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Introduction: AquaCrop is a water-driven crop growth model that simulates

aboveground biomass production in croplands. This study aimed to identify the

driving parameters of the AquaCrop model for the model calibration and

simplification to fill the research gap in intermediate environmental conditions

between sub-tropical sub-humid and temperate sub-humid climates for

silage maize.

Methods: To this end, we applied global sensitivity analysis (GSA) by combining

the Morris method and the Extended Fourier Amplitude Sensitivity Test (EFAST)

on crop yield output. The process involved a field sampling of soil and crop of

silage maize carried out in the agricultural fields of Ghale-Nou, southern Tehran,

Iran, in the summer of 2019 in order to measure certain model parameters.

Results and discussion: In compliance with the Morris method, 30 parameters

were identified as the least sensitive, while results from the EFAST test showed 9

parameters as contributing to the highest sensitivities in the model. The results

clearly point to the capacity of employing a combination of both methods to

attain a more efficient model calibration. Particular root, soil, canopy

development, and biomass production parameters were influential and merit

attention during calibration. Instead, parameters describing crop responses to

water stress were acting rather insensitive in this study condition. The insights

gained from this study, i.e., assessing parameter ranges and distinguishing

between less sensitive and more sensitive parameters based on environmental

and crop conditions, have the potential to be applied to other crop growth

models with caution.
KEYWORDS

global sensitivity analysis, AquaCrop model, Morris, EFAST, silage maize
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1 Introduction

To address the persistent challenges in the agricultural sector,

solutions are needed for monitoring agricultural products,

designing sustainable agriculture models, increasing water

efficiency, and reducing costs (Busetto et al., 2017). Process-based

crop growth models offer a suitable solution for understanding the

interactions between environmental conditions, land management,

and crop growth (Kasampalis et al., 2018). One must note, however,

that establishing mathematical relationships that express natural

processes through model equations and their input parameters

inevitably involve different assumptions and simplifications of the

real world. These could thus increase uncertainty and reduce the

accuracy of the model outputs (Saltelli et al., 2000; Ma et al., 2023).

When the focus is on regional study areas, a solution to reduce

uncertainties related to input parameters and model structure

involves calibrating process-based models to the local conditions.

This requires simplifying crop growth models with fewer

parameters and inputs or assigning constant values to fewer

effective parameters. At the same time, a key step in all process-

based model applications involves identifying the key input

parameters that drive the output variability. This especially holds

true in cases of high uncertainty in parameter values. A more

accurate model calibration calls for the identification of the least

number of effective parameters for crop growth modeling, which

can be conducted through sensitivity analysis (SA) (Morel et al.,

2014; Silvestro et al., 2017).

SA can evaluate and quantify the effect of uncertain factors, i.e.,

the input parameters, on the variability of the model outputs,

principally aimed at evaluating and identifying the importance of

parameters in process-based models (Specka et al., 2019). To further

simplify the model, constant values can be allocated to less

influential parameters while identifying a list of key parameters

required for a precise calibration of the model (Li et al., 2019).

Another necessity of crop growth models is considering the

environmental conditions of different regions, leading to a specific

(condition)-wise prioritization of model calibration parameters.

Correspondingly, SA results are driven by the environmental

conditions (e.g., different climatic conditions, geographical areas,

soil types, etc.) in which the model is implemented. Accordingly,

when aiming to be generally applicable, it is vital to examine the

model’s sensitivity across a range of environmental conditions

(Vanuytrecht et al., 2014).

SA strategies can be categorized as either local or global (Saltelli

et al., 2008). While local SA (LSA) methods assess the effect of

changes in one parameter on the model output given constant

values for all other parameters (Cariboni et al., 2007), global SA

(GSA) methods assess the effects of simultaneously (wide-ranging)

varying all involved input parameters on the model output (Saltelli

et al., 2008). With respect to crop growth models, LSA methods

failed to fully examine all relations in crop growth models. This is

because of the complexity of such models and the significance of

understanding the relationship and interaction between multiple

input parameters (Cariboni et al., 2007). More generally, as claimed

in fundamental studies, LSA methods are insufficient for identifying
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the most effective parameters of nonlinear models and are only

capable of identifying the least effective parameters (Cariboni et al.,

2007; Saltelli et al., 2008; Saltelli and Annoni, 2010; Vanuytrecht

et al., 2014; Silvestro et al., 2017; Li et al., 2019; Ma et al., 2023).

Conversely, GSA can be more effective than LSA because it can

provide a more complete and realistic view of the model’s behavior

and uncertainty.

GSA assessments of crop growth models have been widely

studied. For instance, Confalonieri et al. (2010a, b) employed a

GSA assessment of water accounting rice model (WARM) by using

Morris and Sobol algorithms; Wang et al. (2013) employed

extended Fourier amplitude sensitivity test (EFAST) on WOrld

FOod STudies (WOFOST); Vanuytrecht et al. (2014) used Morris

and EFAST on AquaCrop; Song et al. (2014) also applied Morris

and EFAST on the decision support system for agrotechnology

transfer (DSSAT); Xing et al. (2017) implemented EFAST on

AquaCrop; Silvestro et al. (2017) adapted Morris and EFAST on

AquaCrop; Guo et al. (2020) used EFAST on AquaCrop; Upreti

et al. (2020) deployed Morris, EFAST, and density-based PAWN

methods on AquaCrop; and Rahimikhoob et al. (2024) applied

Sobol method on AquaCrop for basil. These studies have in

common that the adaptation of the Morris method in

combination with the Sobol/EFAST methods proved to be highly

effective. The reason is due to the low computational complexity of

the Morris method in denoting the less influential parameters,

thereby enabling to reduce the number of parameters in the

subsequent Sobol/EFAST methods.

Among variance-based sensitivity methods, literature reveals

that Sobol and EFAST are mostly used for GSA assessments of a

limited number of input parameters (Chen and Cournède, 2014).

