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An allergic or type I hypersensitivity reaction involves a misdirected immune
overreaction to innocuous environmental and dietary antigens called allergens.
The genetic predisposition to allergic disease, referred to as atopy, can be
expressed as a variety of manifestations—e.g., allergic rhinitis, allergic
conjunctivitis, atopic dermatitis, allergic asthma, anaphylaxis. Globally, allergic
diseases are one the most common types of chronic conditions. Several factors
have been identified to contribute to the pathogenesis and progression of the
disease, leading to distinctively variable clinical symptoms. The factors which
can attenuate or exacerbate allergic reactions can range from genetic
heterozygosity, the prominence of various comorbid infections, and other
factors such as pollution, climate, and interactions with other organisms and
organism-derived products, and the surrounding environment. As a result, the
effective prevention and control of allergies remains to be one of the most
prominent public health problems. Therefore, to contextualize the current
knowledge about allergic reactions, this review paper attempts to synthesize
different aspects of an allergic response to describe its significance in the global
health scheme. Specifically, the review shall characterize the biomolecular
mechanisms of the pathophysiology of the disease based on underlying disease
theories and current findings on ecologic interactions and describe prevention
and control strategies being utilized. An integrated perspective that considers
the underlying genetic, immunologic, and ecologic aspects of the disease
would enable the development of more effective and targeted diagnostic tools
and therapeutic strategies for the management and control of allergic diseases.
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1. Introduction

Adaptive immunity is a complex trait that has persisted in vertebrates across

evolutionary history. It consists of humoral and cell-mediated arms, which play distinct

yet interconnected roles in the body’s defense against pathogens. Between the two arms of

the adaptive immunity, humoral immunity is mediated by different isotypes of

immunoglobulins, each of which play a distinctive role against a wide diversity of

pathogens. Of the various antibody isotypes, IgE is described as the anti-parasitic

antibody isotype that participates in the clearance of helminthic parasites. To mediate this

function, IgE binds to high affinity (i.e., FcϵRI) and low affinity (i.e., FcϵRII or CD23)

receptors found on various effector cells (e.g., mast cells, basophils, eosinophils) which

stimulate the release of various proinflammatory molecules involved in vasodilation,

smooth muscle contraction, and other characteristic manifestations of inflammation (1).
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Although supposedly beneficial against parasites to prevent further

damage to the host, these responses can lead to debilitating

outcomes when directed against harmless environmental or

dietary antigens known as allergens. Allergens are substances that

range from aeroallergens found in the surrounding environment

(i.e., pollen), animal detritus and dander, and certain

components derived from food products (e.g., shellfish, dairy

products, soybeans) which stimulate allergies.

Allergic reactions are described as immediate misdirected

immune responses. Such reactions only occur across individuals

who are sensitized and exposed to specific allergens. Typically,

allergic sensitization or a predisposition to generate an IgE-

mediated allergic response (i.e., atopy) occurs as a result of a

complex interplay of different genetic factors and environmental

exposures. However, studies have identified the involvement of

non-IgE immune components in allergic diseases. Interestingly,

allergic reactions have been characterized primarily across

mammalian species despite the existence of the adaptive immune

system across other vertebrates (2). This can be partially

attributed to the divergence of the IgG and IgE antibody

isotypes from the IgY antibody isotype characteristically found

in avian and non-avian reptiles (3). In a previous study by

Borges et al., IgY was shown to be involved in mediating

antiparasitic immunity across avian species, homologous to the

role of IgE in mammalian species (4). However, further

investigation revealed that despite its structural resemblance to

the IgE antibody isotype, IgY exhibits similar functional

characteristics and binding kinetics to the IgG antibody isotype.

Differences in the binding sites in the Fc region may be the

primary basis for the differences in antibody function, leading to

the divergence of the IgG (i.e., Cγ2) and IgE (i.e., Cϵ3) isotypes

(5). Apart from IgY, the role of the IgD isotype in mucosal

immunity, immunoactivation, and proinflammation has led

many to postulate its potential role in allergic disease

progression (6).

