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Pucciniales are fungal pathogens of plants that cause devastating rust diseases in
agriculture. Chemically-synthesized pesticides help farmers to control rust epidemics,
but governing bodies aim at limiting their use over the next decade. Defense peptides with
antimicrobial activities may help to innovate a next generation of phytosanitary products
for sustainable crop protection. This review comprehensively inventories the proteins or
peptides exhibiting a biochemically-demonstrated antifungal activity toward Pucciniales
(i.e., anti-rust proteins or peptides; hereafter ‘ARPs’), and also analyses the bioassays
used to characterize them. In total, the review scrutinizes sixteen publications, which
collectively report 35 ARPs. These studies used either in vitro or in planta bioassays, or a
combination of both, to characterize ARPs; mostly by evaluating their ability to inhibit the
spore germination process in vitro or to inhibit fungal growth and rust disease
development in planta. Also, the manuscript shows that almost no mode of action
against rust fungi was elucidated, although some might be inferred from studies
performed on other fungi. This short review may serve as a knowledge and
methodological basis to inform future studies addressing ARPs.

Keywords: interaction, defense protein, recombinant protein, mechanism, antifungal
RUST FUNGI IMPOSE A HEAVY PESTICIDE TOLL
ON AGRICULTURE

Rust fungi (Pucciniales) are fast-evolving plant pathogens that can infect key crops and threaten
global food security (Aime et al., 2018; Figueroa et al., 2020; Duplessis et al., 2021). Farmers notably
rely on the use of chemically-synthesized fungicides to control rust epidemics (Oliver and Hewitt,
2014; Cook et al., 2021). Due to the suspected or proven toxicity of those products, governing bodies
aim at rapidly limiting their use in agriculture. For instance, the European Commission “Farm to
Fork” (F2F) strategy aims at reducing by 50% the use of chemically-synthesized pesticides by 2030
(European Commission, 2020). Therefore, modern agriculture urgently seeks alternatives to
chemically-synthesized pesticides. In this context, research and innovation actors aim at
developing new tools and solutions for sustainable crop protection, notably by exploiting both
our knowledge of the plant immune system and naturally-occurring antimicrobial molecules (Dangl
et al., 2013; Moscou and van Esse, 2017; Schwinges et al., 2019; Chen et al., 2021).
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DEFENSE PROTEINS AND PEPTIDES ARE
EFFECTIVE MICROBE KILLERS

Some proteins or peptides can directly kill microbes; mostly
thank to their cationic property which leads to an interaction
with negatively charged membranes of microbes (Tam et al.,
2015). For instance, plants possess large protein families referred
to as ‘pathogenesis-related’ (PR), whose members exhibit
consistent antimicrobial activities (Van Loon and Van Strien,
1999; Van Loon et al., 2006). Such proteins and peptides may
provide innovators with molecular chassis to develop active
substances for the next generation of biopharmaceuticals and
phytosanitary products (Haney et al., 2019). In agriculture,
optimized and vectorized anti-microbial proteins or peptides
may assist the development of biological pesticides (aka
biopesticides) (Montesinos et al., 2012; Schwinges et al., 2019;
Li et al., 2021). Such amino acid-based biopesticides would have
the advantage of being residue-free and less likely to display
harmful effects towards consumers and ecosystems (Kumar et al.,
2021). In such a context, we need to better understand the
diversity of defense proteins and peptides and how they function.

This s tudy aimed at bui lding a knowledge and
methodological basis to assist future studies addressing
proteins or peptides that exhibit an antifungal activity against
rust fungi (i.e., anti-rust peptides or proteins; hereafter ARPs).
To this end, we first performed a systematic analysis of the
literature to build a comprehensive list of ARPs. Importantly,
this analysis considered only the studies that used the exogenous
application of a purified ARP on a rust fungus in vitro or in
planta to evaluate its anti-rust activity (i.e., direct anti-rust
evidence); it thus disregarded the studies that used non-
biochemical approaches (e.g., genetic approaches using protein
over-expression in planta). Then, we analyzed the bioassays used
to characterize ARPs, in order to build a portfolio of methods
and approaches that could be used in future studies, and
surveyed the limited information available about the ARP
modes of action. The review ends by discussing key peptide
features that should be considered in future studies.
A CATALOG OF 35 ARPS WITH
NOTICEABLE PROPERTIES

