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Phytohormones (PHs) play crucial role in regulation of various physiological and

biochemical processes that govern plant growth and yield under optimal and stress

conditions. The interaction of these PHs is crucial for plant survival under stressful

environments as they trigger signaling pathways. Hormonal cross regulation initiate a

cascade of reactions which finely tune the physiological processes in plant architecture

that help plant to grow under suboptimal growth conditions. Recently, various studies

have highlighted the role of PHs such as abscisic acid, salicylic acid, ethylene, and

jasmonates in the plant responses toward environmental stresses. The involvement

of cytokinins, gibberellins, auxin, and relatively novel PHs such as strigolactones and

brassinosteroids in plant growth and development has been documented under normal

and stress conditions. The recent identification of the first plant melatonin receptor

opened the door to this regulatory molecule being considered a new plant hormone.

However, polyamines, which are not considered PHs, have been included in this
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chapter. Various microbes produce and secrete hormones which helped the plants in

nutrient uptake such as N, P, and Fe. Exogenous use of such microbes help plants in

correcting nutrient deficiency under abiotic stresses. This chapter focused on the recent

developments in the knowledge related to PHs and their involvement in abiotic stresses

of anticipation, signaling, cross-talk, and activation of response mechanisms. In view of

role of hormones and capability of microbes in producing hormones, we propose the use

of hormones and microbes as potential strategy for crop stress management.

Keywords: phytohormones, plant growth regulators, abiotic stress, plant tolerance, biosynthesis

INTRODUCTION

Environmental changes either due to anthropogenic activities or
due to abrupt seasonal changes in weather pose serious challenge
of survival to plants. Since plants are sessile organisms, they
have to face such environmental adverse conditions. Among
various environmental changes, water deficit or drought, water
logging, high salinity, low or high temperature, heavy metals,
and solar radiation are detrimental for optimum plant growth
and development (Raza et al., 2020; Hossain et al., 2021). Thus,
leading to decreases in biomass and grain yields at a global
scale (Achard et al., 2006; Gururani et al., 2015). In extreme
environments, different types of abiotic stresses can co-occur.
For example, salt stress is frequently interlinked with drought,
which can be exacerbated by extreme temperatures (Ashraf
and Foolad, 2007; Aslam et al., 2013; Slama et al., 2015; EL
Sabagh A et al., 2019; EL Sabagh et al., 2021). The toxic effects
of salt have a detrimental impact on the root expansion and
control the ability to uptake both nutrients and water (Lambers,
2003; Awais et al., 2017). Plants have developed efficient
sensing, signaling, and response mechanisms to cope with these
detrimental stresses. One of the most conspicuous examples of
these response mechanisms exerted by plants is represented by
the PHs, which can be defined as cellular signal molecules that
act as chemical messengers in plants under low concentrations,
and have paramount functions in the regulation of the responses
that plant show to abiotic stresses (Fleet and Sun, 2005; Davies,
2010;Williams, 2011). The signaling pathways are interconnected

Abbreviations: ABA, Abscisic acid; ABF, ABA-responsive factor; APX, Ascorbate

peroxidase; ARF, Auxin response factor; AsA, Ascorbate; BRs, Brassinosteroids;

CA, Cinnamic acid; CAT, Catalase; CKs, Cytokinins; CS, Chlorophyll synthase;

DHA, Dehydroascorbate; DHAR, Dehydroascorbate reductase; ET, Ethylene;

GAs, Gibberellins; GR, Glutathione reductase; GSH, Reduced glutathione; GSSG,

Oxidized glutathione; H2S, Hydrogen sulfide; IAA, Indole-3-acetic acid; IAM,

Indole-3-acetamide; IAOx, Indole-3-acetaldoxime; IPA, Indole-3-pyruvic acid;

IPT, Isopentenyl transferase gene; IPTs, Isopentenyl transferase; JAME, Jasmonic

acid methyl ester; JAs, Jasmonic acids; MDHA(R), Monodehydroascorbate

(reductase); MTA, Methylthioadenosine; NADPH, Nicotinamide adenine

dinucleotide phosphate; NCED, 9-cisepoxy carotenoid di-oxygenase; NO,

Nitric oxide; OPDA, Octadecanoid cis (+) 12 oxophytodienoic acid; Pas,

Polyamines; PGPR, plant growth-promoting rhizobacteria; Phot, Phototropin;

PHs, Phytohormones; PP2C, Protein phosphatase type-2C; PYL9, Pyrabactin-like

receptor 9; RAF1, Rubisco accumulation factor 1; RNS, Reactive nitrogen species;

ROS, Reactive oxygen species; SA, Salicylic acid; SAM, S-Adenosyl methionine;

SOD, Superoxide dismutase; SL, Strigolactones; SnRK4, Sucrose non-fermenting-

1-related protein kinase 4; TAM, Tryptamine; TFs, Transcription factors; UFAs,

Unsaturated fatty acids; ZEP, Zeaxanthin epoxidase.

in a complex network that modulate physiological processes to
quickly adapt to environmental stresses.

According to He et al. (2018), there are five general plant
defense-related metabolites against abiotic stresses: the cuticle
as the external protection, unsaturated fatty acids (UFAs) as
membrane modulator and oxylipin precursor, reactive species
scavengers, molecular chaperones (proteins and subcellular
structures stabilization), and compatible solutes. These defensive
metabolites are coordinated by a complex regulatory network
that involves the participation of upstream signaling molecules
as stress PHs, reactive oxygen species (ROS), hydrogen sulfide
(H2S), nitric oxide (NO), polyamines (PAs), phytochromes,
and calcium, as well as downstream gene regulation factors,
particularly transcription factors (TFs) (He et al., 2018). At
present, nine types of PHs have been identified (Su et al., 2017),
including auxins, the first phytohormone discovered (Darwin
and Darwin, 1880), salicylates (SA), ethylene (ET), cytokinins
(CKs), gibberellins (GAs), brassinosteroids (BRs), jasmonates
(JA), abscisic acid (ABA), and strigolactones (SL), the last PHs
to be discovered (Gomez-Roldan et al., 2008). Among these PHs,
ABA, SA, ET, and JA have been recognized to have a central
role in the plant’s responses to environmental stresses (Peleg
and Blumwald, 2011; Wasternack, 2014). Recently, Yadav et al.
(2021) reviewed that phytohormones including ABA, BRs, CK,
ET, GA, JA, and SA play crucial role in drought stress tolerance in
plants through regulation of cellular functions at molecular levels
through cell signaling. The SL and BR constitute a new plant
hormone of increasing importance due to their involvement in
the response against stresses such as extreme temperature and
drought (Brewer et al., 2013; Ha et al., 2014; Nolan et al., 2020).
Melatonin, a recently identified plant hormone, is involved in
multiple physiological actions, such as growth, rooting, seed
germination, photosynthesis, and protection against abiotic and
biotic stresses (Maheshwari et al., 2015). Although polyamines
are high in concentration and poorly translocated within the
plant (conversely to PHs), they are necessary for plant growth
under normal or stress conditions (Liu et al., 2007).