Many studies have focused on elucidating the interrelationship

of these factors and their role in the progression and severity of

allergies. However, the genetic heterogeneity of allergic

individuals and the distinctive properties of their immune

systems has impeded the full elucidation of the underlying

aspects of allergic disease. Moreover, the elusiveness of the

allergic response in terms of clinical manifestations and the

molecular aspects of the disease stagnated the development of

effective and widespread diagnostic and therapeutic strategies.
2. Current theories on allergic diseases

2.1. Allergic march

The development of various types of allergic diseases differs

across individuals as a result of different interconnected yet

highly variable intrinsic and extrinsic factors. As aforementioned,

the innate heterogeneity of these etiologic factors leads to the

variation exhibited across allergic individuals. Several studies

attempt to characterize the progression of allergic disease
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development based on the factor of age. Findings suggest that

certain diseases tend to predominate and occur at a greater

incidence across specific age groups. This theory that describes

the temporal trend of allergic disease manifestation is called the

“allergic march” (7). Firstly, in the context of atopic dermatitis

(AD), it was determined that there exists a causal link between

onset of AD and the later manifestation of other allergic diseases.

This is attributed to dysfunctionality in the physical barriers of

the immune system, which serve as the primary sites of allergic

sensitization and colonization of proinflammatory microbiota

which are correlated with allergic disease progression. Following

this is the induction of type 2 immune responses via effector

Th2 cells, which renders hosts susceptible to allergic respiratory

responses by upregulating airway hyperresponsiveness to

aeroallergens (8). Furthermore, allergic disease progression in the

context of aging, beyond the pediatric population, has also been

investigated. Recent studies have demonstrated the phenomenon

of inflammaging and immunosenescence among the elderly,

leading to worsened disease outcomes in the context of acute and

chronic inflammatory diseases (9). Moreover, studies indicate

that the characteristic hallmarks of cellular aging such as

oxidative stress due accumulation of reactive oxygen species,

shortening and dysfunctionality of telomeres, and the increased

expression of genes associated with aging have been shown to

contribute to exacerbation of allergic respiratory diseases, such as

allergic rhinitis and bronchial asthma (10–12). These findings

suggest that targeted therapies must also consider the temporal

progression of the allergy. Administering treatments outside the

specific timeframe may result in suboptimal effects to alleviate

disease symptoms (13).
2.2. Hygiene hypothesis

On the origin of allergic diseases, many theories have been

proposed based on available historical evidence and evolutionary

patterns. Firstly, with the advent of modern public health and

sanitation practices, many disease-causing pathogens have rapidly

declined in prevalence. Of significance in the context of allergic

diseases are the parasitic helminths, which are known to elicit

IgE-mediated immune responses. Global deworming efforts have

been rampant with the aid of widespread treatment strategies

and improved diagnostics being a focal agenda of various public

health regimes. However, with the eventual decline of helminth

populations comes the rise of misdirected immune responses, the

allergic reactions. Several studies have demonstrated the

immunomodulatory effect of helminth-derived extracts,

indicating their possible role in the prevention of allergic diseases

(14, 15). This phenomenon was first described as the “hygiene

hypothesis,” by the epidemiologist, David Strachan (16, 17).
2.3. Old friends hypothesis

Graham Rook cites that reduced exposure to

immunoregulation-inducing microbiota, which persisted across
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mammalian evolution, leads to poorer control over host

inflammatory responses associated with various allergic diseases.

He coined this proposed theory as the “Old Friends Hypothesis”

to explain the underlying pathogenesis of various chronic

inflammatory diseases (18–20). Rook describes the association of

chronic inflammatory disorders due to a failure to sustain

immunoregulation due to the absence of helminths, non-

pathogenic environmental bacteria, and certain gut commensals.