To identify ARPs, we performed a systematic literature survey on
the Web of Science by performing searches with combinations of
key words such as “exogenous peptide”, “antimicrobial activity”,
“Pucciniales”, “rust”, or “inhibition germination”. This survey
identified sixteen papers, published between 1996 and 2021
(Table 1). Collectively, these papers explicitly reported 35
different ARPs with an antimicrobial activity towards eleven
Pucciniales species (Table 1; Figure 1A). Three rust species
served as models in more than three papers: the Asian soybean
rust fungus Phakopsora pachyrhizi (Phakosporaceae; five papers,
twelve ARPs reported) (Fang et al., 2010; Vasconcelos et al.,
2011; Brand et al., 2012; Lacerda et al., 2016; Schwinges et al.,
2019), the white pine blister rust fungus Cronartium ribicola
Frontiers in Agronomy | www.frontiersin.org 2
(Cronartiaceae; three papers; six ARPs reported) (Jacobi et al.,
2000; Zamany et al., 2011; Liu et al., 2021) and the wheat leaf rust
fungus Puccinia triticina (Pucciniaceae; three papers; seven ARPs
reported) (Barna et al., 2008; Alfred et al., 2013; Wang et al.,
2020) (Figure 1A). The eight remaining rust species were
addressed in less than two papers, and belong either to the
Pucciniaceae or to the Melampsoraceae families (Corrêa et al.,
1996; Mathivanan et al., 1998; Rauscher et al., 1999; Dracatos
et al., 2014; Petre et al., 2016).

In total, 18 ARPs originate from plants, 10 derive from
animals or fungi, and 7 are synthetic peptides (Table 1).
Overall, the 35 ARPs grouped into two categories: small and
large ARPs; comprising less or more than 50 amino acids,
respectively (Figure 1B). ARPs globally display variable
predicted isoelectric points, ranging from 4.95 to 12.6. The
nine large ARPs carry an N-terminal signal peptide for
secretion, and all but two belong to a well-defined plant
pathogenesis related (PR) protein family (Van Loon and Van
Strien, 1999). Small ARPs were obtained by chemical synthesis
(performed in house or by a company to which the peptide was
purchased), and large ARPs were obtained via the
chromatographic purification of protein extracts from fungal,
yeast, or bacterial cultures (Figure 1B).

Among the 35 ARPs, some present noticeable properties or
activities that could be exploited for crop protection. For
instance, RISP (Rust Induced Secreted Protein), a large ARP
from poplar, showed a targeted activity that inhibits Pucciniales
growth without affecting the growth of other fungi and bacteria
(Petre et al., 2016). RISP could thus represent an active
compound that controls rust epidemics without altering
beneficial microbe communities, which may help achieve
sustainable, integrated crop protection (Hacquard et al., 2017).
Also, some ARPs display high stability that may be critical to
withstand harsh field conditions (such as UV exposure, light and
temperature variations, rain washing, and interaction with
microflora and microbiota). Indeed, four ARPs are
thermostable (PuroA; PuroB, RISP and chitinase EC 3.2.1.14);
meaning that they remain stable and functional despite being
exposed to high temperatures (Mathivanan et al., 1998; Alfred
et al., 2013; Petre et al., 2016). Furthermore, some ARPs could
effectively protect leaves from rust infection for weeks by stably
remaining on the leaf surface (Petre et al., 2016; Schwinges
et al., 2019).
ARP STUDIES COMBINE IN VITRO AND IN
PLANTA APPROACHES

To better understand the approaches used to evaluate ARP
properties and activities, we analyzed the material and method
sections of the sixteen studies reported in the Table 1. The
studies used two main approaches: in vitro or in planta (Table 1,
Figure 1C). In vitro approaches mostly evaluate the ability of
purified peptides to inhibit the spore germination process, as the
obligate biotrophic nature of most Pucciniales prevents the use
of in vitro growth inhibition assays commonly used with
July 2022 | Volume 4 | Article 966211
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TABLE 1 | An overview of plant anti-rust peptides (ARPs).

