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Rice is a staple food for more than three billion people and accounts for up to

11% of the global methane (CH4) emissions from anthropogenic sources. With

increasing populations, particularly in less developed countries where rice is a

major cereal crop, production continues to increase to meet demand.

Implementing site-specific mitigation measures to reduce greenhouse gas

emissions from rice is important to minimise climate change. Measuring

greenhouse gases is costly and time-consuming; therefore, many farmers,

supply chains, and scientists rely on greenhouse gas accounting tools or

internationally acceptable methodologies (e.g., Intergovernmental Panel on

Climate Change) to estimate emissions and explore mitigation options. In this

paper, existing empirical models that are widely used have been evaluated

against measured CH4 emission data. CH4 emission data and management

information were collected from 70 peer-reviewed scientific papers. Model

input variables such as soil organic carbon (SOC), pH, water management

during crop season and pre-season, and organic amendment application were

collected and used for estimation of CH4 emission. The performance of the

models was evaluated by comparing the predicted emission values against

measured emissions with the result showing that the models capture the

impact of different management on emissions, but either under- or

overestimate the emission value, and therefore are unable to capture the

magnitude of emissions. Estimated emission values are much lower than

observed for most of the rice-producing countries, with R correlation

coefficient values varying from −0.49 to 0.87 across the models. In

conclusion, current models are adequate for predicting emission trends and

the directional effects of management, but are not adequate for estimating the

magnitude of emissions. The existing models do not consider key site-specific

variables such as soil texture, plantingmethod, cultivar type, or growing season,

which all influence emissions, and thus, the models lack sensitivity to key site

variables to reliably predict emissions.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fagro.2022.1058649/full
https://www.frontiersin.org/articles/10.3389/fagro.2022.1058649/full
https://www.frontiersin.org/articles/10.3389/fagro.2022.1058649/full
https://www.frontiersin.org/articles/10.3389/fagro.2022.1058649/full
https://www.frontiersin.org/articles/10.3389/fagro.2022.1058649/full
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fagro.2022.1058649&domain=pdf&date_stamp=2023-01-10
mailto:r02mn18@abdn.ac.uk
https://doi.org/10.3389/fagro.2022.1058649
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/agronomy#editorial-board
https://www.frontiersin.org/journals/agronomy#editorial-board
https://doi.org/10.3389/fagro.2022.1058649
https://www.frontiersin.org/journals/agronomy


Nikolaisen et al. 10.3389/fagro.2022.1058649
Introduction

Rice is produced in all continents of the world except

Antarctica and is a major cereal crop for almost half of the

world’s population, accounting for up to two-thirds of the daily

calories for nearly three billion people (Khush, 2005; Mosleh et al.,

2015; Wang et al., 2017). It has been predicted that the production

must increase by 8–10 million tonnes per year (Seck et al., 2012)

and by as much as 40% by 2040 to meet demands from rapid

population increases in countries where rice is a staple food

(OECD/FAO, 2011). With this comes challenges, such as

sourcing land for rice cultivation, water availability, and

production efficiency in the form of increasing yields,

minimising water usage, and reducing greenhouse gas (GHG)

emissions. Rice production is considered a potent source of

anthropogenic GHGs, accounting for 6%–11% of the global

methane (CH4) emissions from anthropogenic sources (Smith

et al., 2021), and thus, there are concerns that increased

production will lead to higher emissions. GHG calculators,

derived from process-based or empirical models, are often used

for estimating emissions and to determine suitable mitigation

options both at the field and country scale, since GHG emissions

are difficult, costly, and time-consuming to measure. Many

different models for estimating CH4 emissions exist; however,

the majority are too regionally specific to work across different

continents or lack the ability to provide adequate mitigation

options by only considering a handful of variables that influence

these emissions (Hillier et al., 2011; Clift et al., 2014). Estimation

of CH4 emissions from rice paddies has improved greatly recently,

but there is still room for improvement to estimate emissions for

all rice-producing countries accurately. Wang et al. (2018) state

that the discrepancies in magnitude between different studies are

high but improving and that bottom-up or inventory approaches

had a lower range than the top-down approach when it came to

estimating emissions and thus were better for country-scale

emissions, based on a global empirical model.

