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A bioassay to determine Poa
annua responses to indaziflam

Benjamin D. Pritchard1, Jose J. Vargas1, Mohit Mahey2,
James T. Brosnan1* and Eric L. Patterson2

1Turfgrass Weed Science Laboratory, Herbert College of Agriculture, Department of Plant Sciences,
University of Tennessee, Knoxville, TN, United States, 2The Patterson Laboratory, College of
Agriculture and Natural Resources, Department of Plant, Soil, and Microbial Sciences, Michigan State
University, East Lansing, MI, United States
Herbicide resistance within Poa annua is widespread in managed turfgrass

systems. In 2020, a P. annua collection from a golf course in the southeastern

United States was reported to be resistant to indaziflam as well as six other

mode-of-action groups. This first report in 2020 suggests that turfgrass

managers would benefit from a bioassay to screen other collections with

putative indaziflam resistance. A dose-response experiment was conducted

with ten concentrations of indaziflam (0, 250, 500, 667, 1000, 1143, 1333,

2000, 4500, and 9000 pM) in Gelrite® culture during 2021 and 2022. An

herbicide-susceptible (S1) collection of P. annua, a resistant standard (Site 3A),

and a collection with putative resistance to indaziflam (Site 18) were included in

this experiment. Petri dishes were filled with 80 mL of Gelrite® (3.75 g L−1)

containing technical grade (≥ 98%) indaziflam and rifampicin (1000 µg mL−1).

Each plate was sealed with parafilm after placing 15 seeds of a single collection

on the Gelrite® surface. At 14 days after seeding (DAS), the length of the radicle

(mm) protruding from each seed was recorded with digital calipers. Indaziflam

concentrations required to reduce root growth by 70% (EC70) were calculated via

non-linear regression. Statistically significant differences were detected among

P. annua collections with the EC70 values for the herbicide-susceptible collection

measuring 708 pM [95% confidence interval (CI) = 656 to 764 pM] compared to

2130 pM (CI = 1770 to 2644 pM) for Site 3A and 4280 pM (CI = 3464 to 5442) for

Site 18. Given that resistant collections exhibited longer root length in the

absence of herbicide, confocal microscopy analysis was used to explore

differences in root cell count among resistant and susceptible P. annua

collections; however, few differences in cell count were detected. Overall,

these findings indicate that a discriminatory dose of 708 pM (95% CI = 656 to

764 pM) can be used to differentiate among susceptible and resistant P. annua

collections from field sites where poor control is observed following broadcast

applications of indaziflam.
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1 Introduction

Poa annua is an allotetraploid species within the Poaceae family

that resulted from a hybridization event between the diploid species

Poa supina (male parent) and Poa infirma (female parent) (Huff

et al., 2003; Mao and Huff, 2017). P. annua can be found on all

seven continents globally (Chwedorzewska, 2008) and is referred to

by various common names, including: annual meadowgrass, annual

bluegrass, wintergrass, junegrass, suffolkgrass, speargrass, and

walkgrass (Gibeault, 1971). Morphological diversity among P.

annua is wide-ranging and its characterization as an annual

species has been questioned, given that it does not exhibit

monocarpic senescence (Carroll et al., 2021a; Carroll et al., 2022).

P. annua is the most troublesome weed of turfgrass

(Van Wychen, 2020), commonly infesting golf courses, sports

fields, and lawns. A survey conducted by the Golf Course

Superintendents Association of America reported that P. annua

was the third most abundant species found on United States golf

courses in 2015, behind Cynodon spp. and Poa pratensis L.