While both perform equally well in terms of computation time,

EFAST transcends Sobol in assessing the effect of parameter

relationships on the variance model (Saltelli et al., 1999; Roundy,

2009; Silvestro et al., 2017). For instance, an ensemble of the Morris

and EFAST methods has been applied by (Vanuytrecht et al., 2014;

Silvestro et al., 2017), in which the Morris screening method was

first used to identify the less effective input parameters. This is

followed by an application of EFAST to analyze the AquaCrop

model’s output sensitivity based on the model parameters across a

range of environmental conditions. GSA assessment of model

parameters is highly dependent on environmental conditions and

the crop type under study, such that no single GSA scenario can be

interchangeably used for a range of climatic and environmental

circumstances (Vanuytrecht et al., 2014; Zhao et al., 2014; Xing

et al., 2016; Silvestro et al., 2017; Xing et al., 2017). GSA results thus

vary for different environmental conditions, not only in terms of the

magnitude of impact, but also in terms of the order and ranking of

parameters. EFAST is more coherent compared to the Morris

method, and it prioritizes and sequences parameters more stably

across a range of environmental circumstances (Vanuytrecht et al.,

2014; Silvestro et al., 2017). Hence, the Morris method can only be

used to screen fewer sensitive parameters, and can only rank

parameters qualitatively and not quantitatively (DeJonge et al.,

2012; Vanuytrecht et al., 2014). It is essential to determine the

correct range of variation in parameter values. The GSA results are
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related to corresponding environmental conditions, so inhibits the

generalizability of results to other regions (Wang et al., 2013).

The AquaCrop model was developed as a process-based model

by Steduto et al. (2009) with the purpose to simulate relationships

between crop yield and crop transpiration in different

environments. Earlier GSA studies on the AquaCrop model,

including Vanuytrecht et al. (2014), Xing et al. (2016), Silvestro

et al. (2017), Xing et al. (2017), Guo et al. (2020), and Upreti et al.

(2020), were primarily based on the older versions of this model —

with a limited number of parameters, with the exception of Upreti

et al. (2020). In the 6.1 version of AquaCrop, however, the number

of parameters has increased, which in turn requires parameter

ranking and tuning in terms of relevance to the model. Zhao

et al. (2014) and Xing et al. (2016, 2017) also noted the need for

analyzing more parameters to improve research validity in model

sensitivity studies. Upreti et al. (2020) stated that in addition to

assessing the AquaCrop model with a higher number of parameters

(with wheat as the case crop), it is necessary to generalize model

results for other geographical, climatic, and crop conditions in order

to achieve higher robustness for the AquaCrop model. This further

highlights the significance of applying a GSA to AquaCrop models

implemented across a range of environmental conditions. Overall,

the above literature review revealed that there is a research gap to be

filled regarding identifying the influential parameters in the

AquaCrop model calibration, especially in intermediate

environmental conditions between sub-tropical sub-humid and

temperate sub-humid climates for silage maize. Given this

background, the novelty of the present research lies in the

application of GSA for another climatic condition and crop type

as opposed to previous studies in the AquaCrop model. So, this

research builds upon previous AquaCrop studies by applying GSA

to a less studied climatic condition and crop type. Specifically, it

addresses a research gap by focusing on intermediate

environmental conditions between sub-tropical sub-humid and

temperate sub-humid climates, using silage maize as the target

crop. Therefore, we aimed to help the generalization of model

results by a distinct geographical, climatic, and crop conditions in

order to achieve higher robustness. Meanwhile, the conservative

parameters are not supposed to require a local calibration for a well-

studied crop such as wheat, but would need to be calibrated using

data from multiple locations for a species new to the AquaCrop

model (Silvestro et al., 2017). Since the climatic condition and crop

type of this study were new to the model, we applied the sensitivity

analysis on both conservative and non-conservative parameters to

gain a complete picture of the sensitivity of model outputs to model

parameters and also to find the optimum range for each parameter.

On the other hand, the AquaCrop model’s parameters are

interrelated, making it difficult to isolate the individual effects of

each parameter on the model’s outputs. To address this challenge

and identify the most influential parameters, we employed the

variance-based sensitivity method, EFAST, which helped us

quantify the interactions between these parameters.

Altogether, the objectives of this study are twofold: (i) What are

the least sensitive parameters that can be considered constant

without affecting the model’s accuracy? (ii) How can model

uncertainty be reduced to attain a more accurately calibrated
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model using the least number of sensitive parameters? To answer

these questions, the study employs a GSA through the combination

of Morris (question i) and EFAST (question ii) methods. The data

used for the GSA experiments were acquired from silage maize crop

field samples gathered from agricultural fields in Ghale-Nou

County, Tehran, Iran, during the growing season of silage maize

from mid-June to late October 2019.
2 Materials and methods

2.1 Study area

To examine AquaCrop’s general sensitivity in terms of climate,

soil, irrigation, and crop data, field experiments were conducted

during the growing seasons of silage maize in the Ghale-Nou county

of Tehran, Iran (51°24–51°35’ E and 35°23–35°36’ N) (Figure 1).

Daily weather input data was collected from a local weather station

in the study area (51°27’ E and 35° 35’ N) (Figure 1). The maximum

and minimum temperatures and average annual precipitation were

calculated at 42°C, −4°C, and 200 mm, respectively. The climate

zone of the area is categorized as an intermediate between sub-

tropical sub-humid and temperate sub-humid climates (Akbari

et al., 2020b). The study area is characterized by a flat

morphology, extending to 7 × 15 km, and is dominated by

agricultural fields, predominantly silage maize (7,500 ha). The

silage maize fields were planted from mid-June to late July 2019

and harvested from mid-September to late October 2019, with the

majority of silage maize fields irrigated during the hottest month

(July to September).

One meteorological station was present in the study area, which

satisfies the study due to the homogeneity of climatic condition of

the region. However, the crop, soil, irrigation, management

practices and other parameters that must be imported into the

AquaCrop model for crop growth simulation varied in the different

fields. So, experimental data field collection included 30 fields of

silage maize, measured in 30 elementary sampling units (ESU) plots

20 × 20 m during the summer season. Sampling of soil before

planting, leaf area index (LAI) and fCover biophysical variables,

cropland information, and irrigation plan during the crop growing

season were conducted in each ESUs (plots). Details of the sampling

procedures for crops, soil, irrigation, etc. are explained in the

following sections.
2.2 Field data collection

Data required for simulating the AquaCrop model were

acquired through ESU site sampling (see Akbari et al., 2020a, c,

2023 for more details) during the growing season of silage maize

from July 12 to October 10, 2019. The AquaCrop model includes

four categories of input data related to crop, soil, management, and

climate and three main outputs, including vegetation cover

(fCover), biomass, and simulated crop yield (Raes, 2017).

