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Plant Growth Promoting Bacteria (PGPBs) are a strong ally for sustainable agriculture.

They offer an interesting alternative to chemical fertilizers and pesticides. Many

microorganisms have been widely documented for their PGPR traits, but actinobacterial

microbes which have been increasingly documented only these two past decades for

their ability to promote plant growth. Their action on plant health and yield could be

either direct, indirect or both. This review will cover articles that have been published on

Actinobacteria PGP traits, highlighting the involved mechanisms to reveal their strong

potential as microbial fertilizers. Possible strategies to encourage Actinobacteria use as

bioinoculants are also discussed.

Keywords: Actinobacteria, PGPR, PGPB, bioinoculant, biocontrol, sustainability

INTRODUCTION

Sustainability is a significant challenge currently being faced by human beings. How can we nourish
the ever-growing world population and at the same time offer viable soil for future crop production
for the next generations? Agricultural ecosystems are fragile and excessive inputs, especially
chemicals (nitrogen and phosphate fertilizers) and pesticides, which enable maximal yield, could
work for a while, but plant survival is a tributary of soil health, which is, in turn, intimately
linked to microbial diversity for nutrient turnover. It has been reported that excessive chemical
inputs exert negative impacts on humans and environmental health (Glick, 2012). Moreover,
with these incoming chemical inputs, the plant microbiome is modified and in accordance with
hologenome theory, which outlines that microorganisms play a role in the evolution of animals and
plants (Rosenberg et al., 2009), presumably, the evolution of plants and their associated symbiont
microbiota (named holobiont) could be affected.

Plant microbiome are analogous to the gut microbiome: just as the gut microbiome plays a
central role in human health (O’Hara and Shanahan, 2006), so too does the plant microbiome
present the same properties in plant health. The microbiome is the entire microbial population
inhabiting the plant with an extension to the rhizospheric microbiome, as there are important
interactions between both (Rosenberg et al., 2009). Among these microbial populations, there are
an important group named PGPR “Plant Growth Promoting Rhizobacteria” for those living in
the rhizosphere, which ameliorate plant growth both directly and indirectly (Kloepper, 1978) as
well as PGPB “Plant Growth Promoting Bacteria” including rhizospheric bacteria and those which
are free-living in the soil or associated to plants in rhizoplane, phyllosphere and inside plants as
endophytes (Bashan and De-Bashan, 2005). These microbes help plant growth by enhancing soil
nutrient availability (Scagliola et al., 2016), the supply of phytohormones, and provide systemic
resistance induction against phytopathogens. Thus, the employment of Plant Growth Promoting
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Bacteria (PGPB) is considered a promising alternative to
conventional agricultural practices, in terms of chemical fertilizer
and control of pathogenic agents (Bashan, 1998).

The use of Actinobacteria in agricultural practice has
increased in recent years, due to their potential action as
PGPR and their ubiquitous repartition in plants (Yadav et al.,
2018). Actinobacteria are Gram positive bacteria with a high
G+C content in their DNA, ranging from 51 to more than
70% (Ventura et al., 2007), well known for their metabolite
production, mainly antibiotics (Saxena, 2014). They are present
in the phyllosphere, endosphere (Lopez-Velasco et al., 2013),
rhizosphere, and are free living in soil (Bulgarelli et al., 2013).
In addition to their PGPB action, some other actinobacterial
characteristics could encourage wider use as bioinoculant:
many Actinobacteria, which generally represent an abundant
proportion of soil microbiota, are particularly effective plant root
system colonizers and by forming spores, they are able to endure
unfavorable growth conditions (Alexander, 1977) and are more
persistent in drought soils (Santos-Medellín et al., 2017). They
play a critical role in organic matter recycling (Lacey, 1978) by
increasing soil organic matter and nitrogen content along with
essential macro and micro-elements, which in turn ameliorate
plant growth, carbon metabolism, and allocation, and improve
plant yield (AbdElgawad et al., 2020). Finally, their antagonistic
and competitive characteristics permit them to colonize the
rhizosphere with regards to other soil microorganisms (Bulgarelli
et al., 2013). All the characteristics cited above designate
Actinobacteria as an auspicious inoculant.

Many studies have proven the PGP action of the plant
microbiome, but there is a gap between in vitro trials
and efficiency in the field, particularly concerning their
commercialization as a final bio-input product. The purpose of
this review is to demonstrate the beneficial and protective impact
of Actinobacterial on plant growth by highlighting the main
direct or indirect PGPB traits. All genera of this important taxon
were examined to identify their potential PGPB actions. On the
other hand, the main impediments and future prospects of their
use as biofertilizers are discussed.

ACTINOBACTERIA DIVERSITY AND
IMPORTANCE

According to Ludwig et al. (2012), in terms of the number
and variety of identified species, the phylum Actinobacteria
represents one of the largest taxonomic units among the
18 major lineages currently recognized within the domain
Bacteria, including 5 subclasses, 6 orders, and 14 suborders.
Its genomic diversity reflects its biodiversity which could have
great biotechnological applications (Ventura et al., 2007). But an
update based on 16S rDNA trees done by Gao and Gupta (2012),
eliminated the taxonomic ranks of subclasses and suborders,
elevating the former subclasses and suborders to the ranks of
classes and orders, respectively. The phylum “Actinobacteria”
is thus divided into six classes: Acidimicrobiia (01 order)
(Norris, 2012), Actinobacteria (include 20 orders) after the
classification based on the whole genome (Nouioui et al., 2018),

Coriobacteriia (02 order) (Gupta et al., 2013), Nitriliruptoria (02
orders) (Ludwig et al., 2012), Rubrobacteria (01 order) (Suzuki,
2012), and Thermoleophilia (02 orders) (Suzuki and Whitman,
2012). Based on Actinobacteria classification (Parte et al., 2020)
(consulted 01/01/2022), the cited classes above include 73
families and 443 genera which are unequally distributed. The
majority of them (394) are within the class Actinobacteria
(Table 1).

Actinobacteria present various and different lifestyles
including plant pathogens (e.g., Streptomyces scabiei,
S. acidiscabies, and S. turgidiscabies) (Wanner, 2006),
mammalian pathogens (e.g.,Mycobacterium spp., Nocardia spp.,
Corynebacterium spp., Tropheryma spp., and Propionibacterium
spp.), plant commensals (Leifsonia spp.), soil inhabitants
(Streptomyces spp.) as reported by Ventura et al. (2007),
nitrogen-fixing symbionts (Frankia) (Franche et al., 2009),
and gastrointestinal tract (GIT) inhabitants (Bifidobacterium
spp.) (Ventura et al., 2007; Barka et al., 2016). It should be
noticed that members of Actinobacteria class are associated with
plants growing in different habitats as well as under extreme
environments (Goudjal et al., 2013; Singh et al., 2016; Sahay
et al., 2017).