The homeostasis of PHs is controlled by regulation of
metabolic pathways, transport, and cellular compartmentations
(Pieterse et al., 2009; Iqbal, 2015b). Recently, mutants of
hormone-biosynthetic pathways are generally used to understand
integration of hormonal circuits into molecular processes
associated with stress responses. Therefore, deciphering how
plants can better tolerate environmental stresses with minimum
or no reduction in their productivity is an important challenge
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for researchers. Figure 1 shows an overview of microbial
phytohormone-mediated stress tolerance mechanisms in plants
(Egamberdieva et al., 2017). This review aims to enhance the
knowledge of the effects of abiotic stresses on endogenous PHs
concentrations, and their role in plant physiology to elucidate the
potential mechanisms of phytohormone-mediated abiotic stress
responses in plants. This information can be used in forward-
thinking solutions for developing climate smart crop cultivars in
our dynamically changing world.

PHYTOHORMONES

Abscisic Acid
Abscisic acid was discovered in early 1960s and found that
this phytohormone was responsible for breaking seed dormancy
(Cornforth et al., 1965). Later on, it has been found that it has
potential role in plant development and stress adaptive responses
in plants (Guschina et al., 2002; Iqbal, 2015a). For example,
ABA is involved in seed maturation and seed dormancy, and
regulation of water in plant body through stomatal opening
and closing, and adaptations of a plant to environmental
stresses. Under water deficit conditions, ABA is biosynthesized
in roots and transported to leaves via xylem thereby increase in
concentration in the leaves. This increase of the ABA acts as a
signal and start signaling cascade in guard cells to regulate cell
turgor of guard cells (Danquah et al., 2013; Awan et al., 2017).
In the abiotic stress response, the biosynthesis and redistribution
of ABA cause stomatal closure and reduce transpiration rate,
restricting cell growth (Peleg and Blumwald, 2011). ABA is quite
famous for its functions in plant-water relations (Arkhipova et al.,
2020).

ABA up-regulates hormone-responsive transcription factors,
and in ABA signaling phosphatases and kinases play role in
mediating fast responses to various abiotic stresses (Dar et al.,
2017).

ABA biosynthesis pathway is derived from carotenoids
(Nambara and Marion-Poll, 2005). Stress stimuli rapidly trigger
ABA biosynthesis from β-carotene oxidative cleavage using 9-cis-
epoxy carotenoid di-oxygenase (NCED) enzyme. The zeaxanthin
epoxidase produces trans-violaxanthin, which gets converted to
a 15-C compound called neoxanthin. After that, conversion of
xanthoxin to abscisic aldehyde occurs, and then its oxidation
leads to ABA production. The biosynthesis of ABA by the β-
glucosidase homologs from ABA-GE has also been reported as an
alternate pathway of ABA synthesis in some plant species exposed
to abiotic stresses (Xu et al., 2013; Llanes et al., 2014).

Moreover, ABA not only mediate physiological responses
through its own signaling, it also regulate physiological responses
through interacting with other PHs in plants exposed to abiotic
stresses (He et al., 2018). It is worth mentioning that ABA
triggers and mobilizes an array of biochemical defenses such as
biosynthesis of proline, antioxidants, ROS detoxifying enzymes,
heat shock proteins, and unsaturated fatty acids along with the
strengthening of cuticular waxes, which enable plants to ward-off
adverse effects of abiotic stress to some extent (Ashraf and Foolad,
2007; Chen et al., 2013; Lee and Suh, 2015; Hoque et al., 2016;
Huang et al., 2016; Liu et al., 2018; Yin et al., 2018; Singhal et al.,
2021).

Ethylene
Ethylene is in gaseous form and involved in many vital morpho-
physiological processes such as triple response in germinating
seeds, developing flowers, ripening fruits, and triggering plant
responses against environmental stimuli. Besides, ET regulates
several stress-related biochemical responses of plants exposed
to abiotic stresses such as heat, drought, chilling, salinity,
heavy metals, water-logging, flooded, or submerged conditions
(Awan et al., 2017). For instance, a close association between
high ET level and freezing and cold stress was observed in
Arabidopsis (Shi et al., 2012) and Medicago truncatula (Zhao
et al., 2014), and regulation of ET homeostasis is crucial for
sub optimal temperature stress (chilling and freezing) tolerance.
High ET levels are help in salt stress tolerance as in salt tolerant
Arabidopsis plants. The ETIO1 (ethylene over producer) act
positively in salt stress by maintaining Na+/K+ homeostasis and
ROS production (Yang et al., 2017). Moreover, it plays a crucial
role in altering plants’ response to pathogen attack, external
mechanical wounding, UV radiations, and nutrients deficiency.
ET biosynthesis and accumulation were reported in many cases
in response to damage or mechanical injury (Abeles et al., 1992;
Kendrick and Chang, 2008).

The biosynthesis of ET, as shown in Figure 2, has been
quantified in various plant tissues, wilting flowers, and ripening
fruits in plants exposed to abiotic stresses (Kendrick and
Chang, 2008). The underlying mechanism for ET biosynthesis
gets initiated with S-Adenosyl methionine (SAM), which is
the precursor of ET and is usually synthesized in large
concentrations in various crops and fruit trees. An enzyme
called 1- aminocyclopropane-1-carboxylic acid (ACC) synthase
catalyzes the first chain reaction to convert SAM to ACC, and
methylthioadenosine (MTA), which subsequently gets recycled
to L-methionine. Owing to this recycling, L-methionine levels
remain unchanged even when ethylene biosynthesis is at its
peak. Moreover, the ET biosynthesis pathway is affected by ACC
synthase enzyme, which is extremely labile and tends to limit
biosynthesis rate and rises proportionally as that of ethylene
levels in tissues, flowers, and fruits (Maheshwari et al., 2015).

Salicylic Acid
Among phenolic endogenous growth regulators, salicylic acid
is one of the most vital growth regulators and has been
characterized in almost all plant species belonging to diversified
groups. The SA concentration has been reported to be 1 µg g−1

of fresh biomass of rice, barley, and soybean crops. Its role as a
regulator of an array of biochemical and physiological processes
in plants has been identified. It helps in induction of systemic
acquired resistance to various pathogens has been widely studied
in plants (Misra and Saxena, 2009). However, in plants subjected
to salinity and osmotic stresses, the SA role remained somewhat
ambiguous in various plant species depending on the intensity
and duration of osmotic stress. Simultaneously, SA exogenous
application alleviated the adverse effects of salinity (Horváth
et al., 2007).