The Intergovernmental Panel on Climate Change (IPCC)

classified emission estimation methods into three types: tier 1, 2,

or 3. Tier 1 methods use a standard equation with a default

emission factor (EF). Tier 2 methods use the same standard

equation with country/region-specific EFs. Tier 3 methods are

any methods more complex than tier 2. Tier 1 methods typically

require fewer input variables and lower precision than tier 3

methods. Most rice-producing countries are at present using

either the tier 1 or tier 2 methods to estimate CH4 emissions for

their national GHG inventory reports (Yan et al., 2009; Wang

et al., 2018). Using tier 1 methods to estimate emissions instead of

using tier 2 methods, which are EFs based on observed country/

region-specific data, can lead to inaccurate estimates and raises

questions about the applicability of default EFs proposed by the

IPCC, particularly for those countries that have different climatic

or management conditions than the global mean (Lokupitiya and
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Paustian, 2006; Albanito et al., 2017). Here, we evaluate the

empirical model of Wang et al. (2018) and its predecessor, Yan

et al. (2005), which was created using data collected from Asian

(and predominantly Chinese) rice fields only. The newer (Wang

et al., 2018) model uses the same principles, variables, and data

collection process but also includes data collected from Europe,

North America, and South America. We also evaluate the IPCC,

2019 and 2006 models, which have been derived from these two

models and use baseline default EFs and scaling factors (SFs) in

which SFs are used to adjust the EFs, allowing the user to take

account of various conditions that may be known such as organic

amendment, cropping, and water practices (Tirol-Padre et al.,

2017). In contrast to Wang et al. (2018) and Yan et al. (2005), the

IPCC methods do not consider the impact of soil organic carbon

(SOC), pH value, or agroecological zones. The IPCC methods are

classified as tier 1 methods, which means they require country-

specific EF and/or SF and are often used in national GHG

inventory reports, while the other two models are classified as

tier 3 methods, which encourage the use of process-based or

empirical models that can assess rice cultivation over time and

thus are driven bymore detailed, high-resolution data . The aim of

this study is to assess the four models on their performance at the

regional and country scale with the use of collected field data, with

the objective of determining if the models are sensitive enough to

accurately predict emissions for both temperate and tropical rice

regions and, if not, what are the limitations of the current models.
Materials and methods

Data collection

Field data of CH4 emissions from rice pre-2021 were

collected from peer-review papers through a comprehensive

literature search. Google Scholar, Scopus, and ISI-Web of

Science were searched for the following keywords in various

combinations: “Rice”, “Paddy”, “Methane”, “CH4”, “emission”,

“greenhouse gas”, “GHG”, and each rice-producing country

based on FAOSTAT (FAO [Food and Agricultural

Organization of the United Nations], 2019). Only original data

that directly measured CH4 emissions from fields were included;

studies that involved use of greenhouses, laboratories, pots, or

computer modelling in the data collection process were

excluded. For a paper to be deemed suitable, it needed to

contain data and information for certain key variables listed in

Wang et al. (2018), and the paper itself was not used in the

development of theWang et al. (2018) or Yan et al. (2005) model

and recorded in their database. A total of 113 publications

comprising 972 measurements fit the quality criteria for the

IPCC models, and 111 publications comprising 954

measurements met the criteria for the Wang and Yan models.

The new database contains records of observed CH4 emissions
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from all rice-growing continents in the world with the exception

of Oceania (Figure 1). For each individual study, a range of data

were collected with the data collection methodology and content

being based on Wang et al. (2018) and included CH4 emission,

crop duration, water regime during and before rice-growing

season, organic amendment timing, type and amount, SOC, and

pH, with variables being grouped into classes as described in

Table 1 of Wang et al. (2018). Experiments that used alternate

wetting and drying would therefore be classified as multiple

drainage, and winter flooding in pre-season was classified as long

drainage. Biochar application was included as straw off season,

and in cases where the amount of organic material in straw and

manure was expressed in wet weight and dry weight,

respectively, they were converted so that all organic

amendment from straw and manure was recorded as dry

weight and wet weight, respectively. If SOC was expressed as

organic matter, it was converted with the use of the Bemmelen

index value of 0.58 in a similar manner to Wang et al. (2018).

Emissions were converted and expressed as amount of carbon

per hectare per day (CH4-C kg ha−1 day−1). In cases where

emission values were not expressed in papers, but in figures, a

web plot digitizer was used to extract the value (https://

automeris.io/WebPlotDigitizer/). Asian rice paddies were

classified into agroecological zones 1–3 and 5–8 according to

the FAO zoning system (IRRI, 2002), while the European, South

American, and North American fields were grouped as per

Wang et al. (2018).
Method and evaluation approach

Observed CH4 emissions were compared against modelled

emissions from four different approaches: Yan et al. (2005);
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IPCC (2006) EF, Wang et al. (2018), and IPCC (2019) EF

models. With the use of statistics in MS Excel, and a statistical

model evaluation package (ModEval; Smith and Smith, 2007),

data were evaluated to check for significant association between

the observed and simulated fluxes for each of the four models,

and whether the models were over- or underestimating the data

(using M, the mean difference). The sample correlation

coefficients (R) and linear regression plots were used to

compare the relationship between the observed and modelled

values. Further statistical analysis was done in which the

significance of R and M was tested using the F-test (p = 0.05)