(Gelernter et al., 2017). Sole reliance on herbicides to control P.

annua infestations in turfgrass has resulted in extensive selection

for herbicide-resistant biotypes (Brosnan et al., 2020a), including

herbicidal inhibitors of acetolactate synthase (ALS; Cross et al.,

2013; McElroy et al., 2013; Brosnan et al., 2015; Brosnan et al., 2016;

Singh et al., 2021), cellular mitosis (Isgrigg et al., 2002; Cutulle et al.,

2009; Brosnan et al., 2014; McCullough et al., 2017; Singh et al.,

2021), photosystem II (PSII, Kelly et al., 1999; Mengistu et al., 2000;

Hutto et al., 2004; Brosnan et al., 2020b), 5-enolpyruvate-shikimate-

3-phosphate-synthase (Binkholder et al., 2011; Brosnan et al., 2012;

Cross et al., 2015; Breeden et al., 2017), and protoporphyrinogen

oxidase (Yu et al., 2018). Multiple resistance in P. annua is an

emerging concern to turfgrass managers as these populations

become uncontrollable by chemical methods (Brosnan et al.,

2020a). Reports of P. annua with resistance to ALS and PS-II

inhibitors as well as pre- and postemergence (prodiamine and

glyphosate, respectively) herbicides have been documented on

golf courses in the United States transition zone (Brosnan et al.,

2016; Breeden et al., 2017). Multiple resistance to five modes of

action was identified in P. annua from an Australian golf course

(Barua et al., 2020). In Texas, Singh et al. (2021) identified a

population of P. annua resistant to simazine, amicarbazone,

trifloxysulfuron, foramsulfuron, and preemergence applications

of pronamide.

The possibility of simultaneous co-evolution of non-target and

target-site resistance within the self-pollinating species P. annua has

been explored (Laforest et al., 2021). In working with a P. annua

collection that contained target site mutations conferring resistance

to both PS-II and ALS-inhibiting herbicides, Laforest et al. (2021)

confirmed that treatment with an ALS-inhibiting herbicide

(trifloxysulfuron) resulted in differential expression of genes

associated with non-target site resistance, particularly those

associated with oxidative stress. Interestingly, resistant plants

also exhibited constitutive expression of genes regulating

transmembrane transport prior to treatment. The researchers

suggested that continued use of an ALS-inhibitor after evolution

of target site resistance may lead to an accumulation of resistance
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mechanisms affecting other modes of action. For example, P. annua

plants characterized by Laforest et al. (2021) were less affected by

applications of flumioxazin, indaziflam, and pronamide than

herbicide-susceptible controls.

Cellulose biosynthesis inhibiting herbicides (HRAC Group 29)

target the cellulose synthase complex (CSC) where cellulose

polymers are synthesized and then released to the cell wall

(Mutwil et al., 2008; Bashline et al., 2015). Within the CSC, 18 to

24 catalytic cellulose synthase A (CESA) proteins could be targets of

cellulose biosynthesis inhibiting herbicides (Jarvis, 2013; Brabham

et al., 2014; Tateno et al., 2016). Inhibiting the function of any of

these proteins leads to radial root swelling caused by the loss of

anisotropic growth in cells undergoing expansion (Brabham et al.,

2014). Indaziflam is an alkylazine inhibitor of cellulose biosynthesis

with an unknown site-of-action. Brabham et al. (2014) reported that

indaziflam increased CESA particle density in the plasma

membrane and inhibited polymerization by reducing CESA

particle velocity by 65% (Brabham et al., 2014). Indaziflam is also

a unique herbicide as it is efficacious on both monocots and dicots,

whereas other Group 29 herbicides (e.g., isoxaben) only exhibit

dicot activity (Sabba and Vaughn, 1999). Furthermore, plants with

target-site resistance to isoxaben are not cross-resistant to

indaziflam, indicating a unique site of action (Brabham et al.,

2014). When indaziflam is applied to a susceptible plant, radial

root swelling and ectopic lignification will occur leading to chlorosis

and eventual mortality (Brabham et al., 2014). In Arabidopsis,

indaziflam inhibited cellulose production within one hour of

treatment in a dose-dependent manner (Brabham et al., 2014).

