera was held closer to the vine, cutting off more

TABLE 3 | Average number of clusters per panel, derived from counting all panels

manually.

Year Manually

counted

clusters/panel

Actual

cluster/panel

Percent

error (%)

2020 249.41 268.04 6.95

2019 Count 1 278.87 265.45 5.06

2019 Count 2 242.84 265.45 8.52

TABLE 2 | Performance of each method for cluster count estimation method.

Year Method Harvest count

[clusters]

Estimate mean

[clusters]

Error (µ ± σ )

[clusters]

Error

max

[clusters]

Mean RMSE

[clusters]

Mean SE

[%]

Mean absolute

error (E) [%]

Clusters

2020 Automated 18,763 17,484 1,279 ± 516 2,689 62.55 23.34 6.83

2020 Manual 18,763 17,391 1,372 ± 1,535 5,624 117.62 43.88 8.94

2019 Automated 20705 20,349 356 ± 663 2,267 49.57 18.68 2.95

2019 Manual 20705 21713 −1,008 ± 1,177 −4,493 56.67 21.35 6.08

2019 Manual 20,705 18938 1,766 ± 745 3,888 58.52 22.05 8.54

Shoots

2020 Automated 18,763 17,538 1,224 ± 1,355 5,572 103.1 38.46 7.89

2020 Manual 18,763 17,297 1,465 ± 1,584 6,097 117.97 44.01 9.51

2019 Automated 20705 20,436 269 ± 684 2462 56.74 21.38 2.87

2019 Manual 20,705 24236 −3,531 ± 1,110 −8067 70.72 26.64 17.06

2019 Manual 20,705 21,964 −1,259 ± 898 −4201 56.7 21.36 6.34

RMSE is calculated by equation (1), SE by equation (2), and absolute error by equation (3).
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FIGURE 4 | Distributions of percent error in cluster count prediction for automated and manual methods. The black dot represents the mean percent error.

FIGURE 5 | The mean error and standard deviation of the manual method are plotted in black for data collected in 2020. The standard deviation of the error

decreases as the number of panels used is increased. The red line represents the mean error of the automated method on the same dataset but only using 20 panels.

The red shaded region represents the standard deviation of the automated method using 20 panels.
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of the tops of the shoots from the frame. The performance of the
automated estimates counting clusters, however, is robust against
the variations in video capturing techniques.

When comparing our most reliable manual counter in the
2020 dataset against the automated method, the automated
method only slightly outperforms the manual method. However,
the error of the automated counts has a much smaller standard
deviation, meaning the amount of error in the total cluster count
estimate is less sensitive to which panels from the dataset are
selected to be used for calibration, and results in a smaller max
error than the manual counting method. For instance, in 2020,
out of the 70 panels, the automated method was calibrated on 20
panels resulting in an error of−1,279± 516 clusters. In contrast,
the manual counting method resulted in an error or −1,212 ±

1551 clusters.
While increasing the amount of calibration data would likely

improve the performance of the automated method, further
improvements may also be made to the software to increase
the overall system performance. For instance, there are a
variety of other object detection models that could be tested
to improve performance. While Faster R-CNN, Single Shot
Detector, ResNet50, and MobileNetV1 are widely used object
detection model components, other popular object detectors
such as ZFNet (Zeiler and Fergus, 2014), YOLO (Redmon et al.,
2016), or RetinaNet (Lin et al., 2017), to name a few, may increase
the performance of the system. While no formal performance
metrics for the KCF tracker were collected, its performance was
visually inspected and compared against MIL tracker (Babenko
et al., 2009), MOSSE tracker (Bolme et al., 2010), and CSR tracker
(Lukezic et al., 2017), with the KCF tracker showing the best
performance. Alternative methods that fuse object detection with
tracking in a single deep learningmodel, such as GOTURN (Held
et al., 2016) or ROLO (Ning et al., 2017) may lead to increased
performance of the system.

The automated counting method processed videos at 5 frames
per second, or about 1–1.5min per panel. The entire software
framework is bundled into a stand-alone, easy to use, executable
program that is capable of batch processing videos. Given
current rates of cloud computing, acres of videos could be
processed in a few hours for tens of dollars on services like
Google Cloud or AWS. Final automated counts still need to be
correlated to final yield using an aforementioned cluster weight
estimation method such as historical values, Lag-Phase, or the
Growing Degree Day Method. Transition to practice and wide
scale use of this system is advanced by the object detection
algorithm’s ability to perform on cultivars it was not trained on.
However, further generalizability could be achieved by open-
sourcing image training data from different regions, cultivars,
lighting conditions, and camera image sensors. We are currently
investigating intellectual property licensing to companies in the
agritech industry in an effort to disseminate this technology to
grape growers. Our hope to make this technology available and
easy to use for both small and large-scale grape growers.

Based on our experimental results using data from 2020, we
found that the counters must count at least 50 panels to achieve
the same accuracy as the automated method calibrated on 20
panels (Figure 5). The counters (in the experimental vineyard)

spent an average 15min per panel, amounting to almost 13 h for
50 panels, whereas counting 20 panels and imaging all 70 panels
would take 5.3 h. As the vineyard size increases, the amount of
time saved increases. New York state vineyards have anywhere
from 160 to 200 panels per acre (Davis et al., 2020), therefore
using our automated system for a 40 acre vineyard with 8,000
panels would lead to a decrease in labor time by two orders of
magnitude (∼100).

In contrast to the work presented here, previous research
in ground vehicle-based computer vision methods for yield
estimation in grapes has been primarily focused on estimating
the total weight of the yield, instead of just the cluster number.
Aquino et al. (2018) achieved 12.83% relative square error across
30 panels (three vines/panel) and overall relative error close to
0 by detecting and counting individual berries. However, the
data collection occurred later in the season, near EL phenological
stages 29–31, after fruit set. Furthermore, it required the fruit
to be completely exposed by stripping all the leaves from
the fruit zone, the use of $1,000 mirrorless DSLR camera, an
inductive sensor installed on the ATV to trigger the camera, and
a custom-built electronic control system to merge image and
GPS data; requirements that make implementation impossible or
impractical for many grape growers.

Efforts to enable improved yield estimation using readily
available and cheap hardware, such as smartphones have been
made by Grossetete et al. (2012). However, this work was focused
on non-destructively imaging grape clusters after floration and
using CV to count the number of berries per cluster, a value
that can indicate the average cluster weight. Alternatively,
Cunha et al. (2010) derived methods that use SPOT satellite
imaging to predict useful yield estimates up to 17 months in
advance. However, the vegetation data from SPOT has a spatial
resolution of ∼km, making this method impractical for many
small vineyards.

The need for low-cost, easy to use, and inexpensive methods
for increasing the accuracy of early-stage yield predictions
in vineyards is driven by a competitive high-value crop
market and the larger economic impacts of the grape and
wine industry worldwide. The proposed computer vision-based
method has lower setup and operational costs than other CV
methods, less labor time than traditional methods, and operates
during the pre-bloom stage, while offering higher reliability
in cluster count estimates than traditional methods. These
factors, along with the system’s simplicity and ease of use,
lower the barrier to entry for computer vision agritech use in
smaller vineyards.
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