Meteorological data obtained for the larger range than the

growing period of silage maize, i.e., late May to mid-December
frontiersin.org
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2019. These data comprised maximum and minimum daily

temperature values, average daily temperature, average daily

precipitation, maximum, minimum, and average daily relative

humidity, average daily wind speed, and daily solar radiation

(sunny hours) (daily data are required by the model), all of which

were collected from a meteorological Aminabad station (Table 1).

Among other essential data required for modeling crop growth

is the average CO2 concentration, which can be accessed through

the Mauna Loa database (available in the model itself). Reference

evapotranspiration (ETo) was also obtained using ETo calculator

(https://www.fao.org/land-water/databases-and-software/eto-

calculator/en/) and climate data (minimum, maximum, and average

temperature, relative humidity, wind speed and solar radiation).

Solar radiation was calculated using PhotoPeriod and the solar

radiation calculator with respect to the Angstrom–Prescott model

(Prescott, 1940). The climate section in the AquaCrop model allows
Frontiers in Agronomy 04
for a direct adjustment of precipitation data, ETo, minimum and

maximum temperature, and CO2.

Mixed sampling of soil was also conducted for 0–60 cm depths

at five points in each field surface (ESUs) (overall 30 soil samples) in

the form of M or W. According to shape of M and W, four points/

pits were located in the corner of the field (not near to farm border)

and one point/pit was located in the center of the field in each field.

Then, further laboratory measurements of soil texture (clay, silt, and

sand), organic matter, soil moisture content at saturation (SAT),

field capacity (FC), and permanent wilting point (PWP) have been

conducted, too. The saturated hydraulic conductivity (Ksat) of soil

was calculated using pedotransfer functions and soil moisture

contents at SAT, FC, and PWP. These data were fed as input to

the AquaCrop model’s soil section of each sampled field. Soil

samples from ESU lands were classified into two texture

classes (Table 2).
TABLE 1 Monthly average of maximum and minimum temperature, solar radiation, total rainfall, and evaporation of the study area over silage maize
(20 May to 20 December 2019 is considered for climate data).

Month Temperature (°C) Solar radiation
(MJ/m2/day)

Rainfall (mm) Evaporation
(mm/day)

Max Min

May 31.4 16.6 17.8 0 7.6

June 35.1 19.9 19.5 0 8.5

July 40.9 24.5 19.5 0 10.3

August 38.5 22.1 17.9 0 9.1

September 33.8 17.6 14.6 0 7.0

October 25.9 12.5 10.3 0 4.6

November 16.5 6.7 6.5 28.7 2.0

December 15.2 4.5 6.5 5.0 2.1
FIGURE 1

Study area in Iran and Tehran province (A), and location of the study area, Ghale-Nou County, weather station and the experimental data field
collection plots (i.e., ESUs) (B).
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Questionnaires were also filled out by farmers and incorporated

into the model as the management layer. The questionnaires for

each sampling field included items on the irrigation plan (date and

duration of each irrigation), type of irrigation system, primary and

secondary tillage equipment, seed source, type of silage maize

cultivar, type (method) of cultivation, cultivation depth, the dates

of planting and harvesting, length of the growing season, number of

seeds used per hectare, and crop yield for 2019.

The exact distance between rows and between crops planted on

each row was measured during the field campaign to calculate the

destructive protocol sampling area and planting density. Further,

calculations of irrigation volume and depth of each sampling field at

each irrigation event were acquired by measuring the irrigation

canals’ width, and the passing water’s height in the canals or water

pipes. These data were also incorporated as input into the

AquaCrop model for each sampling field. Apart from measuring

LAI and fCover at 30 ESUs (see section 2.2.1 for more details),

cropland information was also collected from the fields during each

visit. This information included the number of leaves, phenological

dates including emergence, flowering, duration of the flowering,

grain formation and its duration, milky time, tasselling, and leaf

yellowing. These data were also used as input for the crop section in

the AquaCrop model in each sampled field.
2.2.1 LAI and fCover field measurement
LAI and fCover were measured in each ESU using two methods,

i.e., (1) digital hemispherical photography (DHP), and (2) destructive

protocols during the growing season of silage maize from July 12 to

October 10, 2019. It was followed by calculations of the average of two

protocols. The time interval between each measurement ranged from

10 to 15 days (6 times sampling for each ESU). It was due to account

for the phenology stages of silage maize including three to four leaves

(July 12 and 17), eight to nine leaves (July 27 and Aug. 1), twelve

leaves (Aug. 11 and 16), flowering (Aug. 26 and 31), grain formation

(Sep. 5 and 10), and the start of grain filling stages (Sep. 15, 20, 30 and

Oct. 10). It merits mentioning that in certain cases, due to delays in

the planting time, the field measurements of July 27, Aug. 1, Aug. 11,

and Aug. 16 were carried out in the three- to four-leaf stage.

Accordingly, the time of the first sampling was set to three weeks

after planting on each farm. As a result, ESUs comprised different

phenology stages given the asynchronous cultivation on

different farms.

In the first method of measuring the LAI and fCover, i.e., DHP

method, LAI and fCover values measured using DHP were acquired

from a Canon 5d Mark II camera equipped with a FC-E8 fisheye

lens (Figure 2). The DHP was processed using CAN-EYE V6.491

(http://www4.paca.inra.fr/can-eye), to provide estimates of the LAI

and fCover.

In the second method of measuring the LAI and fCover, i.e.,

destructive method, four silage maize plants were destructively

harvested from each ESU at every sampling stage, and the length

and width of each leaf were measured manually. The area of each

leaf was estimated based on the measured length and maximum

width of each leaf multiplied by 0.75. LAI was estimated by dividing

the total leaf area of all sampled plants in each ESU by the
T
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destructive protocol sampling area (sampling area was calculated as

sample numbers multiplied by row and plant spacing) (Xia et al.,

2016). fCover was derived using the Ritchie model using Equation 1

(Katerji et al., 2013).

f Cover=1 − exp(−K*LAI) (1)

where K is the extinction coefficient assumed to be 0.507643 for

maize, based on in-situ DHP processing and the Beer–Lambert law

(Liu et al., 2013).
2.3 Crop simulation model

The AquaCrop model is essentially based on the relationship

between relative yield and relative evapotranspiration (Steduto

et al., 2009). The simulation of crop yield in the model involves

four steps: (1) canopy cover development (CC), (2) plant

transpiration (Tr), (3) aboveground biomass (B), and (4) crop

yield (Y) (Raes, 2017), each comprising unique computational

stages and parameters along with soil, temperature, salinity,

fertility, and water stress conditions (Table 3). The AquaCrop

model finally simulates crop yield by defining conservative and

non-conservative parameters (Appendix 1) (see http://www.fao.