Indaziflam is a lipophilic herbicide with low water solubility, a

dissociation constant (pKa) of 3.5, an octanol/water partition

coefficient of 2.8 at pH 7, and residual activity for controlling

annual weeds in soil (EPA, 2010; Sebastian et al., 2017). In managed

turfgrass, indaziflam (Specticle® FLO. Bayer Environmental

Sciences, St. Louis, MO) is used to control problematic grassy

weeds such as P. annua, Eleusine indica, and Digitaria spp., as

well as annual sedges and broadleaf weeds. Considering that few

Group 29 herbicides are used for weed control in turfgrass,

indaziflam offered turfgrass managers a new mode of action for

managing P. annua populations that have evolved resistance to

other modes of action (Brosnan et al., 2014; Brosnan et al., 2015;

Brosnan et al., 2017a). For example, a P. annua population with

target site resistance to PS-II inhibiting herbicides was controlled ≥

98% with indaziflam (Brosnan et al., 2017a). Similarly, indaziflam

effectively controlled P. annua with resistance to mitotic and ALS-

inhibiting herbicides (Brosnan et al., 2014; Brosnan et al., 2015).

The first case of any plant evolving resistance to indaziflam was

identified in P. annua collected from a golf course and confirmed

via greenhouse and laboratory bioassays (Brosnan et al., 2020c).

Plants were identified and collected after escaping preemergence

applications of indaziflam (Specticle® FLO. Bayer Environmental

Sciences. St. Louis, MO) at maximum label rate (48.7 g ha−1) in the

field. P. annua surviving indaziflam treatment (applied early-

postemergence to non-tillered plants< 2.5 cm height) in

greenhouse and laboratory bioassays also exhibited extensive

multiple resistance to several other herbicide mode-of-action

groups, including #2 (foramsulfuron), #3 (pronamide), #5
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(metribuzin and simazine), #9 (glyphosate), #10 (glufosinate), and

#14 (flumioxazin). Inhibitors of cytochrome P450 monooxygenase,

including 1-aminobenzotriazole (10 mg L−1), tebuconazole

(1510 g ha−1), or malathion (400 g ha−1) could not restore

indaziflam susceptibility in these P. annua collections suggesting

that metabolism may not be the sole mechanism of resistance in

these plants. Interestingly, Brosnan et al. (2020c) demonstrated that

concentrations of indaziflam and 1-fluoroethyl triazinediamine (the

primary metabolite of indaziflam) were lower in resistant plants

compared to susceptible controls and suggested that altered

herbicide absorption may be a mechanism of resistance to be

further explored in these collections.

Evolution of indaziflam resistance within P. annua is

concerning considering that the herbicide helped turfgrass

managers control infestations with resistance to other mode of

action groups (Brosnan et al., 2014; Brosnan et al., 2015, Brosnan

et al., 2017a). There is a need to develop a bioassay to rapidly screen

many collections of P. annua for resistance to indaziflam. A gel-

based, in vitro, bioassay could help turfgrass managers understand

how plants will respond to indaziflam treatment in as few as 14-

days compared to the 42 days required for whole-plant testing in a

soil medium (Brosnan et al., 2020c). Similar bioassays have been

developed for other herbicidal mode of action groups with an array

of plant species, including P. annua (Bourgeois et al., 1997; Claude

et al., 2004; Cutulle et al., 2009; Kaundun et al., 2011; Kaundun

et al., 2014; Brosnan et al., 2017b; Messelhäuser et al., 2021).

Moreover, a gel bioassay could identify indaziflam resistance

regardless of mechanism (Kaundun, 2021), which is important

given that the indaziflam target site is currently unknown. This

research aims to develop a bioassay to determine P. annua

responses to indaziflam that can be used to discern amongst

resistant and susceptible accessions.
2 Materials and methods

2.1 Plant culture

Laboratory research was conducted at the University of

Tennessee in 2021 and 2022 to develop a bioassay to screen P.

annua germplasm response to indaziflam. Herbicide susceptible

(S1) and one resistant biotype (Site 3A) used in this experiment

were the same as those described by Brosnan et al. (2020c).

