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Agriculture constitutes a sector with a considerable environmental impact, a

concern that is poised to increase with the projected growth in population,

thereby amplifying implications for public health. Effectively mitigating and

managing this impact demands the implementation of intelligent technologies

and data-driven methodologies collectively called precision agriculture. While

certain methodologies enjoy widespread acknowledgement, others, despite

their lesser prominence, contribute meaningfully. This mini-review report

discusses the prevalent AI technologies within precision agriculture over the

preceding five years, with a specific emphasis on crop yield prediction and

disease detection domains extensively studied within the current literature. The

primary objective is to give a comprehensive overview of AI applications in

agriculture, spanning machine learning, deep learning, and statistical methods.

This approach aims to address a notable gap wherein existing reviews

predominantly focus on singular aspects rather than presenting a unified and

inclusive perspective.
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1 Introduction

Agriculture plays a central role in the global economy, offering vital income generation

and employment opportunities (Phasinam et al., 2022). It holds critical responsibilities in

ensuring food quality and safety, preserving the environment, fostering integrated rural

development, and maintaining social structure and cohesion in rural areas (Loizou et al.,

2019). For instance, in 2022, the European Union’s agricultural sector played a crucial

economic role, contributing significantly with a gross value added of 222.3 billion euros. This

amount represented about 1.4% of the total gross domestic product (GDP) of Europe.

Particularly noteworthy was the relative increase in the estimated agricultural income per

annual work unit, reaching a level 44.3% higher than that observed in 2015 (Eurostat, 2023).

Furthermore, agriculture remained a crucial employer, with a staggering 8.7 million

individuals employed in the agricultural sector across Europe in 2020, affirming its
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continued prominence within the EU (Eurostat, 2020). These data are

projected to further surge in response to the expected increase in the

global population, reaching 9.7 billion by 2050 (Pew Research Center,

2019). As evident from the data, the most substantial population

increase is expected in Africa, with a projected boost of approximately

92.3% (Pew Research Center, 2019). Following by Latin America and

Asia, which are expected to experience population growth by about

21% and 15.23%, respectively (Pew Research Center, 2019). The surge

in population in specific regions has led to a notable escalation in food

demand. A significant publication by Alexandratos and Bruinsma

(2012) underscores the imperative need to increase global agricultural

production by 60% to meet this growing food requirement.

Developing countries are faced with an even greater challenge, as

they would need to enhance agricultural output by 77%, while

developed countries should aim for a 24% increase (Malhi et al.,

2021). Consequently, the environmental impact of the agricultural

sector has amplified, and in the next four decades, the emissions will

increase by more than 60% (Fróna et al., 2019). In general, agriculture

accounts for more than 11% of the total anthropogenic emission from

direct source (Maraseni and Qu, 2016), and this value grows about 3-

6% if the storage, transportation, packaging and agricultural input

production are included (Tan et al., 2022). Considering direct

agricultural emissions, 81% of the global ammonia (NH3) is

reached by the agronomic sector (Damme et al., 2021) as a result

of the increase in animal feeding operation (Schultz et al., 2019). NH3

has a high impact on the ecosystem leading to the acidification and

eutrophication phenomena and also has a key role in the Particulate

Matter 2.5 micrometers (PM2.5) generation which is responsible for

serious health problems such as chronic obstructive pulmonary

disorder and lung cancer (Lelieveld et al., 2015; Apte et al., 2018).

Other emissions from the agricultural sector are methane (CH4) and

nitrous oxide (N2O) which are greenhouse gases (GHGs) and

contribute to climate change. They are produced during the enteric

fermentation, manure management, synthetic fertilizer, manure

management, synthetic fertilizers, rice cultivation, manure applied

to soils and pastures, crop residues, cultivation of organic soils, and

burning of crop residues (Han et al., 2019). So it is undeniable that

agriculture has a very large influence on climate change, which also

has a negative effect on agriculture itself. Indeed, agriculture, being

highly susceptible to climate variations, experiences adverse

consequences due to significant fluctuations in temperature and

rainfall. These variations directly influence crop yields and quality,

posing challenges to food production and agricultural sustainability.