org/aquacrop/en/ and (Raes, 2017; Raes et al., 2017a, b) for

more details).
2.4 AquaCrop model evaluation against
actual experimental data

Before the AquaCrop model usage in sensitivity analysis, it

should be tested against actual experimental data. To this aim, the

farms (samples) were divided into two groups for parameterization

(10 ESUs) and evaluation (20 ESUs) purposes, as they were

randomly distributed. The root mean square error (RMSE) and

relative RMSE (RRMSE) metrics were calculated using Equations 2

and 3:

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Yi − bY i)2

n

s
  (2)
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RRMSE =
RMSE
m *100 (3)

where, Yi is the observed value, Ŷ i is the predicted value, m is

the average value of observations, and n is the number of samples

(Richter et al., 2012).
2.5 Global sensitivity analysis

In GSA, screening methods such as the Morris method (Morris,

1991) are often used prior to applications of GSA methods like

EFAST (Saltelli et al., 1999), thereby simplifying the identification of

the least and most effective parameters, respectively. The least

effective parameters are kept constant and are excluded from the

next step, i.e., executing variance-based methods with high

computational complexity (Vanuytrecht et al., 2014). The

combination of Morris and EFAST methods has also proven

successful in studies by Sun et al. (2012), Vanuytrecht et al.

(2014), and Silvestro et al. (2017).

2.5.1 Morris method
To identify effective parameters, the Morris method calculates

the elementary effect of each parameter (di) on the output variations

(Equation 4):

di(x1, x2,… :, xk,D)

=
½y(x1,… :, xi − 1, xi + D : xi + 1,… :, xk)�

D
(4)

where y(x) is the model output, X= (x1, x2, …, xk) is the k-

dimensional parameters vector, D is a predetermined value equal to

1/(p − 1), in which p is the number of levels corresponding to the

parameter distribution values. The number of model parameters in

this study was set at 59 (k = 59). Absolute average values of

elementary effects (μ*) represent the most effective parameters in

the model (Equation 5):

EEij =
Y(X1,X2,…,Xi + Di,…,Xk) − Y(X1,X2,…,Xi :…,Xk)

Di
(5)

m*j =  
1
r
 o

r

i=1
EEi,  j

�� ��
FIGURE 2

Samples of DHP taken in ESUs at different phenology stages of silage maize (Akbari et al., 2023).
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TABLE 3 Crop and soil parameters of the AquaCrop model considered
in the SA.

Name
of
parameter

Description Unit

Crop parameters
Canopy and phenological development

eme
Growing Degree Days (GDD) from sowing
to emergence

GDD

mat
Length of the crop cycle from sowing to
maturity (GDD)

GDD

den Number of plants per hectare n ha−1

ccs
Soil surface covered by an individual seedling at
90% emergence

cm2

cgc
Canopy growth coefficient (CGC): Increase in
canopy cover

Fraction
GDD −1

ccx Maximum canopy cover in fraction soil cover %

sen GDD from sowing to start senescence GDD

cdc
Canopy decline coefficient (CDC): Decrease in
canopy cover

Fraction
GDD −1

flo GDD from sowing to flowering GDD

flolen Length of the flowering stage (GDD) GDD

dos day of sowing (Julian Day) JDAY

hilen
Period of Harvest Index build up during yield
formation — starting at flowering (GDD)

GDD

hilen_cd
Building up of Harvest Index starting at
flowering (days)

day

cdc4ggd
CDC for GGD: decrease in canopy cover (in
fraction per GDD)

fraction
GDD

cgc4ggd
CGC for GGD: increase in canopy cover (in
fraction soil cover per GDD)

fraction
GDD

To_crop
Base temperature below which crop development
stops (°C)

°C

Tmax_crop
Upper temperature above which crop
development stops (°C)

°C

cdlf Crop determinacy linked with flowering –

Root development

root GDD from sowing to maximum rooting depth GDD

rtx Maximum effective rooting depth (m) m

rtmin Minimum effective rooting depth (m) m

rtshp Shape factor describing root zone expansion –

rtexup
Maximum root water extraction (m3 water/m3

soil. day) in top quarter of root zone
m3 m−3

soil d-1

rtexlw
Maximum root water extraction (m3water/m3
soil. day) in bottom quarter of root zone

m3 m−3

soil d−1

Transpiration

kc
Crop coefficient when canopy is complete but
prior to senescence

–

(Continued)
F
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TABLE 3 Continued

Name
of
parameter

Description Unit

Transpiration

kcdcl
Decline of crop coefficient (%/day) as a result of
senescence, nitrogen deficiency, etc.

% d−1

evardc
Effect of canopy cover in reducing soil
evaporation in late season stage

–

fk Evaporation decline factor for stage II

Kex
Soil evaporation coefficient for fully wet and
non-shaded soil surface

Biomass and yield production

wp
Water productivity normalized for ETo and CO2

(g/m2)
g m−2

wp_yfp
Water Productivity normalized for ETo and CO2

during yield formation (as % of wp)
%

hi Reference Harvest Index (HI0) (%) %

exc Excess of potential fruits (%) %

cpco2
Crop performance under elevated atmospheric
CO2 concentration (%)

%

anaer
Anaerobic point below saturation limiting
aeration (vol %)

%

stbio
Minimum GDD required for full
biomass production

GDD

Water, temperature and salinity stress

pexlw
Soil water depletion factor for canopy expansion:
lower threshold (fraction TAW)

fraction
TAW

pexup
Soil water depletion factor for canopy expansion:
upper threshold, fraction of total available
water (TAW)

fraction
TAW

pexshp
Shape factor for water stress limiting
canopy expansion

–

psto
Soil water depletion fraction for stomatal control:
upper threshold (fraction TAW)

fraction
TAW

pstoshp
Shape factor for water stress limiting
stomatal conductance

–

psen
Soil water depletion factor for canopy senescence:
upper threshold (fraction TAW)

fraction
TAW

psenshp
Shape factor for water stress inducing
early senescence

–

ppol
Soil water depletion factor for pollination (p —

pol): upper threshold (fraction TAW)
fraction
TAW

hipsflo
Possible increase (%) of HI due to water stress
before flowering

%

hipsveg
Coefficient describing positive impact on HI of
restricted vegetative growth during
yield formation

–

hingsto
Coefficient describing negative impact on HI of
stomatal closure during yield formation

–

(Continued)
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s j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
r
 o

r

i=1
(EEi,j −  

1
r
 o

r

i=1
(EEi,  j))

2  

s

where EE is the initial effect, r is the number of trajectories, and

μ* and sj (sigma) are the absolute mean and standard deviation of

EE values for calculating the Morris sensitivity and its uncertainty,

respectively (Franczyk, 2019).