Collections S1 and Site 3A are from University Park, PA and a

golf course fairway in Cummings, GA respectively. Additionally, a

collection of P. annua with putative resistance to indaziflam (Site

18) was also included. This collection was submitted to the

University of Tennessee Weed Diagnostics Center after escaping

treatment with preemergence applications of indaziflam (Specticle®

FLO; Bayer Environmental Sciences, St. Louis, MO) on a golf course

fairway in Thomasville, GA. Plants were cultured in a glasshouse to

produce seed required for research. Plants were placed in

greenhouse pots filled with a peat moss growing media (PRO

MIX BX General Purpose; Premier Tech Horticulture,

Quakertown, PA, USA) and treated with complete fertilizer (20

N–20 P2O5-20 K2O. Peter’s 20–20–20. JR PETERS, Incorporated.
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Allentown, PA, USA) at 49.5 kg N ha−1 wk−1. Mature seed from

each collection were harvested with scissors, dried in a forced-air

oven (Laboratory Oven; The Grieve Corporation, Round Lake, IL),

and sieved (Standard Test Sieve; Fisher Scientific Company LLC,

Hampton, NH) to remove chaff. After processing, seed were stored

in glass vials (40 mL Scintillation Vial; Thermo-Fisher Scientific, St.

Louis, MO, USA) at −20˚C for a minimum of four weeks to break

any potential dormancy (Carroll et al., 2021b).
2.2 Method development

A natural gelling agent (Gelrite®; Duchefa Biochemie, Haarlem,

The Netherlands) was used to culture plants in this research. This

agent was prepared by adding 7.5 g Gelrite® to 8.9 g MS Salts &

Vitamins (Murashige & Skoog M519 Basal Medium with Vitamins;

Phyto Tech Labs, Lenexa, KS) in 1966 mL of distilled H2O in

sterilized Erlenmeyer flasks; MS Salts & Vitamins was added to

distilled H2O prior to the Gelrite®. The pH of this solution was

measured with a pH conductivity meter (Multimeter Model 250;

Denver Instrument, Bohemia, NY) and adjusted to 6.5 by adding

either hydrochloric acid (HCl) or sodium hydroxide (NaOH) to

lower or raise the pH, respectfully. The resultant solution went

through a liquid 20 cycle that raised temperature to 121˚C in an

autoclave (Amsco Century V120; Steris, Mentor, OH) for 20

minutes. After the autoclave cycle was finished, sealed flasks were

placed on a hot plate (FisherBrand Stirring Hot Plate; Thermo

Orion Incorporated, Chelmsford, MA) and stirred until cooling to

80˚C. Rifampicin (1000 µg mL−1; Rifamipicin Molecular Biology

Reagent; Alfa Aesar, Ward Hill, MA) and technical indaziflam

(≥ 98%; Sigma-Aldrich, St. Louis, MO) were added at this

temperature to create ten indaziflam concentrations for

evaluation: 0, 250, 500, 667, 1000, 1143, 1333, 2000, 4500, 9000

picomolar (pM). These concentrations were selected based results

of Brosnan et al. (2020c) who reported that early-postemergence

exposure to 633 pM indaziflam in agar culture could differentiate

between indaziflam resistant and susceptible collections of P.

annua. Technical indaziflam (150 mg) was diluted in 99.5 mL

dimethyl sulfoxide with a concentration of 5000 µM. This stock

solution was frozen to keep concentrations uniform across all trials.

On the day of trial initiation, this bottle was allowed to thaw to

facilitate adding the appropriate amount of indaziflam to each flask

for each concentration. Serial dilutions using deionized H2O were

used to deliver intended pM concentrations of indaziflam to each

autoclaved solution.