References Number of ARP reported
(ARP IDs)

ARPs belong
to plant
pathogenesis-
related (PR)
gene families

ARP originate
from plants

Targeted rust
species (rust
disease)

Purified ARP
obtention method

In vitro
approach
used [ARP
concentration
range]

In planta
approach
used [ARP
concentration
range]

Alfred et al.,
2013

4 (PuroA*; Pina-R39G;
PuroB*; GSP-5D)

no yes (wheat;
Triticum
aestivum)

Puccinia striiformis f.
sp. tritici (wheat yellow
rust or wheat stripe
rust); Puccinia triticina
(wheat leaf rust)

chemical (solid-phase
synthesis)

yes (1, 3)
[0.01-1 mg/mL]

yes (4, 6)
[0.01-1 mg/mL]

Barna et al.,
2008

1 (PAF; Penicillium antifungal
protein)

no no (fungus
Penicillium
chrysogenum)

Puccinia triticina
(wheat leaf rust)

cellular
(chromatographic
purification of P.
chrysogenum culture
extract)

yes (1; 2)
[0.001-0.1 mg/
mL]

yes (4, 6)
[0.1-1 mg/mL]

Brand et al.,
2012

7 (IAPs: P61458; A5LDU0;
Gm0025x0067;
Gm0026x00785; A3KLW0;
Q7YRI0; Q9XEY7)

no yes (soybean;
Glycine max); no
(various animals
species)

Phakopsora pachyrhizi
(asian soybean rust)

chemical (solid-phase
synthesis) or
commercial
(purchased peptides)

no yes (5)
[0.001-1 mg/
mL]

Corrêa et al.,
1996

5 (RGD; GRGDGSPK;
RGDSPC; RGDS; GRGD)

no no (synthetic
peptides)

Uromyces
appendiculatus (bean
rust)

NA yes (1; 2; 3)
[0.01-2 mM]

no

Dracatos
et al., 2014

2 (NaD1 & NaD2; Class II & I
defensins, respectively)

yes (PR-12) yes (tobacco;
Nicotiana alata)

Puccinia coronata f.
sp. avenae (crown
rust); Puccinia sorghi
(maize common rust)

cellular
(chromatographic
purification following
heterologous
expression in the yeast
Pichia pastoris)

yes (1; 2; 3)
[0.0001-0.1
mg/mL]

yes (4)
[0.1-1 mg/mL]

Fang et al.,
2010

2 (Sp2 & Sp39; random 12-
mer peptides)

no yes (soybean;
Glycine max)

Phakopsora pachyrhizi
(asian soybean rust)

viral (phage-display) yes (1; 2)
[0.5- 1.5×10¹³
virions/mL]

yes (5)
[1.5×10¹³
virions/mL]

Jacobi et al.,
2000

4 (Cecropin B; (Ala8,13,18)-
magainin II amide; D2A21 &
D4E1 synthetic membrane
interactive peptides)

no no (animal or
synthetic
peptides)

Melampsora medusae
(conifer-aspen leaf
rust); Cronartium
ribicola (white pine
blister rust)

commercial
(purchased peptides)

yes (1)
[0.0001-0.1
mg/mL]

no

Lacerda
et al., 2016

1 (Drr230a; defensin) yes (PR-12) yes (pea; Pisum
sativum)

Phakopsora pachyrhizi
(asian soybean rust)

cellular
(chromatographic
purification following
heterologous
expression in the yeast
Pichia pastoris)

yes (1)
[1-10 mg/mL]

yes (5)
[1-10 mg/mL]

Liu et al.,
2021

1 (PmPR10-3.1; Pinus
monticola pathogenesis-
related protein 10-3.1)

yes (PR-10) yes (white pine;
Pinus monticola)

Cronartium ribicola
(white pine blister rust)

cellular
(chromatographic
purification following
heterologous
expression in the
bacteria Escherichia
coli)

yes (2)
[0.1-1 mg/mL]

no

Mathivanan
et al., 1998

1 (EC 3.2.1.14; chitinase*) no no (fungus
Fusarium
chlamydosporum)

Puccinia arachidis
(peanut rust)

cellular
(chromatographic
purification from P.
chrysogenum culture
extract)

yes (1)
[0.1-1 mg/mL]

no

Petre et al.,
2016

1 (RISP*; rust-induced
secreted protein)

no yes (poplar;
Populus
trichocarpa)

Melampsora larici-
populina (poplar leaf
rust)

cellular
(chromatographic
purification following
heterologous
expression in the
bacteria Escherichia
coli)

yes (1; 2)
[0.1-1 mg/mL]

yes (5; 6)
[0.1-1 mg/mL]

Rauscher
et al., 1999

1 (Pr-1a; pathogenesis-
related 1a)

yes (PR-1) yes (broad bean;
Vicia faba)

Uromyces fabae
(broad bean rust)

cellular
(chromatographic

yes (1)
(unknown)

no

(Continued)
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cultivable fungi. In planta approaches evaluate the ability of
peptide treatments to reduce the growth of the fungus on the
host plant (most often on leaves). Amongst the sixteen
publications, eight used only in vitro approaches, one used
only an in-planta approach, and seven combined both (Table 1).