2.5.2 EFAST method
The variance-based GSA, the EFAST method, evaluates the

search space of each continuous parameter nonlinearly, i.e., the

search space is defined based on the search curve using a sin

function. Then, after multiple iterations, combinations of

parameters are created, and the output variance is calculated

(Vanuytrecht et al., 2014). The Fourier transform can then be

applied to the y function to calculate variance (Xing et al., 2017).

A merit of this method lies in its consideration of higher-order

relationships between input parameters alongside the first-order

effect, so that the output variance of the model, V (Y), can be

calculated using Equation 6:

V(Y)= om
i=1Vi+ o1≤i≤j≤mVij+…+V12…m (6)

where Vi = V[E(Y/xi)] is the main effect of each parameter xi
with E(Y/xi), and Vij to V1…m examines the relationships between

m parameters.

GSA methods often derive two sensitivity indices for each

parameter: the main sensitivity index (Si) (first-order), and the
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total sensitivity index (STi) (higher-order effects) (Equation 7)

(Saltelli et al., 1999). Si measures only the effect of a single

parameter on the output variance, whereas STi also measures the

interactions between parameters. Si and STi both vary between 0

and 1, with higher values representing more effective parameters:

Si= Vi
V(Y)    STi=

V(Y)−V−i
V(Y)

(7)

where V−i is the sum of all variances excluding i (Pianosi et al.,

2016). One must note, however, that the EFAST method requires a

much longer computational time than the Morris method in

calculating the sensitivity indices (Vanuytrecht et al., 2014).
2.6 GSA model implementation

The FAO-AquaCrop plug-in (ACsaV60) (available at http://

www.fao.org/aquacrop/en/) was employed for analyzing model

sensitivity using Morris and EFAST SAs programmed in

MATLAB. By running ranging parameter values (variants) for

GSA, various projects of the Aquacrop model were executed

sequentially, with the consequent calculation of the Morris index

and the variance (Figure 3).

Here, GSA was run by changing the parameter values (i.e.,

creating variants) and assessing their effects on the final crop yield.

To create these variants based on the Morris and EFAST GSA,

random sampling produced consistent with the Morris (1991) and

Saltelli et al. (1999), which were generated through random

sampling matrix and search curve methods, respectively. Model

parameter sensitivity was analyzed in MATLAB using related codes

(obtained from Silvestro et al., 2017), and those developed in the

present study for the AquaCrop model matched with the

GSA codes.

Relatively higher μ* values indicate more effective parameters.

According to Vanuytrecht et al. (2014), the threshold μ* = 0.25 t ha−1

was applied to the Morris method for the AquaCrop model to choose

the more effective parameters to be fed into the EFAST method and

simplify the model in the first stage. The main advantage of the

Morris method is its lower computational cost. Along this line, a total

of 1,180 AquaCropmodel runs with varying parameter combinations

were implemented in this study for 20 different trajectories

(introduced by Vanuytrecht et al., 2014 as an appropriate and

balanced number for identifying the more effective parameters). By

assigning constant values to the less effective parameters identified in

the Morris method, the remainder of the parameters were assessed

through EFAST. A total of 202,354 AquaCrop model runs with

different parameter combinations were evaluated using EFAST.

Conservative/non-conservative parameters of the AquaCrop

model were also included in the GSA for this study (total of 59

parameters). Several studies also suggested a small range of

variation for the conservative parameters (e.g., Andarzian et al.,

2011; Mkhabela and Bullock, 2012; Xiangxiang et al., 2013; Jin et al.,

2014; Vanuytrecht et al., 2014; Abi Saab et al., 2015; Silvestro et al.,

2017; Upreti et al., 2020). Conservative parameters are crop specific,

but do not change with cultivar, time, management practices,
TABLE 3 Continued

Name
of
parameter

Description Unit

Water, temperature and salinity stress

hinc Allowable maximum increase (%) of specified HI %

polmn
Minimum air temperature below which
pollination starts to fail (°C)

°C

polmx
Maximum air temperature above which
pollination starts to fail (°C)

°C

ecss
Electrical Conductivity of soil saturation extract
at which crop can no longer grow (dS/m)

dS m−1

ecsss
Electrical Conductivity of soil saturation extract
at which crop starts to be affected by soil salinity
(dS/m)

dS m−1

Ssf Soil fertility/salinity stress coefficient (%)

Soil parameters

rew Readily evaporable water from top layer (mm) mm

fc Soil Water Content at Field Capacity %

pwp Soil Water content at Wilting Point %

Ksat Saturated hydraulic conductivity mm d−1

th Soil thickness of sampling m

WC Water content
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geographic locations, or climate (Raes et al., 2017a). These

parameters are not supposed to require a local calibration for a

well-studied crop such as wheat, but would need to be calibrated

using data from multiple locations for a species new to AquaCrop

(Silvestro et al., 2017). Here, we aimed to fill the research gap

regarding identifying the influential parameters in the AquaCrop

model calibration, especially in intermediate environmental

conditions between sub-tropical sub-humid and temperate sub-

humid climates for the silage maize crop. Therefore, we considered

conservative along with non-conservative parameters in the

sensitivity analysis in new environmental conditions and crop

species in the AquaCrop model.

Meanwhile, a key issue in GSA is identifying the range of

parameter values, or alternatively, the minimum and maximum

acceptable values (bounds) for each parameter (Vanuytrecht et al.,

2014). Determining parameter distributions also plays a role, here a

uniform distribution is taken if no specific distribution is presumed.

Variations in certain parameters, such as soil parameters,

phenology parameters, crop density, and maximum canopy cover

in fraction soil cover (ccx), were ranged based on data collected

from the study area. The remainder of the model parameters were

set based on the minimum and maximum possible values specified

in the available sources (see Appendix 1).