Rhizospheric Actinobacteria are predominant in nature, with
economic importance to humans because both agricultural and
forest fields depend on their contributions to soil systems
(Yadav et al., 2017). They possess diverse physiological and
metabolic properties, like extracellular enzyme production and
the formation of a wide variety of secondary metabolites
(Schrempf, 2001). Rhizosphere harbors diverse actinobacterial
species which have been further exploited for secondary
metabolites (Geetanjali, 2016; Yadav et al., 2018). It has been
reported by Berdy (2003), that microorganisms produced about
23,000 bioactive secondary metabolites, over 10,000 of these
compounds are produced by Actinobacteria, which represent
45% of all discovered bioactive microbial metabolites and 80%
if we only consider those compounds used in a practical
way. Among Actinobacteria, Streptomyces species produced
around 7,600 compounds, and these statistical evaluations should
increase, perhaps not in an exponential way, but with the
continuous growth of the number of new microbial metabolites.

The genus Streptomyces dominated actinobacterial strains
isolated from soil, representing over 95% (Williams and
Vickers, 1988). These actinobacterial strains are considered
Streptomyces and Non-Streptomyces. Among the bioactive
compounds produced by Actinobacteria, antibiotics, which
initially confer them competitiveness are the most important
in terms of biotechnological application as they produce the
majority of the naturally occurring antibiotics (Barka et al.,
2016). Other actinobacterial metabolites possess biotechnological
applications, including in antifungal (Hoshino et al., 2004),
bioherbicide/biopesticide (Waldron et al., 2001), antiparasitic
(Burg et al., 1979), antiviral (Farmer and Suhadolnik, 1972),
antitumor agent (Igarashi et al., 2007), immunostimulatory (de
Reijke et al., 1997), and immunosuppressive (Uyeda et al.,
2001) products.

The endophytic trait has been described mostly in the
class Actinobacteria (Singh and Dubey, 2018), but with the
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TABLE 1 | Distribution of some PGP traits among Actinobacteria phylum.

Actinobacterial

class

Actinobacterial

order

Actinobacterial

family (genus

number)

Plant growth

promotion genus

Associated

plants

Mode of action References

Acidimicrobiia Acidimicrobiales Acidimicrobiaceae

(4)

Not found

Lamiaceae (4)

Microthrixaceae (2)

Actinobacteria Acidothermales Acidothermaceae

(1)

Acidothermus* Forest soil Cellu Talia et al., 2012

Actinomycetales Actinomycetaceae

(19)

Actinomyces* / Gib, Cyt Panosyan et al.,

1963; Kaunat,

1969

Actinopolysporales Actinopolysporaceae

(3)

Actinopolyspora* Wheat IAA, PS, Sid Gangwar et al.,

2012a

Bifidobacteriales Bifidobacteriaceae

(10)

Not found

Catenulisporales Actinospicaceae

(1)

Not found

Catenulisporaceae

(1)

Catenulispora * Soil Cellu Anderson et al.,

2012

Cryptosporangiales Cryptosporangiaceae

(2)

Fodinicola* Acacia mangium IAA, PS, Sid Ph?m et al., 2020

Frankiales Frankiaceae (1) Frankia* / IAA, Wheeler et al.,

1984

Ochetophila

trinervis

IAA, Gib Solans et al., 2011

Motilibacteraceae

(1)

Not found

Vallicoccaceae (1) Not found

Geodermatophilales Antricoccaceae (1) Not found

Geodermatophilaceae

(5)

Modestobacter Salicornia

europaea Linn

PS Qin et al., 2013

Glycomycetales Glycomycetaceae

(6)

Not found

Jiangellales Jiangellaceae (1) Not found

Kineosporiales Kineosporiaceae

(6)

Kineococcus Wheat IAA, NF Batool et al., 2016

Micrococcales Beutenbergiaceae

(1)

Not found

Bogoriellaceae (3) Not found

Brevibacteriaceae

(3)

Brevibacterium Aloe vera/Triticum

aestivum

IAA, PS, Sid Tara and Saharan,

2017

Cellulomonadaceae

(3)

Cellulomonas Sorghum IAA, NF dos Reis Antunes

et al., 2019

Demequinaceae

(1)

Not found

Dermabacteraceae

(4)

Brachybacterium Salicornia

brachiata

IAA, Sid, ACCD,

NF

Gontia et al., 2011

Dermacoccaceae

(11)

Dermacoccus Tomato IAA, PS, Sid Rangseekaew

et al., 2021

Dermatophilaceae

(8)

Not found

Intrasporangiaceae

(18)

Intrasporangium Rice NF Su et al., 2007

Alfa PS, Sid Guiñaz et al., 2013

Knoellia* / Sid Duncan et al.,

2021

(Continued)
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TABLE 1 | Continued

Actinobacterial

class

Actinobacterial

order

Actinobacterial

family (genus

number)

Plant growth

promotion genus

Associated

plants

Mode of action References

Lapillicoccus Sisal NF de Jesus Santos

et al., 2019

Oryzihumus* / Cellu Kim et al., 2017

Jonesiaceae (5) Not found

Kytococcaceae (1) Not found

Microbacteriaceae

(62)

Agreia* Salicornia

europaea L.

NF Hrynkiewicz et al.,

2019

Agromyces Salix caprea IAA, Sid Kuffner et al., 2008

Curtobacterium Paddy IAA, ACCD, NF Vimal et al., 2019

Frigoribacterium Nitraria sibirica IAA, PS, Sid,

ACCD

Zhou et al., 2017

Frondihabitans* Salix caprea ACCD Kuffner et al., 2008

Herbiconiux* Ilex paraguariensis PS, NF Pérez et al., 2016

Humibacter* Rice IAA Samson et al.,

2021

Labedella* Salicornia

europaea L.

NF Hrynkiewicz et al.,

2019

Lacisediminihabitans* Lichen IAA, NF Noh et al., 2021

Leifsonia Tomato IAA, Gib Kang et al., 2014

Leucobacter* Jatropha curcas L. IAA, NF Machado et al.,

2020

Microbacterium Neem/Tomato PS, ACCD Madhaiyan et al.,

2010

Mycetocola* Lepidium draba L. IAA Samad et al., 2017

Rathayibacter Brassica

campestris ssp

pekinensis

NF Poonguzhali et al.,

2006

Subtercola* Salix caprea IAA Kuffner et al., 2008

Micrococcaceae

(28)

Arthrobacter Tomato IAA, Sid Amm Banerjee et al.,

2010

Triticum aestivum* IAA, PS, Sid, NF,

Amm

Verma et al., 2014

Citricoccus Banana/Onion IAA, Gib PS,

ACCD, Amm

Selvakumar et al.,

2015

Glutamicibacter Limonium sinense IAA, PS, ACCD,

NF

Qin et al., 2018

Kocuria Stipa tenacissima

L.