For instance, extended precipitations could delay production

processes due to muddy soils and inaccessible fields for machinery,

high temperatures cause the lack of winter chill induces a negative

effect on the quality of asparagus and rhubarb and affect flowering

time, the increase of CO2 induce the reduction of micro and

macronutrients in lettuce, celery (Bisbis et al., 2018).

In order to mitigate the impact of climate change on agriculture

and simultaneously reduce agriculture’s contribution to climate

change embracing new technologies based on Data Science is

required. In fact, data-driven decision-making holds the potential

to revolutionize farming practices by enabling more efficient

utilization of water, pesticides, and fertilizers, thereby minimizing

environmental impacts (Akkem et al., 2023).
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2 Data science in agriculture
Nowadays, there are many new technologies based on the

Internet of Things (IoT), wireless connection, cloud computing,

and block-chain technology that have the potential to revolutionize

crop monitoring. An example, is remote sensing technologies, such as

satellite-based (Sentinel-3) or Unmanned Aerial Vehicle (UAV)

systems, utilize spectral images to calculate reflected radiation

(Toth and Jóźków, 2016). These images, when subjected to data

analysis, provide valuable vegetation indices, including the widely

used Normalized Difference Vegetation Index (NDVI) (Skakun et al.,

2018), which assesses crop health based on the Red and Near Infrared

reflectance. Beyond general vegetation indices, specific pigment

content can be evaluated using remote sensing data. For instance,

the Normalized Red Index quantifies chlorophyll levels, while the

Normalized Green Index focuses on other pigments, excluding

chlorophyll (Qi et al., 1994). In addition to remote sensing, field

wireless sensor networks are employed to measure vital weather

variables, such as temperature, air humidity, soil moisture, pH and so

on (Priya and Yuvaraj, 2019). All these technologies guide agriculture

toward a digital revolution, leading to the rise of precision agriculture

(PA), which tackles the customization of agricultural practices to fit

the unique characteristics of each crop, field, and environmental

context. It advocates the adoption of cutting-edge technologies and

data-driven approaches to effectively address the inherent

heterogeneities within a field (Finger et al., 2019), providing an

increase in terms of productivity using less natural resources such

as energy and water (Pathan et al., 2020). PA finds broad applicability

across various agricultural practices, offering valuable benefits in

terms of resource efficiency and enhanced crop management. For

instance, in the context of irrigation, PA enables precise water

delivery, avoiding wastage and ensuring optimal water utilization.

Similarly, in fertilization, PA plays a crucial role in identifying specific

areas within the field where nutrients are needed, thereby providing

targeted support to plant growth and minimizing resource losses due

to over-application. Furthermore, PA’s impact extends to pest control

and disease detection, where early warnings through predictive

models enable proactive intervention, reducing potential damage

and optimizing treatment strategies (Shafi et al., 2019). In Figure 1

are reported the domains where PA techniques are applied.

As evident from the data, the majority of publications in

precision agriculture are concentrated in the crop domains

(green). Specifically, disease detection (22%) and yield prediction

(20%) stand out as the dominant subsections in research. The third

most studied domain is livestock production, accounting for 12% of

the publications. These new technologies are available in

agriculture, paving the way for big data, and making it attractive

for advanced data analysis methodologies such as Deep learning

(DL) and Machine learning (ML), making them the most used in

the recent literature for PA applications (Ayoub Shaikh et al., 2022).