During the 1960s, SA was synthesized from cinnamic acid
(CA) by two biosynthesis pathways. One pathway involves a
side chain of CA, which undergoes decarboxylation to produce
benzoic acid, which is then subjected to 2-hydroxylation leading
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FIGURE 1 | An overview of mechanisms in microbial phytohormone-mediated plant stress tolerance. Several root-associated microbes produce CK, GA, IAA, SA,

and ABA, which help plants to withstand stress by enhancing their antioxidant potential, by up-regulation of the antioxidant system and by the accumulation of

compatible osmolytes thus reducing oxidative stress-induced damage; improving photosynthetic capacity and membrane stability; promoting cell division and

stomatal regulation; stimulating the growth of root system, and acquisition of water and nutrients.

FIGURE 2 | Biosynthesis of ethylene in plant cells.

to the synthesis of SA in crops including tobacco (Yalpani et al.,
1993) and rice (Silverman et al., 1995). However, it postulated
that some other enzymes involved in this pathway are still
unknown. The second pathway of SA biosynthesis involves
CA, which gets subjected to 2-hydroxylation, leading to o-
coumaric acid production, which is subsequently decarboxylated
to biosynthesize SA. Trans-cinnamate-4- hydroxylate enzyme is
responsible for catalyzing this reaction (Alibert and Ranjeva,

1971; Alibert et al., 1972). This pathway was firstly studied
in seedlings of peas (Russell and Conn, 1967). However, the
underlying mechanism of this pathway remains unclear.

Jasmonates
Jasmonates are a broad group, which are covering various
compounds, such as jasmonic acids (JAs), jasmonic acid methyl
ester (JAME), precursor of the JAs; octadecanoid cis (+) 12
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oxophytodienoic acid (OPDA), amino acid conjugates, and
metabolites such as 12-OH-JA and 11-OH-JA, and often these
compounds are involved in plant responses to biotic and
abiotic stresses. Jasmonates are found throughout the plant
body; however, shoot apex, root tips, immature fruits, and
young leaves like tender growing parts show remarkably high
concentrations. The synthesizing pathway of JAs is said to
be via the octadecanoid pathway, starting at linolenic acid
and terminating at (+)-7-epi-JAs (Wasternack, 2007). The
major plant organs of biosynthesizing Jasmonates are leaves
and roots, while chloroplasts and peroxisomes are the sub-
cellular primary sites of JAs biosynthesis (Cheong and Choi,
2003). Reports showed that development of the embryo and
reproductive organs, determination of sex, seed germination
and seedling development, root growth, fruit ripening, leaf
movements and senescence, gravitropism, the formation of the
trichome, and tubers are mediated by JAs (Wasternack and
Hause, 2013; Wasternack, 2014). Further, signaling related to
defense mechanisms of insects or pathogen are driven wounding
is mediated by jasmonates.

JAs have a crucial role in abiotic stress tolerance; thus, studies
were focused on these compounds because of their significant
protective capacity on plants against stress (Takeuchi et al.,
2011). For example, JAs-mediated plant responses are shown
against drought stress, ozone stress (Sasaki-Sekimoto et al., 2005),
UV-stress, salinity stress, cold stress (Yoshikawa et al., 2007),
and temperature stress. In addition, JAs-mediated secondary
metabolites production (Chen et al., 2006) is involved in plant
movements related to adapt seasonal and circadian rhythms.
Wasternack and Hause (2013) reported that jasmonates regulate
microbe-associated symbiotic relationships, such as arbuscular
mycorrhizal fungi and plant growth-promoting rhizobacteria
(PGPR). The jasmonates involved signaling in abiotic stress
regulation in Carica papaya (Mahouachi et al., 2007), citrus, and
Arabidopsis thaliana (A. thaliana) (Arbona et al., 2010; Brossa
et al., 2011) is well-confirmed. Moreover, the involvement of JAs
in salt stress signaling in glycophytes such as tomato, barley,
and others have been studied. However, the role of jasmonates
in halophytic plants’ response to salinity stress is yet to be
explored. Certain laboratory experiments showed that changes
in JAs profiles in response to different abiotic stressors were
imposed using NaCl, mannitol/sorbitol, and water stress.

Gibberellins
The GAs are one of the longest and well-known groups of
regulatory hormones integrated into numerous developmental
processes of plants such as seed germination, inter-nodal
elongation, induced flowering and fruit development (Islam et al.,
2021). Recent studies have explored genetic basis and genes
encoding GAs biosynthesis and deactivating enzymes using novel
biochemical and genetic approaches (Yamaguchi, 2008; Pearce
et al., 2015). More than 250 members in the GAs group are
reported, though only a few of them are biologically active
and play multiple roles in plant development. The cellular level
regulation of the GAs is said to be complex. For example, the
GAs metabolic pathway phases are regulated by enzymes in
small multi-genic families; of those, each member plays a specific

pattern of expression. However, two gene families encoding GAs,
20-oxidases (GA20ox) and GA3-oxidases (GA3ox) that catalyze
the final steps in the synthesis of bioactive GAs, are strongly
associated with GA biosynthesis (Hedden and Thomas, 2012).

Receptor protein of GA is nuclear localized GID1 and
binding of GA with receptor protein help to interact with
repressor DELLA protein. Protein-protein interacting domain
of DELLA protein interact with F-Box protein which recruit
SLY1 complex for its ubiquitination via SCF-E3 ligase complex.
Upon ubiquitination, DELLA repressor protein is degraded by
26S proteasome and thus help in binding of transcription factor
with promoter region of GA-inducible genes. Thus, GA mediate
signaling by degrading repressor protein that bring about various
biochemical and physiological responses. Thus, accumulation
of GA in plant tissues either due to endogenous biosynthesis
or due to exogenous application counteract negative effects of
stresses and thus induce stress tolerance in plants. For instance,
under water deficit conditions, decline in endogenous GA level by
GA2ox6 ectopic expression improved the seed yield and drought
stress tolerance in rice (Lo et al., 2017). Moreover, GA regulate
redox homeostasis through stimulating electron mobilization
in H. vulgare (Mark et al., 2016). The involvement of GA in
redox equilibrium helps plants to acclimatize in suboptimal
growth conditions. GRAS transcription factors play crucial role
in plant development and signaling including GA biosynthesis
and signal transduction pathways. Liu et al. (2017) demonstrated
that abiotic stress treatments like NaCl, H2O2, etc. enhanced the
GRAS40 expression in tomato. SlGRAS40 interacted with auxin
and GA pathways during vegetative and reproductive phases
of tomato and transgenic expression of SlGRAS40 plant and its
expression induced the drouth and salt tolerance.