IAA, PS, ACCD Dif et al., 2021

Micrococcus Maize IAA, Cyt, Pect,

HCN

Raza and Faisal,

2013

Vigna unguiculata IAA, PS, Sid,

ACCD

Dastager et al.,

2010

Nesterenkonia Tomato PS, Prot Masmoudi et al.,

2019

Paenarthrobacter Tomato IAA, ACCD Riva et al., 2021

Pseudarthrobacter Curcuma longa L. IAA, PS, Sid,

Amm, Cellu

Kharshandi et al.,

2021

Psychromicrobium Arnebia euchroma IAA, PS, Sid Jain et al., 2021

Rothia Rice IAA, PS Evangelista et al.,

2017

(Continued)

Frontiers in Agronomy | www.frontiersin.org 4 March 2022 | Volume 4 | Article 849911

https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/agronomy#articles


Boukhatem et al. Plant Growth Promoting Actinobacteria PGPA

TABLE 1 | Continued

Actinobacterial

class

Actinobacterial

order

Actinobacterial

family (genus

number)

Plant growth

promotion genus

Associated

plants

Mode of action References

Sinomonas* Rice IAA, PS, NF, Cellu Susilowatia et al.,

2015

Zhihengliuella Halophyte

plants/Canola

IAA, ACCD, NF

Amm, Chit

Siddikee et al.,

2010

Ornithinimicrobiaceae

(2)

Serinicoccus* Halimione

portulacoides

IAA, ACCD, Cellu,

Prot

Fidalgo, 2017

Ornithinimicrobium Panax ginseng IAA, Sid Huo et al., 2021

Promicromonospora

ceae (13)

Cellulosimicrobium Chili plants IAA, PS Chatterjee et al.,

2009

Phaseolus vulgaris IAA, PS, Amm,

Prot

Karthik and

Arulselvi, 2017

Isoptericola Limonium sinense ACCD, NF Qin et al., 2014

Myceligenerans Halocnemum

strobilaceum

PS, ACCD Zhou et al., 2017

Oerskovia /* IAA, PS, Sid, Prot Yun et al., 2017

Promicromonospora Solanum

lycopersicum

Gib, PS Kang et al., 2012

Xylanimonas* Ulmus nigra Cellu Rivas et al., 2003

Rarobacteraceae

(1)

Not found

Ruaniaceae (3) Not found

Micromonosporales Micromonosporaceae

(29)

Actinoplanes Cucumis sativus L. IAA, Gib Gluc El-Tarabily et al.,

2009

Micromonospora Salicornia bigelovii IAA, Sid El-Tarabily et al.,

2019

Phaseolus vulgaris

L.

PS El-Tarabily et al.,

2008

Mycobacteriales Corynebacteriaceae

(1)

Corynebacterium Saline coastal soil

and halophytic

plants

ACCD, NF, Amm Siddikee et al.,

2010

Capsicum

chinense

PS, Amm, HCN Chinakwe et al.,

2019

Dietziaceae (1) Dietzia Wheat modulating the

transcriptional

machinery

responsible for

salinity tolerance in

plants

Bharti et al., 2016

Wheat Sid Gusain et al., 2017

Gordoniaceae (3) Gordonia Chenopodium

murale/ Pearl millet

NF Kayasth et al.,

2014

Zea mays Sid, ACCD Hong et al., 2011

Gordonia* Coastal salt marsh

plant

PS, Sid, ACCD,

NF

Gong et al., 2018

Williamsia*/Gordonia* Lycium ruthenicum NF Liu et al., 2019

Williamsia* Chenopodium

murale/ Pearl millet

NF Kayasth et al.,

2014

Lawsonellaceae

(1)

Not found

Mycobacteriaceae

(3)

Mycobacterium Wheat AF Amyl, Pect Egamberdieva,

2012

Mycobacterium Rice IAA, PS, ACCD,

NF

Karmakar et al.,

2021

(Continued)
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TABLE 1 | Continued

Actinobacterial

class

Actinobacterial

order

Actinobacterial

family (genus

number)

Plant growth

promotion genus

Associated

plants

Mode of action References

Nocardiaceae (9) Nocardia Coastal salt marsh

plant

IAA, PS Gong et al., 2018

Nocardia Citrus reticulata L. IAA Shutsrirung et al.,

2013

Nocardia Aquilaria crassna

Pierre ex Lec

IAA, Sid, Amm,

Prot

Nimnoi et al., 2010

Rhodococcus, Brassica juncea L.

Czern

IAA, Sid, Belimov et al.,

2005

Rhodococcus Plectranthus

amboinicus (Lour.)

Spreng

IAA, ACCD Karthikeyan, 2017

Segniliparaceae (1) Not found

Tsukamurellaceae

(1)

Tsukamurella Zea mays L. IAA, PS, Chit, Prot Marín et al., 2013

Tea plants/Peanut IAA, Sid Zhang et al., 2021

Nakamurellales Nakamurellaceae

(1)

Not found

Propionibacteriales Actinopolymorphaceae

(4)

Not found

Kribbellaceae (1) Not found

Nocardioidaceae

(4)

Aeromicrobium* / IAA, Sid, Amm Yadav et al., 2015

Nocardioides Sorghum bicolor IAA, NF, Amm,

Prot

Liotti et al., 2018

Propionibacteriaceae

(25)

Not found

Pseudonocardiales Pseudonocardiaceae

(34)

Actinokineospora* Glycyrrhiza inflata

Bat

IAA Zhao et al., 2018

Amycolata* / Cellu, xyl Br hlmann, 1995

Amycolatopsis chickpea and

sorghum

IAA, Sid, Cellu,

Chit, Prot, Gluc,

Pect

Alekhya and

Gopalakrishnan,

2016

Kibdelosporangium* Jatropha curcas L. Sid, ACCD Xing et al., 2012

Kutzneria * / IAA, PS, Sid,

Amm, Prot Amyl,

Pect

Devi et al., 2021

Prauserella* / IAA, PS, Sid Nafis et al., 2019

Pseudonocardia a IAA, Sid, Amm,

Cellu

Borah and Thakur,

2020

Saccharomonospora* IAA, PS,

ACCD, Amm,

Cellu, Prot

Borah and Thakur,

2020

Rice IAA, Sid Gangwar et al.,

2012b

Sporichthyales Sporichthyaceae

(3)