Themost common in vitro assay (used in eleven studies) assesses
the ability of a peptide to inhibit spore germination (‘inhibition of
germination assay’). In such an assay, the experimenter classically
spreads spores onto an agar medium with peptides at a
concentration usually ranging from 0.01 to 0.1 mg/mL, and
evaluates afterward the germination rate. In addition, ten studies
used in vitro assays to evaluate the inhibition of the elongation of
germ tubes or hyphae, the development of infection structures (e.g.,
appressoria), or the altered morphology of fungal structures. In
planta assays assess the ability of a peptide to inhibit fungal growth
on a leaf (‘infection assay’). In such an assay, the experimenter
classically inoculates the rust fungus onto its host plant (or on
detached leaves or leaf discs) before, during, or after treatment with
purified peptides at a concentration usually ranging from 0.1 to 1
mg/mL, and evaluates afterward the appearance of disease
Frontiers in Agronomy | www.frontiersin.org 4
symptoms by using a visual scoring system. Such scoring
classically evaluates uredinia size and distribution, necrosis, and
chlorosis depending on each pathosystem (Roelfs and Martens,
1988; Godoy et al., 2006). Noteworthy, for both in vitro and in
planta approaches, two papers used electron microscopy to assess
the alteration of fungal cellular structures (Rauscher et al., 1999;
Lacerda et al., 2016). Such an approach reveals in detail the
structural outcome of ARP treatment, but is arduous and costly
to implement, explaining its seldom use.
ARP MODES OF ACTIONS REMAIN
MOSTLY UNKNOWN

To better understand how ARPs function, we screened the
literature to identify reported modes of actions. This screen
identified only two publications that reported information
pertaining to the mode of action. Firstly, Fang and colleagues
(2010) reported that Sp2 and Sp39 bind to a protein with an
TABLE 1 | Continued

References Number of ARP reported
(ARP IDs)

ARPs belong
to plant
pathogenesis-
related (PR)
gene families

ARP originate
from plants

Targeted rust
species (rust
disease)

Purified ARP
obtention method

In vitro
approach
used [ARP
concentration
range]

In planta
approach
used [ARP
concentration
range]

purification from bean
leaf extracts)

Schwinges
et al., 2019

1 (DS01*; dermaseptin 01) no no (frog
Phyllomedusa
genus)

Phakopsora pachyrhizi
(asian soybean rust)

cellular
(chromatographic
purification following
heterologous
expression in the
bacteria Escherichia
coli)

yes (3)
[0.01-0.1 mg/
mL]

yes (4)
[0.1-1 mg/mL]

Vasconcelos
et al., 2011

1 (XIP; chitinase-like
xylanase inhibitor protein)

yes (PR-8) yes (coffee;
Coffea arabica)

Phakopsora pachyrhizi
(asian soybean rust)

cellular
(chromatographic
purification following
heterologous
expression in the yeast
Pichia pastoris)

yes (1)
[1-10 mg/mL]

no

Wang et al.,
2020

2 (TaTLP1 & TaPR1;
Triticum aestivum thaumatin-
like protein 1 & Triticum
aestivum pathogenesis-
related protein 1,
respectively)

yes (PR-1 &
PR-5)

yes (wheat;
Triticum
aestivum)

Puccinia triticina
(wheat leaf rust)

cellular
(chromatographic
purification following
heterologous
expression in the
bacteria Escherichia
coli)

yes (2)
[1-10 mg/mL]

no

Zamany
et al., 2011

1 (Pm-AMP1; Pinus
monticola antimicrobial
peptide 1)

no yes (white pine;
Pinus monticola)

Cronartium ribicola
(white pine blister rust)

cellular
(chromatographic
purification following
heterologous
expression in the
bacteria Escherichia
coli)

yes (2; 3)
[0.01-0.1 mg/
mL]