Auxins
Auxins are endogenous plant growth regulators, similar to
CKs, and are mainly involved in root/shoot formation and
relative growth (Sachs, 2005). Studies have shown that auxins
work together with CKs in various cellular or physiological
processes such as cell cycle progression, cell expansion, apical
dominance, leaf development, and embryonic development
during seed maturation (Tromas et al., 2009; Jurado et al., 2010).
Indeed, auxins under environmental stresses influence the plant
growth responses. In contrast, subsequent alterations in auxin
homeostasis due to such environmental changes can result in
distorted growth and development in plants, causing altered
morphogenesis. Such stress-induced morphogenic responses are
an acclimation strategy, which helps prevent or reduce the
damaging effects of environmental stresses (Potters et al., 2009;
Tognetti et al., 2012).

The genetic studies and in vitro assays claimed that
Auxin biosynthetic pathways have one tryptophan (Trp)-
independent and four Trp-dependent pathways, namely indole-
3-acetamide (IAM) pathway, indole-3-acetaldoxime (IAOx)
pathway, tryptamine (TAM) pathway, and indole-3-pyruvic
acid (IPA) pathway (Woodward and Bartel, 2005; Taiz et al.,
2015). Amongst them, the TAM and IPA pathways said to be
contributed to plant development.
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Similar to GA, receptor protein of auxin is also nuclear
localized. Interestingly, receptor protein of auxin is a repressor
protein. Binding of auxin with receptor protein or repressor
protein recruits SCFTIR1-E3 ligase which ubiquitinate repressor
protein subsequently degraded by 26S proteasome. Degradation
of repressor protein allowed to auxin response factors to bind
with promoter region of auxin-inducible gene and thus mediate
gene expression. Auxin response factor (ARF) family has been
identified as transcription factors that mediated auxin’s actions;
for example, certain ARFs displayed crucial involvements in
lateral root development (Wilmoth et al., 2005). A recent study
reported that micro RNAs’ collective function determined the
quantity of lateral root growth, miR390 and TAS3-derived trans-
acting short interfering RNAs and Auxin Responsive Factors
forming auxin-responsive regulatory network (Marin et al.,
2010). This complex auxin regulatory network has fine-tuned
the vigor and elasticity of lateral root growth. However, the
involvement of genes that mediate interactive environmental
stresses toward growth responses is yet to be discovered.

Variety of abiotic stresses involved in auxin homeostasis,
distribution, and their metabolism in the cellular environment.
Two molecular mechanisms have been suggested for such
alterations in auxin distribution under stress environments;
changers in PIN gene expression, which is necessary for
polar auxin transport, and inhibitory action of polar auxin
transport generated via phenolic compounds accumulated
during stress exposure (Kovtun et al., 2000; Potters et al.,
2009). Moreover, stress-induced auxin metabolism is regulated
by IAA degradation, which is catalyzed by peroxidases (Jain
and Khurana, 2009). Thus, auxins can be considered as stress
hormones having direct or indirect mediation, modifying the
expression of certain stress-responsive genes; among the multi-
functions of auxin in plants, the formation of lateral roots
considered as of special significance as lateral roots play a key
role in plant development regulating the architecture of the root
system, stability of the plant and efficient nutrient and water
uptake for the whole organism.

Cytokinins
The CKs are key PHs often considered ABA antagonists
and auxin antagonists/synergists in various processes in plants
responsible for plant growth, development, and tolerance against
different abiotic stresses (Pospíšilová, 2003; Danilova et al., 2016).
Besides, other hormonal pathways (e.g., ABA), CKs are activated
when a plant is exposed to salt stress. By interacting with other
plant hormones like auxins and ABA, CKs can considerably
increase salt stress tolerance (Iqbal et al., 2006).

Plant endogenous CKs are adenine derivatives with either
isoprenoid or aromatic side chains found in plants at a lower
abundance (Sakakibara, 2006). The isoprenoid CKs can be
distinguished as isopentenyl adenine (iP), trans-zeatin (tZ), cis-
zeatin (cZ), or dihydrozeatin-type derivatives according to the
hydroxylation and reduction of the side chain. The rate-limiting
step of isoprenoid CK biosynthesis is catalyzed by isopentenyl
transferase (IPTs). Rivero et al. (2010) generated transgenic
tobacco carrying an Agrobacterium tumefaciens isopentenyl

transferase gene (IPT). Similarly, the promoter of a senescence-
associated receptor protein kinase (SARK) gene, from Phaseolus
vulgaris, was constructed in front of the IPT gene. These
transgenic plants (PSARK::IPT) are more tolerant of drought-
induced leaf senescence, which results in a remarkable level of
water stress tolerance. During water stress, a greater reduction
in photosynthesis occurs in susceptible plants than the stress-
tolerant transgenic plants due to the photosynthetic apparatus
being degraded in suspectable plants under low photosynthesis
conditions. Therefore, CKsmay protect photosynthetic processes
contributing to the stress tolerance in the transgenic plants
(Rivero et al., 2010). In addition, recent studies on CK signaling
have suggested that this hormone is indeed involved in plant salt
stress responses shown in Figure 1. Synthetic CKs reverse the
plants’ drought-induced alterations and allow normal growth and
developmental activities (Figure 3). Plenty of research findings
suggest that CKs support normal growth and development under
osmotic stresses and improve plants’ drought tolerance ability.
However, the precise molecular mechanism of CK-mediated
drought tolerance is yet to be discovered.

Melatonin
In 1995, two groups of researchers simultaneously identified
the presence of melatonin (N-acetyl-5-methox-ytrytamine) in
vascular plants for the first time. Melatonin is a pleiotropic
molecule with many diverse actions in plants (Wang et al.,
2017). It is considered an antioxidant with important actions
in the control of ROS (Raza et al., 2020) (Figure 4) and
reactive nitrogen species (RNS), among other free radicals, and
harmful oxidative molecules present in plant cells. In addition,
plant melatonin is involved in multiple physiological actions,
such as growth, rooting, seed germination, photosynthesis,
and protection against abiotic and biotic stressors (Arnao and
Hernández-Ruiz, 2015). The recent identification of the first
plant melatonin receptor opened the door to this regulatory
molecule being considered a new plant hormone. However, due
to the diversity of its actions, melatonin has also been proposed
as a plant master regulator.