Not found

Streptomycetales Streptomycetaceae

(6)

Kitasatospora Trifolium repens L. PS, Sid, NF Franco-Correa

et al., 2010

Yam/Arabidopsis IAA, PS, Sid,

ACCD, Cellu, Chit

Arunachalam

Palaniyandi et al.,

2013

Streptomyces Sorgum/Rice IAA, Sid, Cellu,

Prot, Gluc HCN

Gopalakrishnan

et al., 2013

(Continued)
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TABLE 1 | Continued

Actinobacterial

class

Actinobacterial

order

Actinobacterial

family (genus

number)

Plant growth

promotion genus

Associated

plants

Mode of action References

Chickpea IAA, Sid, Cellu,

Prot, HCN, Gluc

Alekhya and

Gopalakrishnan,

2017

Streptosporangiales Nocardiopsaceae

Bulgarelli et al.,

2013

Nocardiopsis Pennisetum

glaucum

IAA, PS, Amm,

Chit, Gluc

Patel and Thakker,

2019

Wheat IAA, PS, Sid, Chit,

HCN

Allali et al., 2019

Thermobifida Trifolium repens L. PS, Sid, Amm Franco-Correa

et al., 2010

Streptosporangiaceae

(19)

Microbispora / IAA, PS, NF, Amm,

Cellu, Pect

Borah and Thakur,

2020

Thermomonosporaceae

(5)

Actinomadura Aquilaria crassna

Pierre ex Lec

IAA, Sid, Amm,

Prot

Nimnoi et al., 2010

Spirillospora Citrus reticulata L. IAA Shutsrirung et al.,

2013

Treboniaceae (1) Not found

Coriobacteriia Coriobacteriales Atopobiaceae (8) Not found

Coriobacteriaceae

(4)

Not found

Eggerthellales Eggerthellaceae

(11)

Not found

Nitriliruptoria Egibacterales Egibacteraceae (1) Not found

Egicoccales Egicoccaceae (1) Not found

Euzebyales Euzebyaceae (1) Not found

Nitriliruptorales Nitriliruptoraceae

(1)

Not found

Rubrobacteria Rubrobacterales Rubrobacteraceae

(1)

Not found

Thermoleophilia Gaiellales Gaiellaceae (1) Not found

Miltoncostaeales Miltoncostaeaceae

(2)

Not found

Solirubrobacterales Baekduiaceae (1) Not found

Conexibacteraceae

(1)

Not found

Paraconexibacteraceae

(1)

Not found

Parviterribacteraceae

(1)

Parviterribacter* Lespedeza NF Padda et al., 2018

Patulibacteraceae

(1)

Not found

Solirubrobacteraceae

(1)

Not found

Thermoleophilales Thermoleophilaceae

(1)

Not found

IAA, IAA production; Gib, Gibberellin production; Cyt, Cytokinin; PS, Phosphate solubilization; Sid, Siderophore production; ACCD, ACCD production; NF, Nitrogen fixation; Amm,

Ammonia production; Cellu, Cellulase production; Chit, Chitinase production; Amyl, Amylase production; Xyl, Xylanase production; Prot, Protease production; Gluc, Glucanase; Pect,

Pectinase; HCN production.

The actinobacterial strains presenting PGP traits but had not proven their capacity to seedling, growth, or stress alleviation promotion are indicated by an asterisk.

advances of molecular identification tools, other endophytic
candidates have been revealed so far, as for Thermoleophilia
class, e.g., Solirubrobacter phytolaccae (Solirubrobacterales
order) (Wei et al., 2014) and Patulibacter (Solirubrobacterales
order) (Ferrando et al., 2012); for Rubrobacteria class e.g.,

Rubrobacteria genus (Rubrobacterales order) (Girija et al., 2018)
and Coriobacteria class (Ren et al., 2018).

The fact that Actinobacteria could survive mesophilic but also
for some candidates at thermophilic conditions reaching 60◦C is
an encouraging trait for its inocula use (Edwards, 1993), a fortiori
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they are considered as aridity–winners by Marasco et al. (2021)
who stated that aridity changes composition and interactions
of the plant-microbial community, this by modulating the
distribution of aridity-tolerant (winners) and aridity-susceptible
(losers) bacterial taxa, which is in favor of the former in a dry
environment. There have also been reports that actinobacterial
inoculation could not only protect plants from the deleterious
effects of drought but also show significant increases in their
measured physiological parameters (Chukwuneme et al., 2020).
Furthermore, acidophilic Actinobacteria could play a major role
in the inoculation of plants living in acidic soil (Bull, 2011).
Many halotolerant Actinobacteria have been isolated from saline
environments and have proven to be useful crop protective agents
to plants in stressful conditions (Siddikee et al., 2010; Zhou et al.,
2017; Qin et al., 2018). The extremophile character of some
actinobacterial strains could be a valuable tool for rehabilitating
degraded areas under extreme environmental conditions and
they can enhance crop production under multiple conditions of
stress, such as extreme temperatures, pH, salinity, and drought
(Qin et al., 2011).

PGP TRAITS OF ACTINOBACTERIA

Bacterial strains are considered as PGPR if they can fulfill at
least two of the three following criteria: aggressive colonization,
plant growth stimulation, or biocontrol (Vessey, 2003).
Globally, plant growth-promoting rhizobacteria (PGPR) are the
rhizosphere bacteria that can enhance plant growth by a wide
variety of mechanisms like phytohormones production,
1-Aminocyclopropane-1-carboxylate (ACC) deaminase
production, induction of systemic resistance (ISR), phosphate
solubilization, siderophore production, biological nitrogen
fixation (BNF), rhizosphere engineering, quorum sensing
(QS) signal interference and inhibition of biofilm formation,
exhibiting antifungal activity, production of volatile organic
compounds (VOCs), promoting beneficial plant-microbe
symbioses, interference with pathogen toxin production, etc.
(Bhattacharyya and Jha, 2012; Kumar and Singh, 2020). From
a practical point of view, PGP-microbes could be used as
biofertilizers by providing macro and micronutrients like
biological nitrogen fixation (Vessey, 2003) and utilization of
insoluble phosphorous (Chang and Yang, 2009), as biostimulants
or phytostimulants by improving nutrient use and efficiency
thanks to phytohormones production (Lugtenberg et al., 2002),
as biocontronl by controlling plant pathogens using antibiotics
or siderophores (Vessey, 2003), for rhizomediation by enhancing
heavy metal solubility or decreasing the bioavailability of
toxic compounds (Denton, 2007), and as biotisation agents
by reducing chemical inputs in in vitro plant tissues culture
(Diehdhiou et al., 2021). Regarding Actinobacteria, one of the
major components of rhizosphere microbial populations, they
showed a significant ecological role in soil nutrient cycling
(Halder et al., 1991; Elliott and Lynch, 1995) as well as in plant
growth-promoting activities (Merzaeva and Shirokikh, 2006),
and numerous reports (Gomes et al., 2000; Sousa Cd et al., 2008;
Goudjal et al., 2013; Kaur et al., 2013) are available on their

potential as plant growth-promoting agents. To illustrate plant
promoting ability among Actinobacteria phylum, we reviewed
the 443 actinobacterial genera by associating each of them to
term “plant growth promotion.” The most relevant results are
reported in Table 1.