no
July
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(*) ARP with specific properties, which are detailed in the main text.
(1) the study evaluated the ARP-mediated inhibition of spore germination by calculating germination rates.
(2) the study evaluated ARP-mediated inhibition of the growth or differentiation of germ tube or hyphae assay by calculating elongation or branching reduction.
(3) the study measured ARP-mediated alteration of fungal structure morphology or infection structure development by microscopy.
(4) the study performed ARP treatment prior to rust inoculation.
(5) the study performed ARP treatment concomitant to rust inoculation.
(6) the study performed ARP treatment after rust inoculation.
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apparent size of 20 kDa from germinated urediniospores of P.
pachyrhizi; though the paper did not evaluate the biological
relevance of that observation (Fang et al., 2010). Secondly,
Mathivanan and colleagues (1998) used light microscopy to
show that treatment with a chitinase altered the cell wall
appearance of P. arachidis urediniospores (Mathivanan et al.,
1998). The purified peptide also displayed a chitinase activity,
Frontiers in Agronomy | www.frontiersin.org 5
suggesting that it exhibits its anti-rust activity by degrading
polysaccharides on the spore surface. For all the other ARPs,
the literature reports no known modes of action against rust
fungi. However, for some ARPs, a mode of action was proposed,
or could be inferred, based on assays performed with other
phytopathogenic fungi that are not Pucciniales. For instance,
NaD1 binds to the cell wall of Fusarium oxysporum hyphae and
B

C

A

FIGURE 1 | Overview of known anti-rust peptides (ARPs) and bioassays. (A) Sunburst phylogenetic tree of Pucciniales taxa and species used to evaluate ARPs
activities. The inner and outer circles indicate Pucciniales families and species, respectively. The genus names are Phakopsora, Cronartium, Melampsora, Puccinia, or
Uromyces. (B) Classification of the ARP according to their length in amino acid (aa: linear scale). Predicted isoelectric points (pI: color gradient) and known signal
peptides for secretion (hatched area) are indicated. ARPs were i) purified by chromatographic purification from proteinaceous cellular extracts, ii) chemically
synthesized or purchased (*), or iii) phage-displayed (**). Amino acid sequences for EC 3.2.1.14 and Pr-1a were not indicated in the original publications. (C) For in
vitro bioassays, spores are treated with 0.01 to 0.1 mg/mL purified ARP and spread onto water agar media, and the percentage of germination or the germling
morphology and development is assessed 6 to 8 hours post inoculation (hpi) (see Supplementary Figure S1 for more details). For in planta bioassays, host plant
(whole plant, detached leaf, or leaf disc) are treated with 0.1 to 1 mg/mL purified ARP prior to inoculation (dotted line), concomitantly with inoculation (solid line), or
after inoculation (dashed line). Disease symptoms are assessed using a visual scoring system 1 to 3 weeks post inoculation (wpi). Typically, the scoring system
assessed uredinia size, uredinia distribution, necrosis, or chlorosis.
July 2022 | Volume 4 | Article 966211
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permeabilizes the plasma membrane (Van Der Weerden et al.,
2008; Van Der Weerden et al., 2010) (Supplementary Figure
S1). To conclude, ARP modes of action remain vastly unknown,
though knowledge gained via other fungi may be relevant.
CONCLUSION AND OUTLOOK: KEY
THINGS TO CONSIDER FOR FUTURE
ARP STUDIES

Overall, this short review inventoried sixteen papers that collectively
reported 35 anti-rust peptides (ARPs) targeting in total 11 different
rust species. It showed that the studies mainly used in vitro assays,
sometimes complemented by in planta assays, to evaluate ARP
properties and activities. The study also highlighted a clear
knowledge gap regarding ARP modes of actions, since no explicit
mode of action against rust fungi has been reported so far.

Defense proteins and peptides are growingly viewed as new active
substances that can be leveraged to implement a next generation of
sustainable biopesticides. In the case of ARPs, the research
community crucially needs to better understand their mode of
action in order to reach technology readiness levels aligned with
phytosanitary implementation. Future studies could leverage the
methods and technologies used in model fungi to decipher ARP
modes of actions.Notably, assays that usefluorescent labelsmayhelp
trackARPs and identify their binding sites on spores. Also, structure-
function analyses that use truncated or site-directed mutagenized
ARPs may help identify functional domains and residues important
for anti-rust activity, stability, and specificity.
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Supplementary Figure 1 | Detailed effects of anti-rust peptides (ARPs). Effects of
ARPs are shown on an urediniospore that germinates by differentiating a germ tube,
an appressorium, and then infection hyphae. The rectangular insert on the bottom
left indicates the proposed modes of actions discussed in the main text. (a) delay of
Cronartium ribicola urediniospore germination; (b) particularly on chitin of nascent
germ tube walls; (c) only against Puccinia coronata f. sp avenae; (d) only against
Puccinia sorghi; (e) binding to a protein from Phakopsora pachyrhizi without a
defined mode of action.
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