GSA with Morris and EFAST algorithms were implemented

using an Intel(R) Core (TM) i7-2640M CPU at 2.80 GHz and 8 GB

of RAM in MATLAB R2017a environment. The runtime of these
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two algorithms for the AquaCrop model lasted approximately eight

and thirty hours, respectively.
3 Results

3.1 AquaCrop model evaluation against
actual experimental data

Prior to the AquaCrop model usage in sensitivity analysis, it

should be tested against actual experimental data. The RMSE and

RRMSE metrics of CC, biomass, and yield variables were first

calculated (Table 4). The comparative analysis of yield by R2 was

calculated between the estimated and observed yield values

(Figure 4). Based on these results, we concluded the AquaCrop

model efficiency in the study against actual experimental data before

such model usage in sensitivity analysis.
3.2 Morris SA results

Figure 5 shows the results of the Morris method as the variable

response of the crop yield in the AquaCrop model to changes in

parameters. Considering μ* values of less than 1 t ha−1, 44

parameters were identified as affected to a lesser extent (less

sensitivity) by changes in different conditions. The Morris
TABLE 4 Evaluation of AquaCrop results.

Output variables

CC Biomass Yield

RMSE RRMSE RMSE RRMSE RMSE RRMSE

Parameterization 5.273 7.168 1.436 15.219 3.776 6.317

Evaluation 7.215 10.210 1.673 21.241 4.246 9.054
RMSE values for CC, Biomass and yield were measured in %, ton/ha, and ton/ha, respectively, RRMSE also shown in percentages.
CC and biomass were based on 60 samples of parameterization and 120 samples of evaluation the total of growing season of the crop. Yield was based on 10 samples of parameterization and 20
samples of eva;uation in the end of growing season of crop.
FIGURE 3

Work flow of the study includes field data collection and sensitivity analysis of AquaCrop model parameters.
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FIGURE 4

Comparative analysis of estimated and observed values of yield.
B

C D

E F

A

FIGURE 5

Morris SA values (µ*) for different AquaCrop model parameters. (A) Canopy and phenological development; (B) Root development; (C) Transpiration;
(D) Biomass and yield production; (E) Water, temperature, and salinity stress; (F) Soil parameters.
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method provides an initial assessment of the more effective

parameters, where parameters with μ* below 0.25 t ha−1 can be

considered less effective and assigned constant values in the model

(Vanuytrecht et al., 2014). Accordingly, 30 parameters were

categorized as having low sensitivity (i.e., μ*<0.25), considering

the negligible effect of changes in the values of said parameters on

the crop yield variable as the model output. These parameters were

either assigned their corresponding mean range value or measured

through field data. In the intermediate climate conditions between

sub-tropical, sub-humid, and temperate sub-humid of the study

area for silage maize, these parameters include soil and root

parameters (i.e., fc, th, Ksat, rtshp, ecss, rtexup, and rew), crop

responses to water stress (i.e., ppol, psto, pexlw, pexup, pexshp,

pstoshp, and hipsflo), senescence, harvest index, and maturity

conditions (i.e., sen, psenshp, hinc, hilen, hingsto, and mat),

temperature effects on crop (i.e., polmx and Tmax-crop), and

other crop parameters (i.e., dos, ccs, exc, flo, cgc4ggd, cdc4ggd, fk,

and wp_yfp). In categories of soil and root parameters and other

crop parameters that found μ*<0.25, these parameters belonged to

non-conservative parameters except for rtshp, ecss and wp-yff. All

parameters of crop responses to water stress and temperature effects

on crop categories found less than 0.25 in μ* were in conservative

parameters that consider the negligible effect of changes on the crop

yield of the model output. Parameters with low yet not-negligible

sensitivity values (i.e., 0.25<μ*<1.0) were identified as: cdc, den,

psen, polmn, ecsss, kcdcl, rtxlw, evardc, cdlf, hilen_cd, cpco2, hi, flilen,

and Kex.
3.3 EFAST SA results

The drawback of the Morris method is its inability to analyze

relationships and interactions between parameters and their

nonlinear effects on the model output. To resolve this, the EFAST
Frontiers in Agronomy 11
method was implemented to examine such effects in consideration

of the more influential parameters (μ* > 0.25 t ha−1) (i.e.,

29 parameters).

Two indices, S (main sensitivity index or first-order effects) and

ST (total sensitivity index, total effects, or higher-order effects), were

obtained using the EFAST method. This method was applied to

selected parameters obtained from the Morris method to determine

the effectiveness of parameters (Figure 6).

Based on the first-order effects, only ccx, rtx, wp, pwp, stbio,

anaer, kc, rtmin, cgc, kcdcl, eme, and hi showed a stronger impact,

with other S index parameters identified as less effective. Therefore,

the major effect of input parameters on model output is primarily

caused by higher-order effects and interactions among parameters.

Considering higher-order effects, parameters ccx, rtx, pwp, wp, anaer,

stbio, kc, cgc, and rtmin indicated higher sensitivity in the model with

STi> 0.1 t ha−1. Also, To-crop, eme, hi, kcdcl, and psen parameters

ranked next in terms of high sensitivity (0.05<STi<0.1 t ha−1).

Parameters ccx, rtx, pwp, wp, anaer, stbio, kc, cgc, and rtmin

were also significant in terms of first-order effects, pointing to the

non-linearity of parameters and interactions therein. Meanwhile,

the difference between the S and STi indices indicates the ratio of the

contribution to the total output variance that rises due to the

interaction of the parameter i with other parameters

(Ghasemizade et al., 2017). High interactions also mean

difficulties in identifying the parameters when calibrating the

model. Figure 7 indicates the S and ST index values difference for

identifying the parameter interactions. The more sensitive

parameters, except ccx have been found based on the SA were

noted the more interactions of the parameters by others.

According to these two indicators, pwp, cgc, ccx, anaer, stbio,

rtmin, rtx, kc, and wp comprise the more effective parameters in the

AquaCrop model. In addition to rtmin and rtx (root) and pwp (soil),

other parameters (categories) including anaer, wp, and stbio

(biomass), cgc , and ccx (canopy development), and kc

(transpiration) were identified as the driving parameters in the
FIGURE 6

S and ST index values of EFAST SA for different AquaCrop model parameters.
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study area. The ccx exerted the highest effect, followed by root and

soil parameters.