Melatonin has a range of possible cellular and physiological
effects, such as changes in intracellular Ca2+ and the permeability
of membranes mediated by ion transporters, changes in the
opening and/or closing of stomata carbohydrate, lipid, and
nitrogen metabolisms, and also in osmoprotectant metabolites.
Melatonin affects processes such as growth promotion,
rooting induction, tropism, seed germination promotion,
photosynthesis, optimizing efficiency, and leaf water/CO2

exchange (Sharif et al., 2018). It also regulates other processes,
such as ripening or senescence, the internal biological clock, and
parthenocarpy. Finally, melatonin also acts as an endogenous
plant bio-stimulator against abiotic or biotic stressors (Sun et al.,
2014).

One of the basic principles of any animal or plant hormonal
function is a receptor responsible for interaction with the
hormone and triggering downstream signaling chain elements.
One of the most important limitations in studies on melatonin in
plants is the lack of an identified receptor. This has also been a
hurdle to considering melatonin as a plant hormone. However,
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FIGURE 3 | The positive impact of synthetic CK on stomatal conductance, contents of chlorophyll b, and the process of photosynthesis under severe drought stress.

Up (green) and down (red) arrows are the symbolic representations of increase and decrease, respectively. ZEP, Zeaxanthin epoxidase; NCED, 9-cis-epoxycarotenoid

dioxygenase; ABA, Abscisic acid; PYL9, Pyrabactin-like receptor 9; PP2C, Protein phosphatase type-2C; SnRK4, Sucrose non-fermenting-1-related protein kinase 4;

ABF, ABA-responsive factor; Phot, Phototropin; CS, Chlorophyll synthase; RAF1, Rubisco accumulation factor 1 (Gujjar et al., 2020).

similar to other plant hormones, identifying the receptor only
came after obtaining many biochemical and physiological data
relevant to melatonin (Zhang and Chang, 2016). The turning
point came with the recent identification of CAND2/PMTR1,
a phytomelatonin receptor in A. thaliana. Localized in the
plasma membrane with a receptor-like topology, it interacts
with the G-protein a subunit (GPA1), while its expression
in different tissues is induced by melatonin. Phytomelatonin-
receptor binding triggers the dissociation of Ggb and Ga,
which activates NADPH oxidase-dependent H2O2 production
(RBOH), enhancing Ca2+ influx and promoting K+ efflux,
finally resulting in stomatal closure. Like others, phytomelatonin
is a plant hormone that controls stomatal closure through
the CAND2/PMTR1-mediated signaling pathway, regulating
H2O2 production. ABA application induced stomatal closure in
CAND2 (a melatonin-insensitive phenotype in mutants lacking
ATCAND2), suggesting that melatonin-induced stomatal closure
has a receptor that is different from that for ABA while sharing
some components with ABA signaling (e.g., Ga subunit, H2O2,
and Ca2+ signals) (Guo et al., 2017; Arnao and Hernández-Ruiz,
2019).

Strigolactones
Strigolactones (SLs) are carotenoid derived PHs, which exuded
from 80% of the plants that propose a symbiotic relationship
with arbuscular soil mycorrhiza (Akiyama and Hayashi, 2006).
These PHs were originally discovered as an “ecological signal” for
parasitic seed germination and a symbiotic relationship among
plants and beneficial microbes. The first natural SL (called strigol)
was discovered as a germination stimulant of Striga lutea. This
obligate hemiparasite plant requires a living host for germination
and initial development, and subsequently, these compounds
were collectively termed as strigolactones (Cook et al., 1972).

Several strigolactone analogs, including GR5, GR7, and GR24
(a compound with the highest activity), have been chemically
synthesized in many plants, and succeeding characterizations
have described their functional roles in various developmental
processes, including root development, shoot branching, leaf
senescence, reproductive development, and controlling the
architecture of plant organs (Gomez-Roldan et al., 2008;
Kapulnik et al., 2011; Kohlen et al., 2011; Ruyter-Spira et al.,
2011). Like other plant hormones, the major functions of SLs
are the development, and its interaction with auxin dominates
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FIGURE 4 | Schematic presentation of the ascorbate–glutathione cycle and a model depicts the melatonin-induced alleviation of NaCl-caused oxidative stress in

peanut plants. ROS, reactive oxygen species; SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase; AsA, ascorbate; MDHA(R),

monodehydroascorbate (reductase); NADPH, nicotinamide adenine dinucleotide phosphate, DHA, dehydroascorbate; DHAR, dehydroascorbate reductase; GSH,

reduced glutathione; GSSG, oxidized glutathione; and GR, glutathione reductase (ElSayed et al., 2020).

in the SL-regulated developmental processes (Hayward et al.,
2009). SLs are apocarotenoids derived from carotenoid cleavage
mediated by Carotenoid cleavage dioxygenase (CCDs) enzymes
(Booker et al., 2005). The first step of biosynthesis occurs in
the plastids with the help of three plastids localized enzyme
D27, CCD7, and CCD8 utilizing-trans-β-carotene in plastids
producing caprolactone (CL) (Alder et al., 2012). Carlactone
is then further oxidized by cytochrome P450 monooxygenase
MAX1 or other homologous genes into different forms of SLs
by few other unidentified steps catalyzed by novel, unknown
enzymes. SLs are involved in the symbiosis relationship of plants
and microbes in the rhizosphere. They activate hyphal branching
and enhanced the growth and energy metabolism of symbiotic
arbuscular mycorrhiza fungi after being exuded from the root.

Furthermore, SLs impact the quantitative development of
root nodule symbiosis with symbiotic nitrogen-fixing bacteria
(Rochange et al., 2019). The extent of SLs production in
plants is strictly regulated and dependent on the stresses that
plants confront at various stages of their development. Several
studies confirm the importance of SLs in regulating multiple
physiological and molecular processes during the adaptation
of plants to different abiotic stresses such as salinity, drought,
nutrient starvation, temperature, and pathogenic assail (Marzec
et al., 2013). Evidence for crosstalk between SLs and other PHs in
responses to abiotic stresses suggests that SLs actively participate
within regulatory networks of plant stresses.

Recently, Ling et al. (2020) reported that exogenous
application of GR24 in seedling of rice resulted in better
growth, increased POD and SOD activity, and improved net
photosynthetic rate, stomatal conductance, and intercellular CO2

concentrations. These results show that GR24 may alleviate the
damage of rice caused by salt stress, improve the adaptability

to high-saline environments, and provide a relatively stable
yield. The plant produces high amounts of SLs under nutrient
deficiency conditions that lead to suppressing shoot branching
and stimulating symbiosis (Gomez-Roldan et al., 2008; Umehara
et al., 2008). SLs also showed to play a crucial role in nitrogen
and phosphorous deficiency, inducing modification of root and
shoot architecture and promoting the symbiosis of rhizobial
bacteria and AM fungi (Marzec, 2016). As reported above,
the significance of SLs has been well-recognized in several
stress conditions as salinity, drought, temperature, and nutrient
deficiency; however, their establishments as stress-related PHs
demand extensive research.