After adding rifampicin and indaziflam, 80 mL of the resultant

solution was added to square petri dishes (120 x 15 mm) within a

sterile fume hood (1300 Series A2 Fume Hood; Thermo-Fisher

Scientific, St. Louis, MO, USA) using a dispensette (Dispensette S

Bottle Top Dispenser; BrandTech Scientific Incorporated, Essex,

CT). Plates were left open in the fume hood for 12 min in order to

cool before being covered, sealed with parafilm (2 IN All-Purpose

Laboratory Film; Amcor, Menasha, WI), and placed in a growth

chamber (G1000-Germinator; Conviron, Winnipeg, Manitoba,

Canada) set to constant 16˚C temperature and 16 h photoperiod.

Plates were unsealed to facilitate adding P. annua seed (15 seeds,
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one collection per plate) to the Gelrite® surface using sterilized

tweezers; seed were pressed into the Gelrite® surface with sterilized

spatulas after plating. Each petri dish was then re-sealed with

parafilm after seeding and placed in the aforementioned growth

chamber at a constant temperature of 16˚C.
2.3 Data collection and statistical analysis

Fourteen days after seeding (DAS), responses to indaziflam

were evaluated by assessing the presence (or absence) of root or

shoot growth (i.e., 1 = yes, 0 = no). Additionally, the length of the

radicle (mm) protruding from each seed was measured via digital

calipers (CD-6” AX Digimatic Caliper; Mitutoyo Corporation,

Kawasaki, Kanagawa, Japan). The experiment was arranged in a

completely randomized design with five replications of each

indaziflam concentration. Within a given concentration, the 15

seeds per collection were considered sub-samples and used to

calculate mean root length values for each P. annua collection

that were expressed as a percentage of the non-treated. The

experiment was repeated as previously described in January 2022

using five replications of each indaziflam concentration and 15 sub-

samples. Data from each experimental run were combined

following ANOVA in R (v. 3.6.2) with root length values

subjected to non-linear regressions in Prism (Version 9.0.0.

GraphPad Prism. La Jolla, CA.) using the ‘EC Anything’ model

described below:

Y = Bottom + (Top − Bottom)=(1 + (
EC70

X
)HillSlope)

In this model, Bottom and Top represent asymptotes that were

constrained to 0 and 100 percent, respectively. Y represented root

growth as a percentage of the non-treated, and HillSlope

represented the steepness of the curve. X represented the

indaziflam concentration to reduce root length 70% (EC70). Best-

fit parameters for modeled responses were compared using a global

sums-of-squares F-test at a = 0.05 with 95% confidence intervals

used to compared EC70 concentrations of indaziflam among

resistant and susceptible P. annua collections. EC70 values were

used to discern amongst potential resistant and susceptible

accessions to provide a more stringent filter than EC50 values

commonly used in resistance screening (Burgos et al., 2013).
2.4 Microscopy analysis of P. annua
root growth

Roots from indaziflam-resistant (Site 3A, Site 18) and

-susceptible collections used in Gelrite® assay development were

analysed using microscopy to evaluate the cause of apparent

increased root length in indaziflam resistant populations.

Additional indaziflam-resistant (Site 3B, FL) collections submitted

to the University of Tennessee Weed Diagnostics Center were also

included, along with an additional indaziflam-susceptible collection
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(S5) originating from Wake Forest, NC to better support this

observation. All seeds were sterilized using 70% ethanol for 5

min, followed by 40 min exposure to a solution of 10% bleach +

0.01% triton X-100, followed by three rinses with distilled water.

Plants were grown in vertical, square (10 cm x 10 cm), petri plates,

with 1% agar + ½ strength Murashige & Skoog M519 Basal

Medium, similar to Brosnan et al. (2020c). Preliminary

germination assays showed variability among resistant and

susceptible collections. To that end, plates were grown in the dark

for three days before being exposed to light (16/8 day/night cycle) in

the growth chamber in order to synchronize root emergence.