and the Student’s two-tailed t-test (critical at 2.5%). The

modelled and measured datasets were then compared against

each other to determine the total mean difference between the

datasets by calculating the root mean square error (RMSE). The

IPCC (2019) model also has an additional pre-season water

regime class: Non-flooded pre-season >365 days; beside this, the

classes for all parameters are the same. A detailed summary of

the SF and EF for the two IPCC models can be found in the

supplementary documents (S1) and varies according to different

regions and/or management practices. These EF and SF values

along with the statistical models below have been used for our

evaluation and as input variables for our analysis.

IPCC, 2006:

EFi =  EFa  X   SFp  X   SFw  X   SFo  (1)

IPCC, 2019:

EFi =  EFb   X  SFp     X SFw    X SFo  (2)

where

EFi = Daily emission factor (kg CH4 day
−1 ha−1).

EFa = Baseline emission factor for continuous flooding, short

drainage pre-season without organic amendment.
FIGURE 1

Site experiment locations of collected data from peer-reviews used for evaluating the existing empirical CH4 models with N values representing
number of observations.
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EFb = Scaling factor accounting for differences in regions for

baseline emission factor (continuous flooding, short drainage

pre-season without organic amendment).

SFp = Scaling factor accounting for the difference in water

regime during pre-season.

SFw = Scaling factor accounting for the difference in water

regime during growing season.

SFo = Scaling factor accounting for the difference in organic

amendment application.

For the IPCC models, the daily CH4 emission factors are

calculated based on the region to which each country belongs,

the water regime before and during rice cultivation, and the type

and amount of organic amendment applied; a scaling and

emission factor summary can be seen in S1. The Yan et al.

(2005) and Wang et al. (2018) model also consider soil organic

carbon (SOC), pH, and agroecological zone:

Yan et al. (2005)

Ln fluxð Þ =  Constant + a X ln SOCð Þ + pHh + PWi +WTj

+ CLk  + OMl X ln 1 + AOMmð Þ (3)

Wang et al. (2018)

Ln fluxð Þ =  Constant + a X ln SOCð Þ + pHh + PWi +WRj

+ AEZk  + OMl X ln 1 + AOMmð Þ (4)

where

Ln(flux) = Average CH4 flux (kg CH4-C ha−1 day−1) during

growing season

Constant + a x ln(SOC) = Soil organic carbon (a is the effect

of SOC)

pHh = The effect of pH in which h is for each

individual class.

PWi = Effect of pre-season water regime (i is for each

individual class)

WTj/WRj = Effect of water regime during growing period (j

is for each individual class)

CLk/AEZk = The effect of climate/agroecological

zones (AEZ)

OMl x ln (1 + AOMl) = OM is the effect of added organic

material while AOM is the effect of the amount applied (l is for

each individual class/amount t/ha−1)
Results

Evaluation of existing CH4 models

The four existing CH4 models for rice paddies were

evaluated using independent data, i.e., the data from peer-

reviewed papers that were not used in the development of

these models. Evaluation was done for all global regions except

Oceania, with Asia divided into South, Southeast, and East in a
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similar manner to that used in Wang et al. (2018). Comparison

between measured and simulated data was performed at both

region and country scale (Table 1). European rice paddies had

the lowest mean measured emission rate at 0.65 kg CH4-C ha−1

day−1 while Southeast Asian fields had the highest at 2.52 kg

CH4-C ha−1 day−1. At the country level, Portugal had the lowest

mean measured emission while Vietnam had the highest at 0.63

and 3.68 kg CH4-C ha−1 day−1, respectively. For the four

modelling approaches, the tier 3 models (Yan and Wang)

estimated lowest mean emission for Myanmar and Bangladesh

at 0.27 and 0.42 kg CH4-C ha−1 day−1 for the Yan model and 0.52

and 0.45 kg CH4-C ha−1 day−1 for the Wang model, respectively,

with the highest predicted emission being recorded for Thailand

at 2.88 kg CH4-C ha−1 day−1 for the Yan model and 2.52 kg CH4-

C ha−1 day−1 for the Wang model. Regional predicted emission

rates were the highest for South America for both models and

the lowest for South Asia for the Yan model and Africa for the

Wang model. The two tier 1 models (IPCC) mean that predicted

emission rates were, at the country scale, the lowest for Ghana at

0.24 and 0.38 kg CH4-C ha−1 day−1 and the highest for Thailand

at 1.85 for the IPCC, 2006 model and for Indonesia at 1.41 kg

CH4-C ha−1 day−1 for the 2019 model. Due to the high estimates

for Thailand and Indonesia, both models recorded Southeast

Asia to have the highest mean regional estimates followed by

South America at 1.13 and 0.93 kg CH4-C ha−1 day−1 for IPCC,

2006 and 1.26 and 1.18 CH4-C ha−1 day−1 for IPCC, 2019,

respectively, while the regions with the lowest estimated

emissions were Africa at 0.24 CH4-C ha−1 day−1 for IPCC,

2006 and 0.38 CH4-C ha−1 day−1 for IPCC, 2019 (Table 1).