Parameters ccx, rtx, pwp, wp, anaer, stbio, kc, cgc, and rtmin

belonged to non-conservative parameters except for wp, stabio, kc

and cgc. The results indicated there is no difference between

conservative and non-conservative parameters when we study the

crop growth model for new crop and climate conditions. So,

sensitivity analysis on both conservative and non-conservative

parameters has given a complete picture of the sensitivity of

model outputs to model parameters and also helped to find the

optimum range for each parameter. This is especially of great help

to plant breeders, crop physiologists, and also agronomists to gain

insight on more important traits that could influence crop

performance and thus to direct their research efforts toward their

optimization in practice.
3.4 Uncertainty analysis

A major issue in SA is determining the range of variation in

parameters and their distribution (Vanuytrecht et al., 2014). Here,

parameter distributions were considered uniform, and the range of

variation was examined through field measurements in the study

area and a literature review if the parameter had a physical

definition. The names and features of all model parameters, their

range of variation, and their source are presented in Appendix 1.

Considering these two factors and their variability in each region, it

is necessary to assess the extent of GSA uncertainty in the Morris

method (i.e., sigma index). The obtained uncertainty values were

used to examine the degree of validity and the percentage of

certainty about the accuracy of the ranges of variation (Silvestro

et al., 2017). Figure 8 presents the GSA uncertainty values of the

AquaCrop model parameters obtained using the Morris method

with respect to the crop yield variable as the model output. Of the 59

model parameters, the amounts of uncertainty for 7 and 4

parameters were, in respective order, more than 0.2 t ha−1 (psen,

cdlf, hipsflo, flolen, cgc4ggd, cdc4ggd, and Kex) and 0.4 t ha−1 (psen,

hipsflo, cdc4ggd, and Kex). The uncertainty for the remainder of

parameters was less than 0.2 t ha−1, implying the accuracy

(certainty) of their range of variation.
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4 Discussion

We studied the GSA assessment of the AquaCrop model and

identified the driving parameters for model calibration at the

regional scale. Compared to field-based applications in crop

growth models, uncertainty remains high among model

parameters and input factors. Meanwhile, for data assimilation

and crop model-based applications at the regional scale, there is

less transparency and more complexity involved in discovering the

optimized parameters. Finding these optimized parameters enables

us to reduce uncertainty and increase the accuracy of the model

output simulation.

The results of GSA are entirely driven by climatic and

environmental conditions and the range of variation in the model

parameters as well as input variables (Vanuytrecht et al., 2014).

Therefore, variations in the GSA ranking based on different

environmental conditions rule out any attempts to find a

comprehensive list of key AquaCrop model parameters for all

geographical areas to be used during calibration and parameter

tuning. Accordingly, the question should divert to which climate–

crop–soil–management parameters are more effective depending on

the study area?

For this purpose, the present study conducted an GSA of the

AquaCrop model through a combination of Morris and EFAST

methods on silage maize cultivation in the climatic conditions

between sub-tropical sub-humid and temperate sub-humid

during summertime.
4.1 Morris results evaluation

The research findings make it possible to distinguish parameters

between sensitive and less sensitive groups. In this study, 30

parameters were identified as negligible considering their minimal

effect, thereby simplifying the model for silage maize given varying

environmental conditions of the region. Considering this minimal

effect, it is also possible to exclude such parameters from calibration,

assimilation, or application of GSA in similar scenarios of plants or

regions of study.
FIGURE 7

S and ST index values difference for identifying the parameter interactions.
frontiersin.org

https://doi.org/10.3389/fagro.2024.1304611
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Akbari et al. 10.3389/fagro.2024.1304611
Silage maize is harvested prior to its senescence stage and at the

beginning of its maturity, which explains why the sen and psenshp

parameters (related to the plant senescence) and the hinc, hilen, hingsto,

and mat parameters (related to the harvest index and maturity) were

classified as less effective and negligible parameters. Water stress

parameters concerning canopy expansion, stomatal closure, early

canopy senescence, and before flowering (i.e., hipsflo, ppol, psto,

pexlw, pexup, pexshp, and pstoshp), however, had little effect on growth.

The maximum temperature of the region reached 43°C in only a

few days, mainly during the summer, ruling out the polmx parameter

— featuring the maximum air temperature above which pollination

starts to fail — as less effective given the conditions of this region.

Although the temperature exceeded 30°C on most summer days, the

Tmax-crop parameter — featuring the upper temperature bound,

above which crop development stops — showed no significant effect

on plant growth in the models’ output. Soil in the study area generally

remained in normal EC ranges, determining ecss AquaCrop

parameter as another less effective parameter. rtexup — featuring
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maximum root water extraction in the top quarter of the root zone—

was also identified as a less effective parameter on silage maize since

maize roots penetrate deeper into the soil. The ccs— featuring the soil

surface covered by an individual seedling at 90% emergence — is

another less effective parameter in this plant, closely followed by the

den parameter, which signifies crop density. The effects of exc —

featuring the excess of potential fruits, were also negligible since the

plant under study is silage maize and not a fruit. Other parameters

such as dos (day of sowing), rtshp (shape factor describing root zone

expansion), rew (readily evaporable water from the top layer), and th

(soil thickness of sampling) were also less effective for silage maize in

the study region given the AquaCrop model.

According to Vanuytrecht et al. (2014), examinations of different

environmental conditions in different regions have identified hinc, exc,

pexup, ppol, polmx, rtexup, evardc, polmn, and rtxlw as parameters

with negligible sensitivity (less than 0.25 t ha−1) in relation to the

AquaCrop model’s output. In addition to the parameters extracted

from Vanuytrecht et al. (2014), i.e., hinc, exc, pexup, ppol, polmx, and
B
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FIGURE 8

Morris method uncertainty values for different AquaCrop model parameters. (A) Canopy and phenological development; (B) Root development;
(C) Transpiration; (D) Biomass and yield production; (E) Water, temperature, and salinity stress; (F) Soil parameters.
frontiersin.org

https://doi.org/10.3389/fagro.2024.1304611
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Akbari et al. 10.3389/fagro.2024.1304611
rtexup, the present study identified other less effective parameters as:

fc, th, Ksat, rtshp, ecss, rew, psto, pexlw, pexshp, pstoshp, hipsflo, sen,

psenshp, hilen, hingsto, mat, Tmax-crop, dos, ccs, flo, cgc4ggd, cdc4ggd,

fk, and wp_yfp (Figure 5). Vanuytrecht et al. (2014) also stated that the

parameters describing crop responses to water stress (pexup, pexlw,

psen, hingsto, hipsflo, and hipsveg) and those related to soil water

depletion levels for the induction of water stress (pexup, pexlw, psto,

and psen) are rarely identified as highly effective parameters. In most

areas, these parameters are less effective compared to the root and soil

parameters (e.g., root, rtx, rtshp, fc, and pwp), a fact also confirmed by

results obtained from the Morris method on silage maize in this study.
4.2 EFAST results evaluation

Literature revealed that the EFAST method is generally more

robust than the Morris method (Cariboni et al., 2007; DeJonge et al.,

2012; Silvestro et al., 2017). Also, EFAST enables us to distinguish

between the first-order and higher-order effects of model parameters

and identify their interaction with the model output variance.