Five days after light exposure, confocal root tissue images for

each P. annua collection were taken using an inverted laser

scanning microscope (Nikon-A1RSi. Nikon Instruments. Melville,

NY). The microscope was configured using a 20x Plan Apo

objective (NA 0.75) and 10X ocular lenses for a total

magnification of 200x. A z-series with a step size of 1.9 um was

taken for all root images. A 32 mM stock solution of N-(3-

triethylammoniumpropyl)-4-(6-(4-(diethylamino) phenyl)

hexatrienyl) pyridinium dibromide dye (FM4-64. Invitrogen.

Waltham, MA) was applied to root tissue for 3 min and then

washed (three times) using distilled water to stain cell membranes.

Root tissue from each seedling was placed on a glass slide and

seperated from shoot tissue with a scalpel. Post-acquisition image

analysis was performed using ImageJ (Schneider et al., 2012)

equipped with a cell counter plugin. Images were enhanced using

enhance contrast function of Fiji (Schindelin et al., 2012) using a

saturated pixels value of 0.35% and the equalize histogram function.

The depth of root tissue selected for analysis was determined by

drawing five segmented lines of 100 pixels (1 micron = 1.6 pixels,

500 pixels = 312.5-micron length) from the quiescent center of the

root tip; the number of cells was counted from quiescent layer to the

end of line within the outermost anterior and posterior epidermal

layers of each root. Cell count data from each P. annua collection

were subjected to a one-way ANOVA using Minitab software

(Minitab Statistical Software, 2010) with mean values for each

collection compared using a pairwise T-test at a = 0.05.
3 Results

3.1 Method development

Significant P. annua collection-by-indaziflam concentration

interactions were detected in root length data from each

experimental run; therefore, data from both were combined

before being subjected to non-linear regression analysis. A non-

linear model fit the combined data set with a global sums-of-squares

F-test detecting highly significant (F = 117, P< 0.0001) differences

among P. annua collections (Figure 1).

While root length reduced for all P. annua collections as

indaziflam concentration increased, there were significant

differences in the concentration of indaziflam required to reduce

root length 70% (EC70) among P. annua collections in this
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experiment (Table 1). EC70 values for the herbicide-susceptible

collection measured 708 pM [95% confidence interval (CI) = 656 to

764 pM] compared to 2130 pM (CI = 1770 to 2644 pM) for Site 3A

and 4280 pM (CI = 3464 to 5442) for Site 18 (Table 1). These values

can be used to calculate resistance indices (i.e., R/S ratios) of 3 and 6

for the Site 3A and Site 18 P. annua collections, respectively. Low-

level resistance within the P. annua collections evaluated in this

study provides further evidence that non-target site mechanisms

may be affecting indaziflam efficacy given that non-target site

mechanisms are often continuous as opposed to discreet for
Frontiers in Agronomy 05
target-site mutations (Tranel and Wright, 2002; Yu and

Powles, 2014).
3.2 Microscopy analysis of P. annua
root tissue

Root length values for both indaziflam-resistant collections (Site

3A and Site 18) were greater than the susceptible P. annua

collection used in this study (Table 2). Microscopy analysis was

conducted in order to explore possible differences at the cellular

level between the P. annua collections. We hypothesized that

enhanced root cell division in indaziflam-resistant collections may

be causing the constitutive differences between indaziflam-resistant

and indaziflam-susceptible collections in control plates (0 pM

indaziflam). Cell count data from indaziflam-resistant and

susceptible P. annua collections are presented in Figure 2 with

sample microscopy images used for analysis presented in Figure 3.

No significant differences were detected in cell number (in the zone

of cell division) among the indaziflam-resistant and -susceptible P.

annua collections included in this experiment.
4 Discussion

Indaziflam resistance indices in the current study align with

previous research using Site 3A and S1 P. annua germplasm

(Brosnan et al., 2020c); the researchers determined indaziflam
TABLE 1 P. annua collections subjected to increasing doses of indaziflam (0, 250, 500, 667, 1000, 1143, 1333, 2000, 4500, and 9000 pM) in Gelrite®

culture for 14 days.