Among the mechanism of action, we will report below major
processes of plant growth promotion related to Actinobacteria.
But before, one should wonder if PGP traits, precisely, which
one or how many should be accumulated to exert the maximum
growth improvement of plants. For example, the most effective
strain E108, identified as Curtobacterium flaccumfaciens, has
increased barley growth up to 300% but has shown only two
out of the six investigated plant growth promoting activities
comparatively to two other strains, namely the Microbacterium
natoriense strain E38 and Pseudomonas brassicacearum strain E8,
which did not promote plant growth even though they showed
many PGP traits (Cardinale et al., 2015).

DIRECT ACTION

Biological Nitrogen Fixation
Nitrogen is generally regarded to be one of the major limiting
nutrients in plant growth (Franche et al., 2009). It is widely
known that Frankia, the sole genus of Frankiales order fixes
atmospheric nitrogen in symbiosis with actinorhizal plants,
which play a major role in colonizing nitrogen-poor soils and
initiation of ecological successions (Normand et al., 2007). Some
studies on nitrogen-fixing properties among the Gram-positive
Actinobacteria revealed that some non-symbiotic species of
Agromyces, Arthrobacter, Corynebacterium, Micromonospora,
Mycobacterium, Streptomyces, and Propionibacteria have
nitrogen fixing capacity (Sellstedt and Richau, 2013). More
particularly, the nitrogen fixing Arthrobacter humicola (Verma
et al., 2014), Corynebacterium spp. (Verma et al., 2014),
Microbacterium FS-01 (Karlidag et al., 2007). To complement
these data, Table 1 summarizes the nitrogen fixation ability
among Actinobacteria class and some representatives in
Thermoleophilia class. From the former, Microbacteriaceae
which is the largest family (62 genus) includes at least seven
nitrogen fixers:Agreia (Hrynkiewicz et al., 2019),Curtobacterium
(Vimal et al., 2019), Herbiconiux (Pérez et al., 2016), Labedella
(Hrynkiewicz et al., 2019), Lacisediminihabitans (Noh et al.,
2021), Leucobacter (Machado et al., 2020) and Rathayibacter
(Poonguzhali et al., 2006).

Producing Phytohormones Like Auxins,
Cytokinins, and Gibberellins
Phytohormones are involved in many physiological processes,
they include auxins, gibberellins, cytokinins, ethylene, and
abscisic acid, which are classified based on their function
and structure composition. They are mainly produced by
rhizospheric microorganisms, fungi, algae, and Actinobacteria
(Mulani et al., 2021).

The auxins are a group of indole ring compounds that
have the capacity to ameliorate plant growth by stimulating
seed germination, root initiation and elongation, and seedling
growth (El-Tarabily et al., 2008). Indole-3-Acetic Acid (IAA) is
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an auxin that is common and natural and is resulted from L-
tryptophan metabolism in microorganisms (Davies, 2004), as
we could observe from Table 1, IAA is widely produced by
Actinobacteria. Even, it was reported a tryptophan- independent
pathway operation inMicrococcus aloeverae (Ahmad et al., 2020).

Cytokinins are considered the second group of plant
hormones biosynthesized by microbes. They mediate signal
exchange from roots to shoots under environmental stresses.
They also induce cell division, cell enlargement, and increase root
surface area with the help of intense proliferation of adventitious
and lateral roots (Jackson, 1993). These hormones have been
reported for actinobacterial strains, but to a lesser extent than
auxins as it was reported for Leifsonia soli (Kang et al., 2014) and
Promicromonospora (Kang et al., 2012).

Gibberellins are plant hormones, that are considered
ubiquitous. They generate the diverse metabolic functions
necessary during plant growth steps such as seed germination,
stem elongation, sex expression, flowering, formation of fruits,
and senescence (Hedden, 1997). Gibberellins actinobacterial
species production was reported in several studies, as for
Streptomyces olivaceoviridis, S. rochei and S. rimosus cultures
which were excellent producers of gibberellins-like substances,
showing wheat plant growth promotion (Aldesuquy et al., 1998)
and for Arthrobacter globiformis (Katznelson et al., 1962).

Solubilizing Minerals Like Phosphorus
Phosphorous limitation could prevent plant growth, first because
phosphorous is vital and secondly, its bioavailability from the
soil is often limited (Feng et al., 2004). Phosphate Solubilizing
Bacteria (PSB) including Actinobacteria could increase the
availability of soluble phosphate by various mechanisms like
production of low molecular weight organic acid, along with
the production of hydroxyl and carboxyl groups, serving as a
chelating agent to chelate the cations (mainly Ca) bound to
phosphate converting them into soluble forms (Kpomblekou-a
and Tabatabai, 1994) or by enzymatic actions mostly phosphatase
(Solans et al., 2019) and phytase (Sharma et al., 2017), although,
it seems that the major action of Actinobacteria was enzymatic
(Nimaichand et al., 2016). Phosphate Solubilizing Actinobacteria
are often associated with the production of plant growth-
promoting regulators, increasing biological nitrogen fixation
effectiveness or enhancing the availability of other trace elements
such as iron, zinc, etc. (Ponmurugan et al., 2006). This statement
is correlated with the reported data in Table 1, mainly with IAA
production for important crops such wheat (Allali et al., 2019),
maize (Marín et al., 2013), rice (Susilowatia et al., 2015), and
Phaseus vulgaris (Karthik and Arulselvi, 2017).