The results of EFAST GSA revealed only a few parameters (12

out of 29) as maintaining stronger first-order effects, with the rest

remaining less significant (small values). It can therefore be

concluded that the effects of parameters on model output are

mainly derived from the higher-order effects and the interactions

between the parameters. Based on the higher-order effects,

parameters with ST values less than 0.1 (less than 10%

contribution to the output variance), including canopy and

phenological development (cdc, eme, den, To-crop, cdlf, hilen-cd,

flolen), water, temperature, and salinity stress (psen, polmn, ecsss,

hipsveg, Ssf), transpiration (kcdcl, evardc, Kex), root (rtxlw, root),

biomass and yield production (cpco2, hi), and soil (WC) (Figure 6)

were considered as less effective parameters. These parameters can

be assigned an average value, or a value in the range of variation, or

the value measured during field measurement for model calibration.

The highest model sensitivity, as per the results, was observed

for ccx, rtx, pwp, wp, anaer, stbio, kc, cgc, and rtmin, respectively.

Considering the first- and higher-order effects in this region, in

addition to the rtmin and rtx (root) and soil water content at the

wilting point; pwp (soil) parameters, anaer, wp, stbio (biomass), kc

(transpiration), cgc, and ccx (canopy development) parameters

(category) were also identified as the most effective parameters

(Figure 6). The maximum fCover (ccx) parameter exerted the

highest effect, followed by root and soil parameters. This shows

that in the case of silage maize in a semi-arid region with moderate

to limited irrigation, the AquaCrop model is more sensitive to soil

and root parameters than those concerning the crop response to

water stress. Surprisingly, no water stress parameters were identified

as highly effective. A related study reached a similar conclusion

about the water stress parameters versus root and soil parameters by

Vanuytrecht et al. (2014).

Vanuytrecht et al. (2014) acknowledged the most effective

parameters for maize cultivation in sub-tropical sub-humid

climatic conditions as root and soil parameters such as rtx and

pwp, and for temperate conditions such as ccx, cgc, and stbio. As for

the present study area, located in-between these two climate
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conditions (i.e., sub-tropical sub-humid and temperate

conditions), ccx, cgc, and stbio were also identified in addition to

root and soil parameters as significantly effective. However, the

ranking of these parameters is different from that in Vanuytrecht

et al. (2014). In Vanuytrecht et al. (2014), root and soil parameters

are prioritized over ccx, cgc, and stbio parameters in certain areas

and vice versa. However, ccx had a higher priority in the present

study. This issue is fully dependent on different climate

circumstances and their effect on GSA processing. Conversely, the

more sensitive parameters have been found in this study indicated

the existence of more interactions with other parameters (Figure 7)

and must be accurately identified when calibrating the model.
4.3 Uncertainty analysis evaluation and
final remark

A major point of GSA is to determine the range of variation in

parameters and their distribution (Paleari and Confalonieri, 2016).

Considering their variability in different regions, it is necessary to assess

the extent of GSA uncertainty in the Morris method. Among the 59

parameters studied, the uncertainty of only a small number of

parameters remained over 0.4 t ha−1, indicative of the high accuracy

and certainty of variation ranges for parameters in this study (Figure 8).

Finally, it can be inferred that, in accordance with previous

studies (e.g., Vanuytrecht et al., 2014; Silvestro et al., 2017; Upreti

et al., 2020), applications of GSA for different environmental

conditions in the Morris and EFAST methods make it possible to

identify the most effective parameters prior to calibrating the

AquaCrop model. Also, it further simplifies the model by

considering the less effective parameters as constants, thereby

reducing model complexity and calibration time. Moreover, it is

possible to improve the accuracy of crop growth simulation and

yield estimation by reducing the need for field data through model

calibration using satellite data assimilation. For this purpose, and

also to ensure that the execution of the calibrated model is not

hindered by computational complexity, and to prevent failure in

finding a response in the optimization loops, it is necessary to

determine the minimum number of most effective parameters in the

model output. Therefore, failure to correctly identify the most

effective parameters for crops in a specific study area will both

waste time and reduce the model’s calibration accuracy.
5 Conclusions

This study proceeded with a global sensitivity analysis that

combines Morris and EFAST to identify the most sensitive

parameters for calibrating the AquaCrop model. Consequently,

the model is simplified, with the required time for calibration

reduced and the model calibration accuracy increased. The GSA

application for new climatic condition and crop type as opposed to

previous studies in the AquaCrop model implemented in this study,

we aimed to achieve more robustness conditions for the model and

close the model to the reality. The findings revealed that (i) ccx, rtx,

pwp, wp, anaer, stbio, kc, cgc, and rtmin had respectively higher
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sensitivity than other parameters, and (ii) in the water-driven

AquaCrop model, soil and root parameters were more sensitive

than those related to crop response to water stress in the case of

silage maize in a semi-arid region with moderate to limited

irrigation. Also, in agreement with Vanuytrecht et al. (2014), our

results revealed the greater role of the soil and root parameters on

the AquaCrop model as opposed to water stress parameters, which

can make the model vulnerable in situations of shortage of water for

irrigation, such as in the case of the study area. The effects of water

stress parameters on soil, crop development, and root parameters

remain indirect. As suggested by the obtained results, sensitivity

analysis can be examined in a more realistic fashion by testing

different ranges of variation for water stress parameters. In future

studies, identifying and limiting to the key driving parameters may

reduce computational complexity and lead to more accurate

optimization of the model parameters through satellite data

assimilation and simulation of crop yield output.

This study identified the most sensitive parameters, suggesting

significant interactions with other parameters. Accurately

calibrating these parameters becomes crucial for reliable model

predictions. By pinpointing these sensitive parameters and their

interactions, we provide valuable insights for plant breeders, crop

physiologists, and agronomists. This knowledge empowers them to

focus their research efforts on optimizing key traits that significantly

influence crop performance in practice.
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