Collectiona EC70
b Resistance Indexc 95% CId

S1 708 – 656 to 764

Site 3A 2130 3.0 1770 to 2644

Site 18 4280 6.0 3464 to 5442
f

aS1 collection was herbicide-susceptible standard from University Park, PA with no exposure history to indaziflam. Site 3A and Site 18 were collected from hybrid bermudagrass (Cynodon
dactylon (L.) Pers. x Cynodon transvaalensis Burtt Davy, cv. ‘Tifway’) on golf courses after surviving field applications and challenges with 48.7 g ha−1 in the glasshouse
bEC70 = concentration of indaziflam required to reduce root growth from seed by 70% in Gelrite® culture.
cResistance indices calculated by dividing the EC70 value for Site 3A and Site 18 by the EC70 value for the susceptible control (S1).
d95% Confidence Interval (CI) for EC70 values determining the concentration of indaziflam required to reduce root growth by 70%. Root length (mm) measurements were expressed as a
percentage of the non-treated (0 pM) for each collection. The concentration of indaziflam to reduce root length 70% (EC70) was used to calculate a resistance index.
FIGURE 1

Root length of P. annua collections subjected to increasing
concentrations of indaziflam (0, 250, 500, 667, 1000, 1143, 1333,
2000, 4500, and 9000 pM) in Gelrite® culture for 14 days. Root
length (mm) measurements were expressed as a percentage of the
non-treated (0 pM) for each collection. Error bars presented illustrate
the standard error of the mean for each collection (N = 150).
TABLE 2 Mean root length (mm) data for indaziflam-resistant (Site 3A and Site 18) and -susceptible (S1) collections of P. annua in laboratory assays
evaluating root growth in in Gelrite® culture for 14 days.

Indaziflam Concentration (pM)

Collectiona 0 250 500 667 1000 1143 1333 2000 4500 9000

____________________________________________________mm_______________________________________________

S1 5.97 4.38 3.18 1.39 0.96 0.83 1.07 0.38 0.23 0.10

Site 3A 13.94 9.43 9.42 4.66 7.21 5.50 9.25 2.83 2.11 0.62

Site 18 14.14 12.43 14.97 10.38 11.41 13.16 7.98 8.91 3.90 1.47
rontiersin
aS1 collection was herbicide-susceptible standard from University Park, PA with no exposure history to indaziflam. Site 3A and Site 18 were collected from hybrid bermudagrass (Cynodon
dactylon (L.) Pers. x Cynodon transvaalensis Burtt Davy, cv. ‘Tifway’) on golf courses after surviving field applications and challenges with 48.7 g ha−1 in the glasshouse.
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concentrations required to reduce root growth of newly emerged P.

annua plants 50% (I50 values) and calculated a resistance index of

6.8 for Site 3A. The difference in resistance factor for collection Site

3A between experiments can most likely be attributed to differences

in plant maturity at the time of indaziflam exposure. Brosnan et al.

(2020c) calculated a resistance index following early-postemergence

indaziflam exposure to emerged seedlings (a labeled use pattern for

indaziflam in turfgrass; Anonymous, 2023), whereas preemergence

exposure was evaluated in this research. Additionally, EC70 values

were used to calculate resistance indices in the current study

compared to EC50 values commonly used by other researchers

(Cutulle et al., 2009; Kaundun et al., 2014; Brosnan et al., 2020c).

Given that there is only a single report of indaziflam resistance in

published literature to date (Brosnan et al., 2020c), EC70 values were
Frontiers in Agronomy 06
selected to provide a more stringent filter among putative resistant

and susceptible P. annua collections. A limitation of this research is

that only a single susceptible collection was included in the dose-

response experiments. Future research to refine this assay using

additional susceptible P. annua collections is warranted.

A collection of P. annua with putative resistance to indaziflam

(Site 18) was included in this research after escaping treatment with

preemergence applications of indaziflam on a golf course fairway. P.

annua from Site 18 exhibited nearly 2x the level of indaziflam

resistance than Site 3A, the resistant standard used in the

experiment (Table 1, Figure 1). This represents the highest level

of indaziflam resistance reported in the peer-reviewed scientific

literature (to date) and a first report of resistance to indaziflam

applied preemergence.