These microbes which he referred to as, “Old Friends” drive the

expansion of specific populations of immunomodulatory

regulatory T cells (Treg) and dendritic cells by the secretion and

expression of specific molecules (e.g., IL-10, TGF-β, CRR4)

(21–23). These immunomodulatory molecules function by

directly acting on immune cells mediating allergic diseases or by

downregulating signaling pathways directly involved producing a

state of inflammation in the host (24).
2.4. Biota alteration theory

Over time, the advent of new discoveries and the growing

attention on the human microbiome, the original concepts of

Strachan were reshaped to consider the host ecological interactions

with the endogenous microbial symbionts and the surrounding

environment (19, 20). One such theory which gained popularity

for integrating other inflammatory diseases and the involvement of

the host microbiota is the “biota alteration theory” (25).

Based on these theories, several factors are shown to be

associated with changes in the host microbiome, leading to

various inflammatory diseases—including biota depleting, dirt,

and other factors, which affect microbial biodiversity. Biota

depleting factors include medical factors such as the use of

antibiotics, (i.e., modernization of birthing practices), and clean

factors which include improved sanitation and food processing

technology, and modern construction. Dirt factors, on the other

hand, include increased population density and developed

construction practices, which increases the predominance of

proinflammatory microbiota.
2.5. Toxin hypothesis

Beyond allergic responses to traditional airborne and dietary

allergens, certain iterations of hypersensitivity reactions were

historically described as allergies. A theory which illustrates the

origin of toxin allergy diseases is the “toxin hypothesis of

allergy” which was first described by Margie Profet (26). This

theory is based on observations of enzymatic degradation of

venom toxin by mast cell-derived proteases, which enhance

resistance to venom allergies. The administration of

phospholipase A2 (PLA2), a conserved component of bee

venom, normally induces a type 2 cell-type response and group

2 innate lymphoid cell activation via the enzymatic cleavage of

membrane phospholipids and release of IL-33. As a result of

this IgE response to PLA2, protection against anaphylaxis from

future challenge can be induced with near-lethal doses of PLA2
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(27). Therefore, these findings suggest the possible role of mast

cells and IgE-dependent responses in promoting innate and

adaptive resistance to venom allergies, forming the basis for

immunotherapeutic strategies. However, underlying factors that

determine whether a bee venom-induced IgE response leads to

pathologic anaphylaxis or protective immunity remains to be

poorly elucidated (27–30). The investigation of possible

compounds derived from other particles capable of eliciting

beneficial immune responses that antagonize the pathologic

manifestations of allergic disease can be exploited for the design

of novel therapeutics (31, 32).
3. Immunologic basis of allergic
diseases

3.1. Pathophysiology

Various components of the immune system have been

identified to play essential roles in mediating allergic diseases.

The IgE arm of humoral immunity is one of the most prominent

drivers of allergic diseases such as allergic rhinitis, allergic

asthma, and anaphylaxis. IgE-mediated allergic diseases are

classified into three phases—namely the (1) sensitization phase,

(2) activation phase, and (3) effector phase (Figure 1). During

the sensitization phase, an allergen (i.e., pollen, dust mite dander,

food) enters the body via the mucosal surfaces (i.e., respiratory

tract, gastrointestinal tract). Upon penetrating the mucosal

barrier, an antigen-presenting cell (APC) would take up the

allergen, intracellularly degrade it into peptide fragments, and

present the peptide onto MHC class II molecules. Phagocytosis

of allergen particles are mediated by the presence of protein

surfactants (i.e., surfactant protein A, surfactant protein D)

which differ in distribution and variety across different types of

allergens (33, 34). Upon presenting the allergen peptide to a CD4

+ or helper T cell (i.e., Th2), these cells would gain their effector

function to stimulate naïve B cells to differentiate into effector

IgE plasma cells. Activated plasma cells would then secrete IgE

which would subsequently bind to allergens upon re-exposure or

challenge during the activation phase. Upon binding of IgE to

allergen via the Fab region, effector cells with the corresponding

FcϵRI or FcϵRII receptor would bind to the Fc region of bound

IgE thereby activating the effector cell. These effector cells

include the mast cells, eosinophils, and basophils. IgE cross-

linking was also shown to drive allergic disease progression by

impairing monocyte phagocytosis, leading to a pro-inflammatory

microenvironment (35). These immune cells carry out various

effector functions which are characteristic to the symptoms of

different types of allergic diseases via the release of effector

molecules (i.e., prostaglandins, leukotrienes, histamines) and the

recruitment of other immune cells (i.e., dendritic cells) via cell

signaling and chemotaxis to produce a state of inflammation

(36, 37). These symptoms include upregulating inflammation,

eosinophilia, smooth muscle contraction, excessive mucus

secretion, vasodilation, and tissue damage (38). Moreover,
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FIGURE 1