Production of Siderophores
Iron is often a limiting living growth factor, microorganisms
developed siderophore production which relies on chelation
phenomena, with a high affinity for iron (Fe3+) chelation and
low molecular weight (500–1,000 Da) (Neilands, 1995). After
chelation, the available ionic form (Fe+2) is easily absorbed
by microorganisms (Kaszubiak, 1998). Microbial siderophores
may act as plant promoters by dispensing iron to plants and
as a biocontrol agent against phytopathogens by limiting its

availability and thus killing pathogens (Anilkumar et al., 2017).
In terms of siderophores production, Actinobacteria is one the
most important group (Franco-Correa and Chavarro-Anzola,
2016) as illustrated in Table 1, which reports many siderophore
productions by many species associated with grain crops, such
as for Brevibacterium associated to Triticum aestivum (Tara
and Saharan, 2017), Gordonia with Zea mays (Hong et al.,
2011), Amycolatopsis with chickpea and sorghum (Alekhya
and Gopalakrishnan, 2016), Kitasatospora with Trifolium
repens L. (Franco-Correa et al., 2010), Streptomyces with Rice
(Gopalakrishnan et al., 2013) and chickpea (Alekhya and
Gopalakrishnan, 2017), Nocardiopsis with wheat (Allali et al.,
2019), Thermobifida with Trifolium repens L. (Franco-Correa
et al., 2010) and Micrococcus with Vigna unguiculata (Dastager
et al., 2010). It has also been reported for halophyte plants as for
Brachybacterium associated to Salicornia brachiate (Gontia et al.,
2011), Micromonospora with Salicornia bigelovii (El-Tarabily
et al., 2019); for medicinal plants as for Frigoribacterium with
Nitraria sibirica (Zhou et al., 2017), Pseudarthrobacter with
Curcuma longa L. (Kharshandi et al., 2021), Psychromicrobium
with Arnebia euchroma (Jain et al., 2021), Ornithinimicrobium
with Panax ginseng (Huo et al., 2021), Pseudonocardia with
Camellia spp. (Borah and Thakur, 2020); for metal-accumulating
plants as for Agromyces with Salix caprea (Kuffner et al., 2008),
Nocardia and Actinomadura with Aquilaria crassna Pierre
ex Lec (Gong et al., 2018; Nimnoi et al., 2010) respectively,
Rhodococcus with Brassica juncea L. Czern (Belimov et al., 2005)
and Dermacoccus (Rangseekaew et al., 2021) and Arthrobacter
(Banerjee et al., 2010) associated to tomato.

1-Aminocyclopropane-1- Carboxylate
Deaminase (ACC Deaminase)
Ethylene, which are the aging hormones of plants (Patel et al.,
2018), are produced as a response to stress “stress ethylene,”
meaning the development of the plant is slowed, to respond to
this stress condition and promote plant growth, PGP bacteria
produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase
(Glick, 2005). This (ACC) deaminase delivered by PGPR,
will metabolize ACC into alpha-ketobutyrate, methionine, and
ammonia and thus will regulate ethylene production (Mulani
et al., 2021). Inoculation of ACC deaminase-producing bacteria
immediately enhances plant root elongation and promotes shoot
growth (Onofre-Lemus et al., 2009). It has been reported the
presence of ACC deaminase genes among Actinobacteria such as
Actinoplanes, Agreia, Arthrobacter, Austwickia, Brevibacterium,
Streptomyces, Amycolatopsis, Mycobacterium, Nocardioidaceae,
Rhodococcus, and others (Nascimento et al., 2014). Some
halotolerant Actinobacteria showed ACC deaminase activities
such as Corynebacterium variabile,Micrococcus yunnanensis, and
Arthrobacter nicotianae, promoting canola plant growth under
salt stress conditions (Siddikee et al., 2010).

Production of Hydrolytic Enzymes
Actinobacteria, as a dominant member of the saprophytic
community, have been known to secrete a wide array of
hydrolytic enzymes in natural conditions (Jog et al., 2016).
Actinobacteria are considered as primary decomposers of dead
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organic matter, especially lignocellulosic biomass (Větrovsk et al.,
2014). They show a remarkable ability to produce cellulase,
xylanase, lignin peroxidase, and chitinase enzyme cocktail in
addition to protease, lipase, pectinase, keratinase, amylase,
invertase, and phytase that can trigger as a first step plant biomass
degradation, thus processing it into simpler form for a second
decomposition step initiated by secondary decomposers (Jog
et al., 2016). Finally, complex nutrients are transformed into the
simplest mineral forms, which act as natural fertilizers promoting
plant health (Jog et al., 2012). These hydrolytic enzymes not only
play a role in biomass turnover but also the biocontrol process, as
described below.

Induction of Systemic Resistance
Induction of Systemic Resistance (ISR) is activated by non-
pathogenic plant-associated microorganisms. Localized infection
or treatment with microbial components, products, or a
variety of structurally unrelated organic compounds and
inorganic compounds caused systemic resistance (ISR) to
infectious diseases and herbivorous insects (Ghiasian, 2020).
Plant hormones Jasmonic acid (JA) and ethylene provide many
contributions to the regulation of the group of inter-related
signaling pathways required in ISR induction (Pieterse et al.,
1998). Actinobacteria, reported as wheat endophyte, can induce
defense pathways in Arabidopsis (Conn et al., 2008). Another
report (Zhao et al., 2012) showed that culture filtrate from
Streptomyces bikiniensis HD-087 was able to induce systemic
resistance in cucumber against Fusarium wilt, caused by F.
oxysporum f.sp. cucumerinum. Furthermore, Micromonospora
spp. isolated from alfalfa nodules induced ISR through the
jasmonate pathway (Martínez-Hidalgo et al., 2015). It seems that
Actinobacteria are detected by the plant as “minor” pathogens
because they do not have pathogenic determinant, as some
endophytic actinobacterial strains possess the faculty to activate
the plant defense genes at a low level in the absence of a pathogen
(Coombs and Franco, 2003).

INDIRECT ACTION

Biocontrol
Biological control is the use of living organisms to modify the
agricultural ecosystem to control a crop disease or prevent the
establishment of a pest (Dowling and O’Gara, 1994). Bacteria
that are involved in protecting plants are often referred to as
biocontrol agents (Beattie, 2007).

Actinobacteria are widely recognized for their potential in
biocontrol (El-Tarabily and Sivasithamparam, 2006; Hasegawa
et al., 2006) because they are important producers of bioactive
compounds (Qin et al., 2011). Over the past 50 years, there have
been many studies on the mechanisms by which Actinobacteria
might inhibit pathogens in soil, including antibiosis, nutrient
competition, production of degradative enzymes (Subramanian
et al., 2016), nitrous oxide production (Salwan and Sharma,
2020), and quorum quenching (Vesuna and Nerurkar, 2020).

Antibiosis is defined by the secretion of molecules that kill
or reduce the growth of the target pathogen, this could be
mediated by the secretion of specific or non-specific metabolites

of microbial origin, by lytic agents, enzymes, volatile compounds,
or other toxic substances (Fravel, 1988). Antibiotic-mediated
inhibition of pathogens is generally the primary focus in
efforts to suppress plant diseases. However, the diversity of
secondary metabolites produced by Streptomyces and other
Non- Streptomyces species foreshadows an interesting ability
for suppressing fungal, bacterial, oomycete, and nematode
pathogens (Barka et al., 2016).