Linear correlation analysis combined with use of ModEval

was carried out to assess model performance at the global,

country, and regional scale. The linear correlation plots

represent the association between the simulated and measured

values in which the figures’ R2 value represent the percentage

variation in y, which is explained by the x variables. R2 is the

square of the sample correlation coefficient (r), which is the

degree of relationship between the observed and measured

emissions while the slope and y-intercept reflect the models’

performance where the lower the slope value, the more the

model underestimates the higher measured emissions while the

higher the y-intercept value, the more the models overestimate

the lower measured emission and vice versa. Assessing the

performance of the tier 1 and tier 3 methods globally

(Figure 2) shows that all four methods underestimate the

higher emissions while overestimating the lower emissions

with the tier 1 methods having less outliers than the tier 3

methods. For the tier 3 methods, Yan performs slightly better

than the Wang model with R correlation coefficients of 0.17

compared to 0.12 for Wang (n = 947, p< 0.001) (S3). This is

supported by the linear regression plots in which the Wang

method underestimates the higher emissions and overestimates

the lower emissions more than the Yan method with a slope of

0.068 and a y-intercept of 0.97 for Wang and 0.10 and 0.88 for
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Yan, respectively. For the tier 1 methods, the newer IPCC, 2019

overestimates the outliers more than the older IPCC, 2006 model

but performs better across the value range and, as such, is the

better model with R correlation coefficients of 0.25 for IPCC,
Frontiers in Agronomy 05
2019 compared to 0.21 for IPCC, 2006 (n = 965, p< 0.001). Both

models underestimate the higher values above 3 kg CH4-C ha−1

day−1, which is supported by the low slope values of 0.07 and

0.09 for IPCC, 2006 and IPCC, 2019, respectively.
TABLE 1 List of regions, countries, and number of data points evaluated.

Regions Country No. of samples No. of publications Measured Yan 2005 Wang
2018

IPCC,
2006

IPCC,
2019

Mean kg CH4-C ha−1 day−1

Europe Portugal 6 1 0.63 0.45 1.15 0.34 0.57

Spain 10 1 0.66 0.90 1.90 0.54 0.85

16 2 0.65 0.74 1.62 0.46 0.75

East Asia China 375 (371) 42 (41) 1.16 0.87 1.13 0.87 1.09

South
Korea

54 7 1.51 0.95 1.58 0.65 1.03

Japan 29 4 1.65 0.98 0.81 0.68 0.91

458 (454) 53 (52) 1.24 0.89 1.17 0.75 1.07

Southeast Asia Indonesia 46 4 2.43 1.25 1.08 1.15 1.41

Myanmar 8 2 1.37 0.27 0.52 0.82 0.91

Vietnam 129 7 3.68 1.34 1.10 1.09 1.27

Philippines 63 5 0.89 0.56 0.54 1.13 1.23

Thailand 43 5 1.75 2.88 2.52 1.26 1.20

289 23 2.52 1.35 1.17 1.13 1.26

South Asia Bangladesh 35 6 2.60 0.42 0.45 0.89 0.77

India 82 (68) 11 (1) 0.42 0.61 0.82 0.75 0.63

117 (103) 17 (16) 1.08 0.55 0.70 0.79 0.67

South
America

Brazil 11 2 2.36 1.87 1.44 0.93 1.18

North
America

USA 69 11 1.40 1.01 0.59 0.74 0.47

Africa Ghana 5 1 1.70 0.58 0.24 0.24 0.38
A B

FIGURE 2

Comparison of modelled against observed emission for the four empirical models: (A) Tier 3 Yan and Wang models, (B) IPCC, 2006 and 2019
models (solid line indicates 1:1).
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Tropical countries in Southeast Asia

Data were collected from five countries within Southeast

Asia: Indonesia, Myanmar, Vietnam, Philippines, and Thailand.