Brassinosteroids
Brassinosteroids (BRs) are polyhydroxylated steroid PHs. They
regulate several physiological and biochemical processes in the
plant, such as cell elongation, cell division, photomorphogenesis,
xylem differentiation, growth, and reproduction (Nolan et al.,
2020). The BRs exist in free and conjugated, and nearly 69
and 5 conjugated and free BRs have been identified (Bajguz,
2011). The BRs are diverse in nature and biological activity.
Among the BRs, brassinolide (BL) has been documented as the
most active BR, and it was isolated and purified from Brassica
napus pollen (Grove et al., 1979). The BRs are closely related
to auxins, through the modulation of its transport, coordinating
the tropic responses of plant organs (Li et al., 2005), and
promoting lateral root primordial initiation during lateral root
development (Bao et al., 2004). The endoplasmic reticulum
most likely served as the site for BRs synthesis. The formation
of a protein complex comprising enzymes (metabolon) to
efficiently route the substrate to specified enzymes in a single
biosynthetic pathway has been anticipated in plants only, and
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BRs biosynthesis occurs through cyto-chromeP450 (CYP), a
triterpenoid pathway (Ralston and Yu, 2006; Choe, 2007; Chung
et al., 2011). Hydroxylation of membrane-induced campesterol
initiates the BR synthetic pathway (Choe et al., 1998). The
intermediates gradually become more polar with hydroxyl group
addition on side chain on C-22, C-23, and C-2, C-3, C-6 on
steroid rings, respectively (Vukašinović and Russinova, 2018).

Unlike other PHs, BRs are used in contiguity to synthesizing
cells rather than long-distance transport. Nevertheless, BRs
crosstalk with PHs such as auxin exerts a long-distance effect
(Symons et al., 2008; Vriet et al., 2013). The BRs metabolism
involves various processes, including acylation, glycosylation,
and sulphonation, to maintain the desired levels of bioactive BR
in the cells (Saini et al., 2015). The BRs signaling is initiated
by leucine rich repeat receptor like kinase (LRR-RLKs) BRI1
which is membrane bound. BRs signaling used two strategies
initiation of phosphorylation cascade by kinases and degradation
of repressor protein BIN2 and thus allowing transcription factors
to bind with DNA binding elements for gene expression. Thus,
BRs signal is also amplified during signal transductions. That’s
why a small amount of BRs is sufficient to initiate developmental
programs under normal or stress conditions (Nolan et al.,
2017). Numerous studies have documented the abiotic stress
tolerance in plants with exogenous application of BRs (Kagale
et al., 2007; Bajguz and Hayat, 2009; Yuan et al., 2010; Anjum
et al., 2011; Divi et al., 2016). Nevertheless, the BRs need in
minimal quantity like other PHs. Therefore, plant responses to
exogenous BRs treatment are concentration-dependent. A high
BR application rate is found to inhibit the plant growth, while
the opposite is observed at lower concentrations (Chaiwanon
and Wang, 2015; Belda-Palazon et al., 2018). The abiotic
stresses enhanced ROS generation leading to oxidative stress,
while BRs help regulates the cellular ROS level under stressful
environments. For instance, 28-homobrassinolide application to
Brassica juncea L. plants subjected to combined temperature
and salt stress enhanced enzymatic antioxidant activities (SOD,
CAT, APOX, DHAR, and MDHAR) and ROS homeostasis
(Kaur et al., 2018). Likewise, in Lycopersicum esculentum, BRs
application ameliorated the supra optimal temperature-induced
photosynthesis inhibition and augmented the carboxylation and
activities of the antioxidant system (Ogweno et al., 2007).
Recently, Fàbregas et al. (2018) demonstrated that overexpression
of BRL3 (vascular BR receptor) promotes drought responses
without penalizing growth in Arabidopsis. In another study,
Serna et al. (2015) documented the alleviation effects of BRs
on lettuce salt-stressed plants. They found that BRs were
involved in the partial reversion of NaCl accumulation in
cells. Moreover, some critical agronomic traits in crops are
potentially regulated by BRs, such as plant height, leaf angle,
and inflorescence structure (Yamamuro et al., 2000; Hong et al.,
2003; Sakamoto et al., 2006; Yang et al., 2018). Altogether, these
studies demonstrate that BRs are potent PHs due to their versatile
functions, and support the important role of BRs as anti-stress
agents. Besides the great progress in the last decade in BRs
research, many questions remained unanswered. The complete
understanding of the dynamics of BRs homeostasis and its
interactions with other PHs will add key knowledge that will

allow themodulation of various useful traits in plants and address
current challenges in agriculture.

Polyamines
Polyamines (PAs) are small aliphatic nitrogenous bases produced
as a result of cellular metabolism. The PAs have not planted
hormones, but due to their involvement in regulating several
growth and development processes and responses to abiotic
stress in plants, they have been proposed as a new category of
plant growth regulators (Liu et al., 2007; Chen et al., 2019).
Initially, the ability of PAs to bind with anionic macromolecules
was supposed to link with their biological functions, which lead
to the consideration of PAs as polycations having distinctive
structural roles. However, later may study demonstrated that
PAs act as regulatory molecules in key cellular processes
such as cell division, cell differentiation, DNA and protein
synthesis, and gene expression (Seiler and Raul, 2005; Alcázar
et al., 2010; Igarashi and Kashiwagi, 2010; Childs et al., 2017).
Furthermore, PAs are involved in various physiological processes
in plants including embryogenesis, organogenesis, reproductive
development, leaf senescence, and fruit maturity.