Here below are reported recent literatures about ML and DL

techniques regarding Yield prediction and Disease detection, since

these are the domains in which precision agriculture is most

studied, then, another common class of model in PA applications

is reviewed.
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2.1 Prominent machine and deep learning
techniques employed in precision
agriculture applications

Crop yield prediction is one of the most important sectors

belonging to precision agriculture because accurate model predictions

help farmers to optimize crop management, although this task remains

quite complex due to the hierarchical nature of crop yield that involves

variables ranging from plant genotype to environmental descriptors

along time and space. Some of the most recent publications propose

semiparametric DL networks to encode nonlinear relationships between

variables, for instance, Jeong et al. (2022) developed an early stage

prediction of rice yield at pixel scale methodology using as input

variables: vegetation indices, transplanting dates, minimum and

maximum of temperatures, solar radiation, administrative

information, yearly rice maps. The outputs of the remote-sensing

integrated crop model (RSCM) (Pistenma et al., 1977) was used to

train five different DL models. The model selected was the Long Short-

Term Memory combined with 1D-Convolutional Neural Network

(CNN), also a comparison between the county-scale model and pixel-

scalemodel was done, county-scale yields lack the significant advantages

of satellite images and are less sensitive to spatial variations within each

county region, while the pixel-scale crop yield better-representing

variations within a region. CNNs are also used for strawberry

cultivation to detect and count mature, immature strawberries, and

blossoms, through UAV and near-ground digital images in order to

predict strawberry yield and perfect harvesting time (Zhou et al., 2021).

Another DL technique which finds application in crop yield prediction

is deep neural networks which are multilayer feed-forward neural

networks very useful with large datasets. Their training commonly

involves gradient-based methods, though this can introduce challenges

such as converging slowly or getting trapped in local minima due to the

initialization of the random weights. To address this issue, a fusion of

deep neural networks and genetic algorithms has been explored. This

combination aims to address the issue of local minima by identifying a

reduced-dimensional subspace of weights. This integration becomes

especially relevant when environmental and genotype data are

employed for accurate crop yield prediction (Bi and Hu, 2021).
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The disease detection is vital to avoid loss of yield and quality of

the crop, since pesticides were usually applied uniformly to the

whole field, the classification and prediction of the early stage of the

disease and finding critical infestation areas, are crucial in order to

avoid economic losses and environmental problems, using mainly

hourly weather data ranged from two to five years (Fenu and

Malloci, 2021). Within this field ML techniques have been

introduced for disease management, such as the work by Bhatia

et al. (2022). This study conducted a comparative analysis of three

ML methods, namely k-Nearest Neighbor (k-NN), Support Vector

Machine (SVM), and Na¨ıve Bayes (NB). The aim was to develop an

optimized spray prediction model against powdery mildew, by

exploiting the tomato powdery mildew dataset (TPMD). This

dataset encompasses a range of weather variables like

temperature, relative humidity, wind speed, and global radiation,

along with leaf wetness data. The findings of this study indicated

that SVM exhibited the most favorable classification performance,

thus rendering it the most suitable choice for this particular

prediction task. Furthermore, a hybrid variant of the SVM was

introduced for the detection of powdery mildew. In this approach,

SVM worked as a wrapper, enhancing the training set and

minimizing the possibility of sample mislabeling. Subsequently, a

logistic regression model was applied to the refined training set,

leading to a reduction of the classification error (Bhatia et al., 2020).

The Random Forest (RF) has been proposed as a machine learning

classifier against tomato diseases. A RF uses leaf images of Early

Blight, Late Blight, Septoria Leaf spot, Spidermite, Mosaic Virus,

Yellow leaf curl virus, to classify the healthy and diseased plant

leaves (Govardhan and M B, 2019). RFs have been observed that

outperform other supervised ML and DL algorithms such as CNN,

SVM and k-NN for the classification of maize plant leaf diseases

(Arora et al., 2020).
2.2 Mechanistic-deterministic models in
precision agriculture applications

Big data leads to the use of another class of model, namely the

mechanistic-deterministic model (MDM), which are not based on

statistical relationships between variables, but they model

biophysical processes accounting for deterministic relationships

between crop growth and environmental, management and

genetic factors. MDM are useful to understand complex crop-

related phenomena and to optimally manage the agrosystems

(Pasquel et al., 2022). These characteristics makes them a

widespread tool in the agroenvironmental field, since they can

work without massive amounts of data that can be time-

consuming and expensive to collect, such as disease observations

at level of leaf. Among the many applications developed in this

model framework, below a comprehensive selection of models

is summarized.