Statistical analysis of model performance shows that all models

underestimate emissions in this region with a significant

association being observed for the two tier 1 models (n = 289,

p< 0.001) with an R correlation of 0.18 for IPCC, 2006 and 0.22

for IPCC, 2019. Looking further into model estimates, there is a

trend that the lower emissions are overestimated, while the

higher emissions are underestimated, which is supported by

the figures’ slope and y-intercept values (Figure 3). Evaluation of

model performance for each individual country supports this,

with models underestimating for all except Thailand (S2) and

with statistical analysis showing a wide range in R correlation

coefficients across the countries with all models having a

significant association for both Thailand (n = 43, p< 0.001)

and Philippines (n = 63, p< 0.001), while the Yan model has a

significant association for Myanmar (n = 8, p< 0.001) and

Vietnam (n = 129, p< 0.001). IPCC, 2006 shows a significant

association for Indonesia (n = 46, p< 0.001), IPCC, 2019 shows a

significant association for Indonesia and Vietnam, while Wang

shows a significant association for Myanmar (S3). Looking at the

RMSE for the models, they are all high, ranging between 92.15%

for Wang et al. (2018) for Myanmar and 188.93% for Yan et al.

(2005) for Thailand (S3). The statistical analysis indicates that

the models can capture the emission trend, but not the

magnitude of emissions for all but Vietnam in which the

IPCC, 2019 model is the only model showing a positive R

correlation coefficient (S3).
Tropical countries in South Asia

The models also underestimate emissions for South Asia,

particularly for the higher measured emissions, while for some of
Frontiers in Agronomy 06
the lower measured emissions, they estimate well (Figure 4).

However, statistical analysis shows a non-significant association

for all models except IPCC, 2019 (n = 117, R = 0.26, p< 0.001) with

a negative R correlation coefficient (S3). As previously mentioned,

the existing Wang model classified countries into regions to

produce regional as well as country-specific EFs. For South Asia,

Bangladesh and Indian EFs were estimated to be similar at the

country scale. Looking at the mean emissions for these countries

in Table 1, we can see that there is a significant difference in

measured emission at the country scale. When evaluating the

models, we can also see a difference in how they perform for each

of these countries, with models significantly underestimating

emissions for Bangladesh, while for India, which has lower

measured mean emissions, the models overestimate the lower

emission values while underestimating the higher emission values

(Figure 5). This is supported by statistical analysis, which shows

higher R correlation coefficients for India than Bangladesh across

the models and a lower mean difference (S3). However, high

relative error and RMSE (S3) of the models indicate that the

models are not performing well for either country. Negative R

correlations for the Yan, IPCC, 2006, and Wang models for

Bangladesh also shows that the models do not capture the trend

or the magnitude of the emissions, while the models capture the

trend for the Indian data, but not the magnitude.
Tropical and temperate regions
in East Asia

East Asia consists of both temperate and tropical rice

regions; however, regional EFs have been estimated for all

countries across the variability in management and climatic

conditions. At the regional scale, the models significantly

underestimate emissions for the higher measured emissions

and overestimate some of the lower measured emissions, but

perform well overall at the lower emission range (Figure 6). If
A B

FIGURE 3

Modelled and observed CH4 emission for Southeast Asia: (A) Yan and Wang tier 3 models, (B) IPCC tier 1 models (solid line indicates 1:1).
Sample size n = 289.
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China is separated from Japan and South Korea (S2), a similar

trend for the higher emissions can be seen; however, when

looking at the countries individually, model performance shows

more outliers at the lower emission range for China and South

Korea compared to Japan and thus in some instance also

overestimate the lower emissions for East Asian countries.

Measured emission shows a significant association with

modelled value for all models for China (n = 371, p< 0.001)

and Japan (n = 29, p< 0.001), while for South Korea, only the

IPCC models have a significant association (n = 54, p< 0.001)

(S3). The models do capture the trend for Japan and China, with

R correlation varying from 0.15 to 0.76; however, for South
Frontiers in Agronomy 07
Korea, the older Yan model does not capture the trend with a

negative R correlation of −0.11 and, as such, the newer models

work best for South Korea. The RMSE of the models ranges from

61.43% to 148% and relative error is between −4.59 and 58.51

across the countries and models, respectively (S3).
Tropical countries of South America
and Africa

Model performance for tropical regions in Africa and South

America also shows underestimation of emissions (Figure 7)
D

A B

C

FIGURE 5

Modelled and observed CH4 emission for Bangladesh (A, B) and India (C, D) with Yan and Wang tier 3 models in a and c and IPCC tier 1 models
in b and d (solid line indicates 1:1). Sample size n = 35 for Bangladesh and India, n = 82 for tier 1 models and 68 for tier 3 models.
A B