Antibiotics are classified into two groups: volatile and non-
volatile antibiotics. Volatile antibiotic substances like HCN,
ammonia, aldehyde, alcohol, acetone, methane, 2-ethylethyl-1–
hexanol, dimethyl sulfide, thioacetate, y-butyrolactones (Cellini
et al., 2021) whereas phenazine, phenazine-1-carboxylic acid
2 -hydroxyphenazine, and pyrrolnitrin are some of the
non-volatile antibiotic substances (Zhang et al., 2020). As
it was reported further, Actinobacteria are widely known
for their ability to produce antibiotics that allow them
to inhibit pathogens in general and plant pathogens in
particular (Berdy, 2005), especially Streptomyces genus, which
have been the major producer for bioactive metabolites
(Alexander, 1978) exhibiting an immense biocontrol action
against a range of phytopathogens (Wang et al., 2013). They
account for nearly 60% of the production of agriculturally
important antibiotics (Ilic et al., 2007). But Non-Streptomyces
antibiotic producers shouldn’t be neglected as there are
many reports about their potential antimicrobial production
as for Actinoplanes sp. producing Xanthone (Cooper et al.,
1992); Actinomadura madurae producing Simaomicin (Maiese
et al., 1990); Micromonospora spp. producing Spartanamicins
(Nair et al., 1992); Saccharothrix spp. producing Formamicin
(Igarashi et al., 1997) and Streptosporangium albidum producing
Aculeximycin (Ikemoto et al., 1983).

Among volatile compounds considered as antibiosis
molecules, Hydrogen Cyanide Nitrogen HCN plays a role
in biocontrol, by sequestering iron, thus, competing with
phytopathogens (Gu et al., 2020) along with phosphate free
for plant assimilation (Rijavec and Lapanje, 2016; Backer et al.,
2018) and by inhibiting terminal “cytochrome c oxidase” in the
respiratory chain and binding to metalloenzymes which confers
it the property of suppressing phytopathogens (Gu et al., 2020).
This metabolite production was reported for Streptomyces spp.,
Microbispora spp., Actinomadura spp., Micromonospora spp.,
Nocardia spp. (Dalal and Kulkarni, 2014), for many Streptomyces
strains (Alekhya and Gopalakrishnan, 2017; Vijayabharathi et al.,
2018) and Nocardiopsis (Allali et al., 2019). Another volatile
compound, nitric oxide produced by Streptomyces has been
suggested to activate plant defense against pathogen attack
(Vaishnav et al., 2018).

In addition to producing antibiotics against a variety of
pathogenic diseases in plants, hydrolytic enzymes, which are
produced by antagonistic microbes, are capable of degrading
fungal and bacterial cell walls, cell membranes, cell membrane
proteins, and extracellular virulence factors which have been
implicated in the biocontrol of plant diseases (Pal and Gardener,
2006). These hydrolytic enzymes include chitinase, cellulase,
glucanase, protease, and phospholipase (Palaniyandi et al., 2013).
Streptomyces are largely predominant in the suppression of plant
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disease by the production of chitinase, glucanase (Lee et al., 2012);
and protease (Fróes et al., 2012); on another hand, Actinoplanes
campanulatus was reported as β-glucanase producer (El-Tarabily
et al., 2009); Micromonospora carbonacea produced chitinase;
β-1,3-glucanase (El-Tarabily et al., 2000) and cellulase (El-
Tarabily et al., 1996) and finally, Amycolatopsis secreted protease,
glucanase and pectinase (Alekhya and Gopalakrishnan, 2016).

Quorum sensing (QS) could be defined as bacterial population
density regulation and the regulation of their gene expression
accordingly (Fuqua et al., 1994). On another hand, quorum
quenching covers all processes implicated in (QS) disturbance
(Dong and Zhang, 2005), this phenomenon opens many
applications inmedicine, aquaculture, crop production, and anti-
biofouling (Grandclément et al., 2016). Over the last decade, a
total of six Actinobacterialgenera: Arthrobacter (Flagan et al.,
2003), Microbacterium (Wang et al., 2009), Mycobacterium
(Chen and Xie, 2011), Nocardioid-es (Yoon et al., 2006),
Rhodococcus (Latour et al., 2013), and Streptomyces (Ooka et al.,
2013) have been reported for their quorum quenching activity.

Actinobacteria as Helper Bacteria
The most important symbiotic plant microorganisms namely
mycoryzal, actinorhizal, and rhizobial symbiosis establishment
are impacted by many biotic and abiotic factors. Several
reports have shown the improvement of legume symbiosis and
mycorrhizal symbiosis in dual inoculations with diverse PGPR
(Barea et al., 2005); however, there is less information on
this subject with Actinobacteria. There is a rising belief that
Helper Bacteria could promote these symbioses. Rhodococcus,
Streptomyces, and Arthrobacter are considered a Mycorrhizal
Helper (Frey-Klett et al., 2007). Moreover, Schrey and Tarkka
(2008) showed that the Streptomyces genus promotes the
formation of symbioses between plant roots and microbes,
and this is in part due to their direct positive influence
on the symbiotic partner, expressed as, e.g., promotion of
hyphal elongation of symbiotic fungi; furthermore, Franco-
Correa et al. (2010) showed that co-inoculation of Streptomyces
spp. MCR9 and MCR24 and Glomus mosseae produced synergic
benefits on plant growth and P acquisition. The selected
actinobacterial strains improved Arbuscular Mycorrhiza (AM)
formation in clover plants. Concerning actinorhizal symbiosis,
it was observed that saprophytic strains namely Streptomyces
MM40, Actinoplanes ME3, and Micromonospora MM18 acted
as helper bacteria (Solans, 2007). These actinobacterial strains
clearly produced phytohormones (Solans et al., 2011) and
had enzymatic activity for cellulose, hemicellulose, pectin,
and lignocellulose (Solans and Vobis, 2003), but the real
responsible metabolites are still unknown. The same saprophytic
Actinobacteria used for actinorhizal symbiosis co-inoculation
were co-inoculated to Medicago sativa–Sinorhizobium meliloti
symbiosis (Solans, 2007). In these assays, the plants co-inoculated
with Actinobacteria and rhizobium showed an increase in
nodulation and plant growth compared with plants with single
inoculations. In addition, Lotus tenuis plants co-inoculated
with Mesorhizobium loti and saprophytic actinobacterial strains
(MM40, ME3, and MM18) showed a promoting effect on
nodulation and biomass. Another study reported that the

combination of Streptomyces kanamyceticus and Bradyrhizobium
japonicum increased nodulation and shoot nitrogen composition
of soybeans by up to 55 and 41%, respectively (Gregor et al.,
2003). Even if there is still scarce information on the potential of
Actinobacteria as Symbiosis Helper, but the studies cited above
could encourage this domain of investigation for improving
symbiosis under diverse conditions.