AquaCrop a prominent crop modeling tool by the FAO, predicts

crop biomass and yield under diverse water management scenarios.

Comprising multiple modules, each simulating aspects of

agroecosystems with unique equations, its main components are

outlined. The Phenology module identifies plant development stages,
FIGURE 1

Distribution of the precision agriculture’s publications in for each
domain by Liakos et al. (2018).
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while the Climate module includes variables like air temperatures,

rainfall, and evapotranspiration demand. The Soil module manages

daily water balance, considering soil characteristics. The Canopy

module models soil surface coverage, influenced by stress and

phenological stage. The Biomass module (Equation 1) calculates

plant biomass over time using the formula:

B = WPoTr, (1)

where B signifies final biomass, WP represents water productivity

(biomass per cumulative transpiration unit), and Tr denotes daily crop

transpiration. The remaining components quantify this equation.

Dependencies exist among components, like the influence of carbon

dioxide levels on water productivity (Climate), and the connection

between green canopy cover and the Soil module. Green canopy cover

is affected by air temperatures and evapotranspiration (Climate),

creating a web of interdependencies (Raes et al., 2009; Steduto et al.,

2009). AquaCrop’s versatility spans various locations and seasons,

facilitating its application in a wide range of contexts. Notably, it has

been successfully coupled with remote sensing data, specifically green

fractional vegetation cover, to estimate maize growth and total above-

ground dry biomass in Belgium (Mohamed Sallah et al., 2019).

Additionally, its efficacy has been demonstrated in investigating

diverse irrigation treatments in Semi-Arid Tropical areas of India

(Umesh et al., 2022), as well as exploring varied soil conditions’

impact on maize growth (Shan et al., 2022).

Another famous MDM is the decision support system for

agrotechnology transfer (DSSAT) (Jones et al., 2003). It covers a

wide range of applications, such as fertilization management (Si et al.,

2021), irrigation management (Malik and Dechmi, 2019), impacts of

the climate change (Hasan and Rahman, 2020), and so on. One of the

main characteristics of DSSAT is that has been developed using a

modular approach, where each module has a distinct goal and works

independently using different MDM. For instance, the Soil module

provides information about soil water, using CERES-Wheat model

(Ritchie and Otter, 1985), simulating information about: the daily

changes in soil water content due to infiltration of rainfall and

irrigation, vertical drainage, unsaturated flow, soil evaporation, and

root water uptake processes. The CROPGRO model (Boote et al.,

1998) employs input data regarding crop growth, including optimal

temperatures for various developmental stages, information on

photosynthesis, and nitrogen fixation. It uses this information to

simulate parameters such as the emergence day, harvest maturity

date, daily senescent plant matter, and other critical elements for

determining plant stress, such as the nitrogen stress factor. The

modular structure of DSSAT makes easy for user the integration of

new modules with different goals e.g. livestock management, also in

different programming languages. They are other MDMs whose

structure is based on different sub-models, but they achieve the

same goal, the optimal agrosystem management (Brown et al.,

2014; de Wit et al., 2019). A compartmental model has been

proposed for pest management by Savary et al. (2012) which

proposed a susceptible-exposed-infectious-removed model (SEIR

model) which is composed by four compartments: healthy (H),

latent (L), infectious (I), and post-infectious sites (P) epidemics,

coupled with other variables such as: crop growth, tissue
Frontiers in Agronomy 04
senescence disease (induced by disease or physiological) and the

spatial aggregation of the disease. Those compartments are used to

simulate the rice and wheat disease (Savary et al., 2015) over a 120-

day duration using a daily time step.
2.3 Statistical methods in precision
agriculture application