A B

FIGURE 4

Modelled and observed CH4 emission for South Asia: (A) Yan and Wang tier 3 models, (B) IPCC tier 1 models (solid line indicates 1:1). Sample
size n = 103 for tier 3 models and 117 for tier 1 models.
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with the tier 1 models performing less well than the tier 3 models

for emission values above 2 kg CH4-C ha−1 day−1; however, both

the Yan and Wang model overestimate the lower measured

emissions. African data have not been included before as there

are limited publications on rice paddies in Africa. Here, the two

IPCC models and Wang’s model capture the lower emissions

well, while Yan’s model overestimates them. The higher

emissions are also underestimated here and, as such, the most

recent models perform best for Africa. Further statistical analysis

shows a non-significant association between the measured and

estimated emissions for both Africa and South America with R

correlation coefficients of 0.32–0.37 for Brazil (n = 11, p > 0.001)

and −0.47–0.49 (n = 5, p > 0.001) for Ghana across all models.

RMSE ranges from 47.92% to 74.67% for Brazil and 75.16% to
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103.41% for Ghana with mean differences and relative error

being low for both regions (S3).
Temperate regions of Europe
and North America

For the temperate regions of USA and the Mediterranean

countries of Europe, the models behave slightly differently

(Figure 8). For the USA, there are some outliers in the data for

the higher measured emissions and for Yan’s model. The models

perform very similarly overall but underestimate most measured

emissions over 1 kg CH4-C ha−1 day−1; the R correlation

coefficient range between 0.39 and 0.40 for the IPCC, 2006
D

A B

C

FIGURE 7

Modelled and observed CH4 emission for the tropical regions outside of Asia. Brazil (A, B) and Ghana (C, D) with Yan and Wang tier 3 models in
(A–C) and IPCC tier 1 models in (B–D) (solid line indicates 1:1). Sample number = 5 for Ghana and 11 for Brazil.
A B

FIGURE 6

Modelled and observed CH4 emission for East Asia: (A) Yan and Wang tier 3 models, (B) IPCC tier 1 models (solid line indicates 1:1). Sample
number = 459 for tier 1 and 455 for tier 3 methods.
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and IPCC, 2019 models and between 0.20 and 0.21 for the Yan

and Wang models with RMSE, mean difference, and relative

error being the lowest for the Yan model and the highest for the

IPCC, 2006 model (S3). For European rice paddies, results show

that the models perform quite differently than for the other rice

regions by overestimating the emission values. The two IPCC

models also overestimate lower emissions by estimating similar

values for most plots. When looking at the two European

countries separately, however (S2), we can see that all models

beside Wang slightly underestimate emissions for Portugal,

while for Spain, the tier 3 models significantly overestimate

emissions. However, sample numbers are low with little

variation in management and environmental conditions and,

as such, the R correlation coefficient could only be calculated for

Spain at 0.72 for Yan, Wang, and IPCC, 2006 and 0.75 for IPCC,

2019, while RMSE, mean difference, and relative error were low

for Portugal; they were more variable for Spain with an RMSE

range from 115.84% to 1220.40%, a mean difference between

0.04 for the Wang model and 0.31 for IPCC, 2006, and relative

error ranging from −186.84 for IPCC, 2019 to 19.34 for IPCC,

2006 (S3).
Discussion

Model comparison and performance

This study compared simulated CH4 emissions from four

empirical models and evaluated their individual performance
Frontiers in Agronomy 09
against measured data collated from independent peer-reviewed

publications. Two of the models represent tier 1 methods, while

the other two are tier 3 methods. Evaluation was done for CH4

emission data from all rice-growing regions of the world except

Oceania. Although it is challenging to accurately predict

emissions from rice paddies due to the complex relationships

and the many drivers that affect emissions, the four empirical

models captured the trend, producing similar spatial patterns at

the regional scale. However, the models struggle to simulate

emissions above 3 kg CH4-C ha−1 day−1 and, as such, fail to

capture the higher measured emissions, indicating that the

models lack some sensitivity to predict the magnitude of

emissions at both the country and regional scale with the

more recent models of Wang and IPCC, 2019 only showing

minor improvements compared to the older Yan and IPCC,

2006 models.
Model inputs (management and
environmental factors)