COMMERCIAL FORMULATION OF
ACTINOBACTERIAL BIOINOCULANTS

From the reviewed information discussed above, it is clear that
Actinobacteria possess some interesting characteristics, such
as ubiquity, rhizosphere colonization ability (filamentous
structure), competitiveness, the capacity to resist harsh
conditions, in addition to high strength spores that allow
them to survive for prolonged periods in soil and in storage
containers in addition to high PGP activity and nutrient
cycling capability (Jog et al., 2016). Actinobacteria have proven
their value as PGPR and biocontrol agent, but few available
commercial actinobacterial products are disposable. Among
these commercial products, we could cite an active ingredient,
Strptomyces lydicus WYEC108, which gave rise to multiple
commercial products: “Actinovate R© AG” (Elliott et al., 2009),
“Actinovate R© SP” and “Micro108 R© soluble” for biocontrol;
“Micro108 R© Seed” and “Inoculant Action Iron R©” (produced by
Naturalindustries) for biocontrol and plant growth promotion.
Streptomyces violaceusniger strain YCED9 microbial agent
was named “Thatch Control” for biocontrol (produced by
Naturalindustries); S. griseoviridis strain K61 “Mycostop R©”
for biocontrol (Suleman et al., 2002); Streptomyces saraceticus
KH400 “YAN TEN Streptomyces saraceticus” for biocontrol
(produced by Yanten). Metabolite Polyoxin D (produced by
Streptomyces cacoi var. asoensis) named AFFIRMWDG (produced
by Chlearychemical) and “PH-D R© Fungicide” (produced by
Arista-na) both used as a fungicide for turfgrass fungi. Some
field trials tested the innocuity of actinobacterial bioinoculation
as it was done for “Mycostop R©,” which was used for the control
of Fusarium wilt of carnation and root rot disease of cucumber,
and has been used in greenhouse production to protect flowers
from pathogens (White et al., 1990). Likewise, Actinovate R©, a
biocontrol formulation of Streptomyces lydicus registered from
AgBio in the United States of America, has been suggested
for a wide range of environments ranging from greenhouses
to field conditions, similarly, for Streptomyces lydicus WYEC
108 (MicroPlus R©), which has been reported to possess disease
suppression against powdery mildew and several root decay
fungi (Solanki et al., 2016).

In general terms, “innovation” should include academic
research, governmental institutions, industry, and civil society.
Overall scientists have made an effort to develop eco-friendly
and safe living organisms such as bio-intrant for ameliorating
crop yield and protecting plants from pathogens, but these
efforts will be infructuous if industry is not interested.
Secondly, if governments do not establish legislation supervising
the biotechnological application of PGPBs and facilitating
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interaction between “university” and “industry” (for example
spin-off projects from a university or research and development
department in industry) and finally if society in general and
farmers, in particular, do not adhere to the use of bioinoculation
(Etzkowitz and Zhou, 2017).

This assessment being established, much effort should be
made before commercializing Actinobacteria or actinobacterial
products for the development of sustainable agricultural
solutions, beyond laboratory trials, including field assays to
evaluate bioinoculant facing plant species, soil nature, and
environmental conditions, which are unique for each ecosystem.
It is crucial to evaluate bio-input safety and prevent the spread
of antibioresistance.

CONCLUSION AND PERSPECTIVES

There are important fields of investigation in developing the use
of PGPB for ameliorating plant growth, alleviating plants stress,
and enhancing plant resistance to pests. Among these PGPB,
Actinobacteria (PGPA) are increasingly studied (Nimaichand
et al., 2016). Sustainable agriculture is well integrated in the
roadmap of industrialized and developing countries. The former
to minimize negative impacts on atmospheric greenhouse gas
(GHG) concentrations and water quality caused by N and P
losses following high fertilization rates (Haygarth et al., 2013)
along with minimizing pesticide impact on environmental
and human health (Bernardes et al., 2015). The latter, because
they practice low-input agriculture where fertilizers, pesticides,
and agro-technical machinery are not widely available (too
expensive) and where the application of putative inexpensive
bioinoculants is a great challenge (Bashan, 1998). The reviewed
literature cited above clearly demonstrates the high potential
of Actinobacteria in ameliorating plant growth, whether
acting directly or indirectly, and/or as fighting tools against
phytopathogens. Furthermore, much valuable research has
highlighted the beneficial effects of Actinobacteria PGPB
actions on crop yield outlining that these Actinobacterial
strains could be candidates as microbial fertilizers. Future
studies will deal with the next steps in terms of exploring the
effect of these microorganisms on plants under greenhouse
conditions (semi-controlled conditions), and then under
field conditions (different soil characteristics, environmental

conditions, agricultural practices. . . ), and primarily, which
formulations of these bioinoculants should be selected: liquid,
organic, inorganic, polymeric or encapsulated. This “secret
art” formulation will ensure compatibility with routine field
practices, should be easy to use, environment-friendly, and
have long storage quality (Bashan et al., 2014). In addition to
these crucial scientific and bioprocessing stages, registration
and regulatory approval of the product should be initiated once
the bioinoculant proved its efficacy (Backer et al., 2018). It is
obvious that the gap between in vitro trials and marketable final
products necessitates investment, time, and multidisciplinary
skills (Bashan et al., 2014). North America is considered a
leader for bioinoculant production in terms of generating
revenue, followed by Europe, Asia-Pacific, South America,

and finally to a lesser extent Africa (Soumare et al., 2020).
Based on the fact that the global biofertilizer market will reach
US$1.66 billion by 2022 (Timmusk et al., 2017), government and
industries should be confident of a return on any investment.
Overall, the major applications of bioinoculation have used
BNF bacteria (especially rhizobia of about 79%), followed by
phosphate solubilizing bacteria (∼15%) while other inoculants
including mycorrhizal products make up the remaining
percentage (Research, 2014). Based on the Actinobacteria
PGP traits described in this review, which are in addition to
their competitiveness, ubiquity, and tremendous potential for
metabolite production, this large taxonomic group worth a
special attention even if it is not considered as a best candidate
presently. Ultimately, it should play a key role in formulating
multi-strain inoculants with synergistic actions for promoting
sustainable agriculture.
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