“Pure” statistical methods remain less prevalent in PA

applications; however, they continue to play a significant role in

specific sectors of agriculture. For instance, statistical approaches

like Mixed Effects Models (MEM) are commonly employed in

genome-wide association studies (GWAS) for crop breeding

prediction, exemplified by the prominence of studies such as Berhe

et al. (2021) use of Mixed Effects Models. In the domain of GWAS,

Principal Component Analysis (PCA) is also frequently used due to its

ability to reduce data complexity by transforming it into a limited

number of Principal Components. These components can

subsequently be incorporated as covariates in MEM, often employed

to capture population structures (Abdi et al., 2023). PCA’s suitability

for various GWAS applications, including genotype-by-environment

interaction analysis and trait selection for yield modeling, further

underscores its importance (Abdipour et al., 2019; Ahakpaz et al.,

2021). In the domain of soil mapping, geostatistical techniques like

regression kriging continue to maintain prominence due to their

consideration of spatial autocorrelation, a factor not fully embraced by

many ML methods (Heuvelink and Webster, 2022). Conversely,

within crop yield prediction and disease detection studies, statistical

methodologies such as regression models (Chen et al., 2020; Kodaty

andHalavath, 2021) and Bayesian networks (Kocian et al., 2020; Singh

and Gupta, 2020) have been proposed. In Table 1, the studies cited in

the text above are reported, including information about the goal of

the study, the variables and the method used.
3 Discussion

The objective of this concise review is to offer a comprehensive

overview of the prevailing data science methodologies, highlighting

their popularity and significance in the field. Indeed, an extensive

portion of the literature is focused on machine learning and deep

learning because the black-box/opaque AI methodologies may

require less work from experts, albeit at the price of much more

computational work because of the big sample size required. On the

other hand, mechanistic-deterministic models take the other part of

the literature with many applications ranging from fertilization

management to disease predictions, but they often neglect the

inferential uncertainty, with the risk of falsely over-accurate

inferential statements. The MDMs clearly offer significant

advantages in agrosystem management, enabling predictions

across various scenarios of interest. To achieve this predictive

power, a crucial step often involves calibration, which entails

identifying optimal, context-specific parameter values (input

values) for solving the underlying equations. These parameter
frontiersin.org
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TABLE 1 AI studies in precision agriculture.

Reference Goal Variables Model
used

(Jeong
et al., 2022)

Prediction of
rice yields

Daily solar radiation,
temperature vegetation
indices, yearly paddy
maps, county and
province information

1D-CNN

(Zhou
et al., 2021)

Strawberry
maturity status
detection
and classification

Strawberry UAV images
and
near-ground digital
camera images

CNN

(Bi and
Hu, 2021)

Predictive
modeling on
crop yield

Genotype and
Phenotype data

DNN

(Bhatia
et al., 2022)

Spray scheduling
for tomato
powdery mildew

Temperature, relative
humidity, wind speed
and global radiation,
leaf wetness

k-NN,
SVM,
NB

(Govardhan
and M
B, 2019)

Tomato
diseases
classification

Tomato healthy and
diseased leaf image

RF

(Arora
et al., 2020)

Maize
diseases
classification

Maize healthy and
diseased leaf images

CNN,
SVM,
k-NN

(Mohamed
Sallah
et al., 2019)

Estimation of
maize growth

Soil characteristics,
temperature, relative
humidity,
evapotraspiration,
precipitation

AquaCrop

(Umesh
et al., 2022)

Assessment of
the climate
change on maize

Soil characteristics,
temperature, relative
humidity,
evapotraspiration,
precipitation, wind
speed, CO2

AquaCrop

(Shan
et al., 2022)

Maize growth
simulation under
different
conditions

Soil characteristics,
temperature, relative
humidity,
evapotraspiration,
precipitation, wind
speed, CO2

AquaCrop

(Terán-Chaves
et al., 2022)

Calibration and
validation
for perennial
ryegrass growth

Soil characteristics,
temperature, relative
humidity,
evapotraspiration,
precipitation, wind
speed, CO2,
phenological data

AquaCrop

(Alvar-Beltrán
et al., 2023)

Irrigation
management of
maize,
quinoa
and tomato

Temperature,
precipitation, field
management,
plant phenology and soil
profile conditions

AquaCrop

(Si
et al., 2021)