Moreover, the several studies have reported the protective
role of PAs against environmental stresses (see reviews Alcázar
et al., 2010; Gill and Tuteja, 2010; Minocha et al., 2014; Chen
et al., 2019). Spermidine (Spd), spermine (Spm), and Putrescine
(Put) are the major PAs in plants, while cadaverine (Cad) and
diamino propane (Dap) are less studied in plants. The PAs are
present in conjugated (covalent and non-covalent bounded) or
free form (Gholami et al., 2013). The main product of PAs
biosynthetic pathway is Put, which serves as the precursor for
Spm and Spd (Xu et al., 2009). In plants, Put biosynthesis occur
in three different routes: via Arginine by arginine decarboxylase
(ADC) (the most frequent route), via ornithine (Orn) by
ornithine decarboxylase (ODC), and citrulline (Cit) by citrulline
decarboxylase (CDC) (Chen et al., 2019). The PAs catabolism
is contingent on the action of diamine oxidase, and PA oxidase
and PAs metabolism is closely associated with several other
metabolic pathways in plants. The H2O2 produced due to PA
oxidation is involved in signal transduction and plant responses
to biotic and environmental stresses (Freitas et al., 2017;Mellidou
et al., 2017; Sariyev et al., 2020). The PA biosynthetic pathway
is linked to ethylene synthesis, sharing the same precursor (S-
adenosylmethionine) and competing. Further, PAs metabolism is
closely associated with nitric oxide generation (Pál et al., 2015),
which triggers a signal transduction process related to plant
growth. The distribution of PAs is organ and tissue-specific in
plants. For instance, Put is the most abundant PA found in leaves,
while the higher level of Spd is present in other plant organs
(Reginato et al., 2012; Takahashi et al., 2017).

Polyamines are implied in response to different abiotic
stresses. Generally, transgenic plants overexpressing PA
biosynthetic enzymes, such as spermidine synthase, arginine
decarboxylase, and S-adenosylmethionine synthetase, showed
the protective roles of polyamines under abiotic stress conditions.
Moreover, exogenous application of PAs showed increased stress
tolerance in several plant species (Alcázar et al., 2010; Qi et al.,
2010; Minocha et al., 2014).
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THE BENEFICIAL EFFECTS OF
PGPR-MEDIATED PHYTOHORMONES IN
PLANTS UNDER ABIOTIC STRESSES

Abiotic stresses such as drought, high soil salinity, flooding,
heat, cold, oxidative stress, and heavy metals not only deteriorate
environmental resources but also reduce crop growth and
productivity by reducing nutrient uptake (EL Sabagh et al., 2020b;
Javeed et al., 2021). The plant nutrients remarkably influence the
physiological and biochemical functions of plants (Raza et al.,
2020), and the deficiency of the essential nutrients slows down the
growth and development, even go-ahead to the death of plants
(Bennett, 1993; Balakrishnan, 1999). Plant breeding and genetic
engineering approaches are the best techniques to develop stress-
resistant plants, but limited success is achieved in this field despite
significant efforts.

Increasing nutrient availability and uptake for plants is
one way to alleviate nutrient deficiency under abiotic stress
conditions. Plant growth-promoting rhizobacteria (PGPR) are
the potential candidates to protect plants by colonizing
within the rhizosphere and producing antimicrobial metabolites
(antagonistic). The PHs produced by such a community of
bacteria provide plant health and immunity by regulatory
hormones (Maheshwari et al., 2015).

PGPRs associated with plant roots improve plant productivity
and immunity through various mechanisms like overproduction
of beneficial PHs, consequently increases the root surface area
and numbers of root tips, enhances the uptake of nutrients
from soils, and reduces the stress-related damages (Kloepper
et al., 2004; Çakmakçi, 2016). The PGPR helps fix atmospheric
N2 into biologically available N compounds and produce
growth-promoting hormones and prevent the infestation of
plant pathogens or increased resistance power of plants against
pathogens (Bottini et al., 2004; Compant et al., 2005).

Due to the production and degradation of the major groups of
plant hormones, plant growth promotion is facilitated by PGPR
via diverse mechanisms. However, plant root exudates have
many potential substrates for rhizobacterial growth, including
plant hormones or their precursors. Rhizobacterial mediation
of plant hormone status shows local effects on root elongation
and architecture, mediating water and nutrient capture, and
affects plant root-to-shoot hormonal signaling that regulates
leaf growth and gas exchange. Combining rhizobacterial traits
(or species) influences plant hormones and status, thereby,
modifying root architecture (to capture existing soil resources)
to make additional resources available (e. g., nitrogen fixation,
phosphate solubilization), which may enhance the sustainability
of crops (Maheshwari et al., 2015).

In addition to different environmental stresses in crop
production and the adverse effects of the chemical fertilizers on
the environment, environmentalists push worldwide to reduce
chemical fertilizer levels below those recommended for optimum
yields. However, such reductions would represent nutrient stress
on plants. Hence, the use of PGPR is a great option that
facilitates crop productivity with reduced fertilizers. Shaharoona
et al. (2008) reported that the use of PGPR strain with 75%
recommended doses of N-P-K fertilizers produced the equivalent

yield of wheat (Triticum aestivum L.) that were obtained with the
full dose of N-P-K fertilizers (100%) in the absence of PGPR.

Extracellular plant growth-promoting rhizobacteria (ePGPR)
and intracellular plant growth-promoting rhizobacteria (iPGPR)
are PGPR classes. The ePGPRs exist within the rhizosphere
or in the spaces between the root cortex cells, while the
iPGPRs generally exist inside the specialized modular structures
of root cells. The bacterial genera under the ePGPR class
are Agrobacterium, Arthrobacter, Azotobacter, Azospirillum,
Bacillus, Burkholderia, Caulobacter, Chromobacterium,
Erwinia, Flavobacterium, Micrococcus, Pseudomonas, and
Serratia (Viveros et al., 2010). The iPGPR belongs to the
family of Rhizobiaceae that includes species of Allorhizobium,
Bradyrhizobium,Mesorhizobium, and Rhizobium (Bhattacharyya
and Jha, 2012).

In stress conditions, the growth and development of plants
are stimulated by the functions of PGPR. It has been reported
by Mantelin and Touraine (2004) that the development of
the profuse root in response to PGPR stimulatory effects can
directly improve the growth and development of plants. The
production of PHs like IAA, CKs, and GAs under drought,
nutrient deficiency, salinity, and metal toxicity stresses changes
the root structure (Adesemoye et al., 2008).

Plants uptake more nutrients from the soil due to higher
root surface area, contributing to the promotion of plant growth
(Vessey, 2003). Moreover, it also increases the nutrients (N, P,
and K) uptake efficiency of plants due to the PGPR production
(Mayak et al., 2004; Turan et al., 2012). PGPB strains improve
the N2 fixation and survive plants under stressed soil conditions
reported in many previous studies (Gupta et al., 2014; Nadeem
et al., 2014).