Management and environmental conditions are known to

have a significant impact on emissions and will differ between

the regions and climatic zones with CH4 emission from rice

being strongly linked to organic amendments, water regime,

rice ecology, and soil conditions (Yan et al., 2009; Wang et al.,

2018). Studying model outliers in more detail shows the

sensitivity of the applied methodologies to management

practices. For instance, the highest observed emission for
D

A B

C

FIGURE 8

Modelled and observed emissions for the temperate regions of USA (A, B) and Europe (C, D) with Yan and Wang tier 3 models in (A, C) and
IPCC tier 1 models in (B, D) (solid line indicates 1:1). Sample number = 16 for Europe and 69 for USA.
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Bangladesh was related to studies that contained organic

amendment application —with the highest recorded emission

of 11.24 kg CH4-C ha−1 day−1 having an application rate of 50

t/ha compost (Hossen et al., 2015), while for China, the outliers

were related to either low measured emissions for plots with

high application rate of manure (Yang and Chang, 2001) or

high observed emissions where no organic amendment was

used (Li et al., 2013), causing the models to under- or

overestimate emissions. Similar to China, the four highest

measured emissions for India (Datta and Adhya, 2014) had

no organic amendment application, being significantly higher

than the mean average of India at 1.66 compared to 0.28 kg

CH4-C ha−1 day−1 (when Datta and Adhya, 2014 is excluded)

and as such were underestimated by the models, while the

other outliers were caused by the model overestimating

emissions due to low measured emissions from plots with

organic amendment application (Oo et al., 2018). Organic

amendment application impact on model performance

supports the statistical findings of Yan et al. (2005) and

Wang et al. (2018), which showed organic amendments to be

the main variable controlling the CH4 emissions.

Three out of 10 publications collected for India contained

plots with applied organic amendment; however, Oo et al. (2018)

is the only paper out of the three located in agroecological zone 2

and, as such, has a warmer climate where double rice cropping

systems during wet and dry season influence the pre-season

water conditions, while the other two publications, Bhatia et al.

(2005) and Singh et al. (1997), are located in agroecological

zones 5 and 6 where fields commonly uses a rice-upland crop

rotation with long drainage in pre-season. A similar pattern can

be seen for the region of East Asia in which Japan and South

Korea are located in temperate climate with long pre-season

drainage and single rice crop rotation combined with upland

crops while China contains areas of both double rice, rice-

upland, and rice-fallow rotation. Like the regions of East Asia,

Europe, North America, and South America paddies also have

long drained pre-season with rice-fallow or rice-upland crop as

well as areas with winter flooded pre-seasons (Adviento-Borbe

and Linquist, 2016; Martıńez-Eixarch et al., 2021). The variation

in rotation cycles, crop duration, and pre-season water

management shows the importance of calculating emission

factors and evaluating model behavior at the country scale

with comparison of the models at the global, regional, and

country scale showing that countries within the same regions

have different management and also significantly different

measured emissions as clearly seen for the South Asian

countries of India and Bangladesh with Bangladesh having the

second highest measured mean emissions at 2.61 and India the

lowest at 0.42 kg CH4-C ha−1 day−1 (Table 1).
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Data availability impact on
model performance

Another factor to consider is data used for model

development and the models might not perform well if data

from those regions were not included during the model

development, which could be due to data unavailability at the

time of data collation. For instance, Vietnam and Bangladesh were

for the first time included in the Wang model with model

development for Bangladesh being based on five measurement

points within one publication, all of which had an organic

amendment application of 2 t/ha (Ali et al., 2014), while we

were able to collect 35 measurement points from six papers that

had an organic application range between 0 and 50 t/ha. We have

also significantly increased the amount of data for Vietnam

collecting 129 data points from seven papers compared to

Wang’s 14 from two studies, while Myanmar, Ghana, and

Portugal are three new countries included in our database. Low

sample number or lack of data inclusion from a country during

model development can influence the model’s ability to estimate

emissions accurately, creating limitations on spatial coverage as

well as reducing the model performance (Albanito et al., 2017;

Wang et al., 2018), while the use of fewer variables, such as in the

tier 1 methods, can improve model performance where data

available for collection are limited as variables accounting for

environmental and geographical differences are left out.

Beside the inclusion of new countries such as Vietnam and

Bangladesh in the Wang et al. (2018) model, Wang’s model is, to

our knowledge, the first empirical CH4 model for rice

ecosystems that considers rice cultivated in temperate regions

and, as such, includes data from countries such as USA, Italy,

and Spain, as well as the tropical regions of Brazil and Uruguay.

However, compared to tropical regions, Asian rice regions’

sample numbers are low. With the Wang model being built on

the older Yan et al. (2005) model and relying on the same

variables as its predecessor, the model’s performance on

predicting CH4 emission from rice regions outside Asia will be

highly affected by the high amount of data collected from Asian

rice fields with temperate data being underrepresented and

based on management common in Asian rice regions. These

models will therefore not consider the variability in management

and environmental conditions between tropical and temperate

regions. As such, we found that in order to complete model

evaluation, many assumptions had to be made in order to fit the

data from these regions with winter flooding being classified as

long drainage and alternate wetting and drying as multiple

drainage. Biochar application was also not included as an

option of organic amendment application and was therefore

classified as straw off season.
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Model limitations