Fertilization
management, of
drip-irrigated
winter wheat

Weather data, soil data,
crop genetic coefficients,
and
management information

DSSAT-
CERES-
Wheat

(Malik and
Dechmi, 2019)

Irrigation
management of

Weather data, soil data,
crop genetic coefficients,

DSSAT

(Continued)
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TABLE 1 Continued

Reference Goal Variables Model
used

maize, alfa-alfa,
wheat, barley
and sunflower

and
management information

(Hasan and
Rahman,
2020)

Effect of the
climate change
on rice yield

Weather data, soil data,
crop genetic coefficients,
and
management information

DSSAT

(Rai
et al., 2022)

Long-term
impacts of no-
tillage and
conventional
tillage on
crop yield

Soil profile data,
weather data

DSSAT-
CERES-
Maize,

DSSAT-
CROPGRO-
Soybean

(Della Nave
et al., 2022)

Estimation
forage
sorghum
phenology

NDVI, Temperature,
solar radiation,
precipitation, soil
conditions, genotype
data, biomass
accumulation,
management information

APSIM

(Brischetto
et al., 2021)

Infection
prediction of
Plamopara
viticola

Temperature, relative
humidity, precipitation,
leaf wetness, wind speed,
airborne sporangia

Weather-
Driven
model

(Berhe
et al., 2021)

Marker-
trait association

Genomic and
phenotypic data

MEM

(Ahakpaz
et al., 2021)

Grain yield of
barley genotypes

Genotype
data, precipitation

AMMI-
PCA, PLS

(Abdipour
et al., 2019)

Identification of
phenotypic and
genotypic outlier
and alleles
associated with
spike traits

Genomic and
phenotypic data

MEM-PCA

(Kodaty and
Halavath,
2021)

Paddy leaf blast
disease
prediction

Temperature,
precipitation, nitrogen
usage,
disease obsevations

LR

(Chen
et al., 2020)

Grape downy
mildew
prediction

Disease onset,
temperature,
precipitation

GLM,
LASSO,
GB, RF

(Singh and
Gupta, 2020)

Pest
management

Crop health, pest
activity, temperature,
precipitation, humidity

BN

(Kocian
et al., 2020)

Crop
growth
prediction

Temperature, solar
irradiance, vapor-
pressure,
evapotranspiration, LAI,
dry weight

DBN

(Stefanini and
Valleggi, 2022)

Plasmopara
viticola
prediction

Temperature, humidity,
incidence, number
of spores

BN

(Valleggi
et al., 2024)

Maize
yield prediction

Temperature, humidity,
phenotypic data

BN

(Continued)
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values might be initially unknown, necessitating a comparison of

observed data with predictions generated by the MDM. This

process serves to assess the accuracy of the input values and is

called trial-and-error procedure. Conversely, if the input values are

sourced from literature or established knowledge, they are

considered tuning parameters. However, regardless of the

approach taken, both methods fail to quantify the forecast

uncertainty inherent in the model (Kennedy and O’Hagan, 2001).

In crop modelling with MDMs, the trial-and-error procedure is the

most used (Della Nave et al., 2022; Rai et al., 2022; Terán-Chaves

et al., 2022; Alvar-Beltrán et al., 2023) where the authors use

historical data or build new experiments to achieve their

prediction goals. Statistical procedures can be employed in the

input value selection phase to facilitate uncertainty quantification in

predictions. However, their application within these studies remains

circumscribed, in part due to the involved nature of these

techniques, but also for the prominent role played by the adopted

calibration method on the resulting prediction errors (Gao

et al., 2020).

The literature cited in this work highlights the limited number

of contributions dealing with statistical methodologies in the PA

field, particularly for crop yield prediction and disease detection;
Frontiers in Agronomy 06
future work might consider the quantitative integration of the

expert’s degree of belief into the decision-making processes of

agriculture (Valleggi et al., 2023, 2024). This starting step also

seems helpful in fully harnessing the power of modern structural

causal models (Pearl, 2009) and improving decision-making in PA

(Stefanini and Valleggi, 2022).
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