The PGPR can neutralize or decrease the stress-related
hormones (ethylene by bacterial ACC deaminase activity),
which are produced in plants under stressed soils, and reduce
the inhibitory effects of various pathogens in the forms of bio-
control agents, root colonizers, and environmental protectors,
resulting in improve growth and development of plants. PHs
produced by PGPR are major signaling molecules employed
in the enhancement of crop production. IAA in the majority
and other hormones such as ABA, CK, ET, etc. (natural,
semi-synthetic, and synthetic) proved beneficial by stabilizing
plant immunity, biocontrol, and crop productivity. The role
of phytohormone in seed dormancy, seedling emergence,
elongation, somatic embryogenesis, initiation, and enhancement
brings the immense need to manage increasing food production
to account for sustainable agriculture. Phytohormone is
exploiting endogenously and exogenously in the maintenance
of several physiological traits of plants. It has been revealed that
some PGPR secretes novel signaling molecules that also promote
plant growth. The use of rhizobacteria signaling in promoting
plant growth offers a new window of opportunity, especially to
provide novel biological products for enhancing plant growth
and development in a sustainable manner (Maheshwari et al.,
2015).

Salinity is one of the most significant abiotic stress that
hinders crop yield by causing damage to plant growth and
development (Abdelhamid et al., 2019; EL Sabagh et al., 2020a).
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Under the saline condition, plants uptake essential nutrients from
a diluted source in the presence of highly concentrated non-
essential nutrients such as calcium, iron, magnesium, sodium,
and chlorine (Fageria et al., 2011; Liu et al., 2020; Monsur et al.,
2020). In salt-affected soils, the uptake and use efficiency of
nutrients (phosphorus, potassium, and boron) are low due to the
negative interactions with higher concentrations of cations and
anions. Hence, plants grown in salt-affected soils require a higher
amount of nutrients than plants grown in normal soils. Legumes
grown in salt-affected soils also adversely affect the biological
nitrogen fixation. Jha and Subramanian (2013) reported from
a greenhouse study on rice that PGPR inoculated plants under
saline conditions increased the uptake of N (26%), P (16%), K
(31%), and decreased the uptake of Na (71%) and Ca (36%)
resulting exhibited higher germination, survival, dry weight, and
plant height as compared to non-inoculated control plants in the
same condition.

The PGPR contributed significantly to reduce the nutrient
build-up in the soil (Mantelin and Touraine, 2004; Adesemoye
et al., 2008). Soil fertility is enhanced due to the levels of
nitrogen fixation in legumes. Nitrogen-fixing bacteria metabolize
the root exudates and make available nitrogen to synthesize
amino acids in plants. The PGPR is the resultant effect of
the symbiosis of rhizobia and legume plants. Nitrogen fixation
ability depends on the free-living bacteria like Azospirillum,
Burkholderia, and Stenotrophomonas (Dobbelaere et al., 2003).
Sulfur is an important macronutrient released from sulfate
through oxidation of bacteria for the plants (Banerjee and
Yesmin, 2002).

For optimum growth and development of plants, phosphorus
(P) is an essential macronutrient, although P is limited to most
of the world’s soil. Plants uptake P mainly in the form of
soluble inorganic phosphate, but P forms insoluble complexes
(unavailable for plant roots) with Al and Fe, and Ca and Mg
in acidic and alkaline soils, respectively. A limited amount
of bioavailable P in the soil shows extensive abiotic stress in
plants. In this situation, naturally, PGPR microbes present in
the soil or artificial inoculation of PGPR strains as a biofertilizer
solubilizes the insoluble P, and increases P availability to plants
or helps to develop more lateral roots and root hairs in making
more surface area for absorption of inorganic P and other
nutrients (Gyaneshwar et al., 1999). The most efficient phosphate
solubilizing bacteria are Rhizobium, Bacillus, and Pseudomonas,
and fungi are Aspergillus and Penicillium.

Ehteshami et al. (2007) reported that the phosphate-
solubilizing microorganisms could perform positively in
promoting plant growth and P uptake in maize crop under water
deficit conditions that lead to the development of improved stress
tolerance in plants. The use of PGPB salt-stressed tomato plants
increased P uptake (Mayak et al., 2004). The PGPR increased
the uptake of P in peppers under high and low-temperature
stress (Martin and Stutz, 2004). Wheat seeds inoculated with
Pseudomonas indica and Azotobacter chroococcum increased
the uptake of mineral nutrients, especially Zn (Abadi and
Sepehri, 2016). Egamberdiyeva (2007) reported that PGPR
inoculation such as Pseudomonas alcaligenes PsA15, Bacillus

polymyxa BcP26, and Mycobacterium phlei MbP18 in maize
under nutrient-deficient condition promoted growth and uptake
of N, P, and K.

Iron (Fe) toxicity is a severe constraint of rice production
in wet conditions. The Bacillus strains can mitigate Fe toxicity
symptoms (Asch and Padham, 2005; Terré et al., 2007). PGPR
produces siderophores to sequester ferric ions from the soil and
supplies them to the plants under iron-limiting stress conditions
(Compant et al., 2005). Production of siderophores by PGPR
increases nutrient uptake under mineral shortage may, in turn,
favor heavy metals sequestration (Khan et al., 2009). Pishchik
et al. (2002) reported that barley seeds inoculated with the
commercially available PGPR Klebsiella mobilis increased the
grain yield by 120%, and decreased two-fold Cd contents in
grains when plants are grown in cadmium-contaminated soil.
This may be due to free Cd ions can be bound by bacteria into
complex forms that cannot be taken up by the plants. Therefore,
inoculation of PGPR can be considered an innovative and cost-
effective alternative to the availability of nutrients under different
abiotic stresses.

CONCLUDING REMARKS

Abiotic stresses hinder plant growth and development at all
phenological stages, particularly at the seed germination and
reproductive growth stages. In most of the negative effects
in plants caused by abiotic stresses, nutrient deficiency is
highly significant. Plants tolerant to abiotic stresses have
better ability to preferentially uptake nutrients either due to
endogenous hormonal regulation or due to interaction with
root zone microbes which release variety of hormones. In
view of role of phytohormones in different plant physiological
processes, exogenous application of these hormones can improve
stress tolerance in plants. In addition, application of hormone
producing microbes might have multiple effects in alleviating
adverse effects of abiotic stresses on plants. It do not only
promote the growth but such application improved the nutrient
availability in soil, help in uptake of nutrient and induce stress
tolerance in plants. Application of PHs in abiotic stressed-plants
is a well-known strategy for crop stress management. The PHs
are classified into several classes, and each class has a specific role
against specified abiotic stress. Although biosynthetic pathways
and signaling pathways of different hormones are known,
hormonal cross regulation is poorly understood. Future research
needs to explore the molecular mechanisms of different PHs
and their cross regulation in alleviating adverse effects of
abiotic stresses on plants. In the future, the use of advance
biological tools such as genomics, proteomics, transcriptomics,
and bioinformatics in this area of research will help in exploring
detailed mechanism of abiotic stress tolerance in plants and role
of PHs in this regard.
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