Having to adjust management practices to fit into the classes

available within the models can lead to the models over- or

underestimating emissions; creating outliers while limiting

classes for each variable can lead to models predicting the same

emissions value for all plots when publications record the same

environmental and management conditions across all plots such

as for Portugal in which the models estimated the same emissions

across all the points, slightly underestimating the data for all

except Wang’s model (Pereira et al., 2013). This can be seen

particularly well for Thailand in which the outliers are caused by

high predicted emissions compared to low measured emission

from a paper that experiment ed on biochar (Thammasom et al.,

2016). Classifying biochar as straw off season may cause an

overestimation of emissions from the tier 3 models with the

Thammasom et al. (2016) study showing that incorporation of

biochar emitted less CH4 compared to straw applied off season,

which relates to the amendments having different decomposition

rates indicating that biochar should be considered a separate class

of organic amendment in future model developments. Similarly,

for winter flooding, both tier 3 models overestimate emissions

from Spain (Fangueiro et al., 2016). This is further supported by

the model evaluation for American paddies with outliers being

related to Californian rice fields that are winter flooded.

Californian rice production differs from the rest of America by

having different soil and management conditions and, as such,

winter flooding, while the other regions of Texas, Arkansas, and

Louisiana have long drained pre-seasons. To reflect this variability

and improve model performance, it would be beneficial to add

winter flooding as a separate pre-season class in the future.

Inclusion of additional parameters might improve model

performance by not only further distinguishing particularly

temperate regions from tropical regions but also distinguishing

the temperate regions in Asia from those in Europe and North

America. Planting method could, for instance, be a useful

parameter to include with Asian rice paddies mainly being

transplanted while European and American fields are

commonly direct dry or wet seeded. Dry seeding has been

shown to decrease overall emissions (Pathak et al., 2013) and, as

such, planting method would be a useful variable to include to

predict emissions more accurately for non-Asian temperate

regions. Discrepancies in model performance could also relate

to other environmental conditions such as pH or soil texture with

studies having shown that sandier soils emit more CH4 than

clayey soils (Baldock and Skjemstad, 2000) and thus the high

emission from the Indian study (Datta and Adhya, 2014), in

which soils contain 52.50% sand, may be related to the

combination of management and soil conditions. Inclusion of

soil texture as a parameter could potentially reduce the under

estimation for these data points and others. Both tier 3 models

include pH as a continuous variable, but grouped in classes of 0.5,
Frontiers in Agronomy 11
and as such, each plots’ pH value had to be grouped. Particularly

for European paddies, this caused the Yan model to overestimate

emissions when fields were continuously flooded with pH

between 5 and 5.5, but Wang’s updated pH factors significantly

improved estimates, making the Wang model perform better for

these regions. The performance of non-Asian rice regions could

further be improved by updating to a global climate classification

system, with the existing system using Asian agroecological zones

causing the newerWangmodel to overestimate emissions for both

Spain and Portugal while the Yan model underestimated

emissions. Excluding the agroecological zones from Wang’s

calculation drastically decreased emissions for these countries,

leading to Wang’s model having lower estimated emissions than

Yan for Spain. This shows the complexity in estimation of CH4

emission from rice and how climate is linked to management

practices and that the variability in these affects the model’s ability

to accurately predict emissions.
Summary

Evaluation of model performance shows that the models lack

sensitivity to certain key variables, making it challenging to

accurately predict GHG emissions and to validate the current

models for rice grown particularly in temperate rice regions, for

which management and environmental conditions differ from

tropical regions. Inclusion of key variables such as planting

method, soil texture, and crop rotation as well as additional

pre-season and on-season water management practices like

winter flooding and alternate wetting and drying would be

beneficial for more accurate CH4 emission estimation. In

addition, our findings show that grouping countries into

regions can have a significant impact on emission factor

estimates if using IPCC methodology for national inventory

reports with mean measured emissions at the country scale

significantly differing between countries. Prediction of country-

scale emission factors, which are currently calculated using short

drainage in pre-season, continuous flooding during crop growth,

and no organic amendment could also benefit from further

update to better reflect the difference in environmental

conditions and management practices between temperate and

tropical regions accounting for particularly long drainage in pre-

season. Drought, heat, flooding, and diseases related to climate

change are the major concerns for rice growers now and in the

future, as more producers are shifting from conventional to

climate smart practices involving reduction in water usage, use

of improved form of organic fertilizer, biochar, etc. Net zero

emissions are on the agenda and, as such, having accurate tools

that can aid in reducing these emissions is becoming even more

important. It is therefore crucial to create tools for the future that

allow users to include these climate smart technologies while

considering the global variation in management and climate.
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