Phases of allergic disease—sensitization (left), activation (middle), and effector (right) phase.
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various types of alveolar macrophages have also been identified as

key regulators of respiratory allergic diseases (39).

One factor identified to affect the host immune system are sex

differences due to hormonal variations. In general, findings suggest

that there is increased prevalence of allergic disease across females

than in males. One study from Ejima et al. demonstrated the

alleviating effect of androgens on airway inflammation,

highlighting the role of male sex steroid hormones (i.e.,

dihydrotestosterone) in suppressing type 2 cytokine production

(40). A similar study by Fuseini et al. demonstrated the signal

attenuation of house dust mite-induced type 2 and IL-17A

inflammatory factors by the action of testosterone (41). Finally,

the presence of sex-specific leptin and leptin receptor

polymorphisms may also contribute to differences in asthma

severity (42). Although the role of estrogen in allergic disease

progression has been implicated, the results from such studies

are inconclusive on whether the hormone leads to an

ameliorative effect by inhibiting inflammasome activation or a

pathologic effect by promoting type 2 proinflammatory cytokine

production (43, 44).

Despite this, aberrations in the production of IgE leading to

pathologically low levels of serum IgE has also been implicated

to play a role in allergic disease progression. This condition is

described as selective IgE deficiency, and a small number of

studies have demonstrated the potential role of deficiency of

serum IgE in potentiating various allergic diseases and worsened

respiratory function (45). Apart from asthma, this syndrome may

also lead to greater risk of other infectious (e.g., upper

respiratory tract infection, pneumonia) and non-infectious

disease (e.g., bronchiectasis, autoimmune disorders, arthritis),

indicating the important role of maintaining a homeostatic level

of IgE (46).
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3.2. Th1/Th2 interplay

One of the primary mediators of allergic disease is a

preferential shift towards Th2 predominant immunity, leading to

unregulated inflammation and destructive immune responses.

This has been described as the equilibrium model of immunity

by Eberl, which highlights the involvement of a dynamic

equilibrium between four mutually inhibitory branches of

immunity. In the context of allergies, type 2 responses comprise

immune cells and other mediators against large parasites (e.g.,

helminths) and fungi, which are also involved in allergic

responses (47). Th1 immunity is typically characterized by

beneficial immune responses, leading to better disease outcomes

whereas Th2 immunity is associated with worsened disease

outcomes, due to the uncontrolled production of

proinflammatory cytokines, leading to destructive effects on the

host. Although Th1 is known to antagonize Th2 responses,

predominance of either Th1 or Th2 immunity was shown to lead

to debilitating disease outcomes, such as acute lung pathology,

airway hyperreactivity, and chronic inflammation (48). Therefore,

it is necessary to devise ways to restore and promote Th1/Th2

balance across patients with allergic diseases.

To improve disease outcomes and control disease progression,

several attempts at investigating strategies to regulate Th1/Th2

balance have been done in the context of allergic diseases. This

involves the use of the purified carbohydrate, L-arabinose, as a

treatment option among patients with wheat allergies, protein S

among patients with bronchial asthma, and vitamins such as

1α,25-dihydroxyvitamin D3 against allergic rhinitis (49–51).