Evolution of indaziflam resistance in P. annua is concerning

given that many turfgrass managers have effectively used this

herbicide to control P. annua biotypes that evolved resistance to

other modes of action, including those with multiple resistance.

After screening 1,500 plants across ten concentrations, 708 pM

indaziflam (95% confidence interval of 656 to 764 pM) consistently

separated resistant collections from a susceptible control in gel

culture. Sebastian et al. (2017) reported that 251 pM indaziflam

reduced root growth of feral rye (Secale cereale L.) in agar culture by

50%. In the current study, 448 pM of indaziflam was required to

yield a similar reduction in root growth of herbicide susceptible P.

annua in gel culture. The discriminatory concentration identified in

this research successfully identified other accessions of P. annua

with putative resistance to indaziflam that escaped control in the

field (Figure S1). This assay could be used to determine if indaziflam

can be a component of an effective herbicide mixture for P. annua

control or potentially be expanded to screen response of P. annua

accessions to herbicide mixtures. Hulme (2022) explored multiple

resistance across an array of weed species and reported that certain

mode of action groups cluster together, with a main cluster

including ALS and PS-II inhibitors as well as glyphosate. Given

widespread reports of resistance to these herbicides in P. annua,
FIGURE 2

Root cell count data from indaziflam-resistant (Sites 3A, 3B, S18, FL)
and indaziflam-susceptible (S1, S5) P. annua collections. Root length
was measured at fixed length from the quescient tip of the roots.
BA

FIGURE 3

Confocal fluorescence images of (A) indaziflam-resistant (Site 18) and (B) indaziflam-susceptible (S1) P. annua, treated with FM4-64 dye and post-
acquisition processed using FIJI function enhance contrast, with equalize histogram enabled. Cell counter plugin was utilized for counting the
number of cells in the fixed length (500 pixels) from the quescient center of roots. These count data are presented in Figure 2.
frontiersin.org
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challenging resistant plants with indaziflam using this assay would

help determine if the herbicide could be a component of an effective

mixture for resistance management or falls within the same

multiple resistant cluster.

In addition, it is worth noting that root length values for both

indaziflam-resistant collections used in this study (Site 3A and Site

18) were significantly greater (>2x) than the susceptible P. annua

collection under no indaziflam treatment (Table 2). Microscopy

analysis did not show an increased number of cells in the zone of

division for these resistant plants suggesting that these differences

are not the result of increased cell division. It may be that cells in the

resistant plants are elongating more and/or faster than susceptible

plants, but this was not explored. Future research exploring this and

other growth phenotypes associated with mechanisms of indaziflam

resistance in P. annua is warranted as the resistance mechanism

may cause or be linked with traits that may be disadvantageous for

resistant plants.
5 Conclusion

A gel bioassay was developed to discern P. annua responses to

indaziflam in a 14-day period once seed is available. Comparatively,

traditional screening via greenhouse pot studies can require months

to complete. This novel bioassay allows turfgrass managers to

screen P. annua plants for indaziflam resistance within the same

season of management to determine if indaziflam will be an effective

component of their P. annua management plans. This bioassay will

also aid those challenged with indaziflam resistant P. annua in other

cropping systems. For example, indaziflam resistance in P. annua

was recently reported in hazelnut (Corylus avellana L.) orchard

production (Miranda and Moretti, 2023). One P. annua collection

screened using this assay (Site 18) exhibited the highest level of

indaziflam resistance reported in the peer-reviewed scientific

literature (to date) and serves as a first report of resistance to

indaziflam applied preemergence. Future work should be conducted

to determine the mechanism of resistance in the indaziflam-

resistant P. annua collections described in this research. Doing so

would allow for molecular assays to identify indaziflam resistance to

be developed that could return results even more rapidly.
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