Immunotherapy has also been identified as a viable strategy in

controlling the production of proinflammatory cytokines

associated with Th1/Th2 imbalance (52). A better understanding
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of this complex interplay between the two branches of helper T-cell

mediated immunity can help in the development of more robust

therapeutics.
4. Genetic factors of allergic diseases

4.1. Genetic predisposition

Several genes have been investigated for their involvement in

allergic reactions. However, due to the heterogeneity of the

response and how the disease tends to vary from person to

person, an exact genetic basis has yet to be fully elucidated for

allergic disease predisposition and severity. Several attempts have

been made to characterize genes involved in inflammation and

maintaining the integrity of the mucosa. Overall, the genes that

were identified to be involved with allergic disease severity,

progression, and development primarily function in (1)

regulating inflammatory responses (i.e., IFN-α, TLR-1, IL-13, IL-

4, IL-5, HLA-G, iNOS), (2) maintaining the vascular

endothelium and mucosal lining (i.e., FLG, PLAUR, CTNNA3,

PDCH1, COL29A1), (3) mediating immune cell function (i.e.,

IL1RL1, PHF11, H1R, HDC, TSLP, STAT6, RERE, PPP2R3C), and

(4) affecting susceptibility to allergic sensitization (i.e.,

ORMDLR3, CHI3L1) (42, 53–58). Several studies have attempted

to characterize the genetic profiles of individuals predisposed to

and affected with allergic disease based on their polygenic

architecture. Certain loci were identified to be associated with

allergic disorders exclusively (e.g., MIIP, CXCR4, SCML4,

CYP1B1, ICOS, LINC00824) whereas other pleotropic loci were

shown to be associated with both autoimmune and allergic

disorders (e.g., PRDM2, G3BP1, HBS1l, POU2AF1) (59). These

genes shared a common genetic pathway being involved in

inflammation found across different epithelial tissue types (i.e.,

skin, esophageal, vagina, lung) due to systemic circulation of

allergic mediators, indicating the presence of shared genetic

components that directly contribute to asthma and allergic

disease pathogenesis (60).

Studies on the transcriptomic profiles of atopic individuals

revealed the distinctive role of IL-13-associated disease pathways

leading to eosinophilic airway inflammation and remodeling,

resulting in persistent airflow limitation that is characteristic of

allergic asthma. However, gene signatures varied significantly and

could be compartmentalized based on function—with expression

of genes involved in inflammation being limited to the superficial

layer and lumen of the airway whereas genes involved in airway

remodeling were limited to endobronchial biopsy samples (61).

This distinct pattern of enriched gene signatures was also clearly

observable across nasal brushing, sputum, and endobronchial

brushing samples. These genes were primarily involved in

eosinophilic airway inflammation, mast cell degranulation, and

group 3 innate lymphoid cell function, resulting in adult-onset

severe asthma (62). Further investigations of the nasal

transcriptome revealed other genes involved in airway mucin

production (i.e., MUC5AC) and mucus metaplastic

transformation of airway epithelium (i.e., FOXA3) causing airway
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obstruction (63). This compartmentalization of enriched gene

signatures presents a novel direction for the development of

precision medicine-based therapeutics. However, there still exists

numerous gaps in our understanding of the connections

pathobiological mechanisms of allergic diseases. Further

investigations must elucidate the interactive components involved

in allergic diseases, thereby integrating the genetic,

immunological, and pathophysiological aspects of allergy.
4.2. Epigenetic basis

The involvement of the epigenome in the pathophysiology of

allergic diseases has recently been described and is attributed as

one of the major linking factors of allergen and pollutant

exposure to disease progression (64–67). Differential methylation

of various loci due to exposure to cigarette smoke extract and

allergen exposure leading to rapid lung decline, airflow

limitation, and overall disease exacerbation (64). DNA

methylation of specific genes involved in innate immunity (e.g.,

IL-1B, IL-6), Th1/Th2 balance (e.g., IL-4, IL-12B, IL-2) and other

immune processes (e.g., BDNF, IL-17F, CXCL12, CCR7, RUNX1,

CD3E, SERPINE1) have been identified in the progression of

peanut allergies (65). Aberrations in DNA methylation have also

been shown to be associated with airway epithelial cell

dysfunction. Fluctuations in the DNA methylation signatures,

due to varied exposure to epigenetic modulatory factors (e.g.,

traffic-related air pollution, allergen exposure), in genes involved

in immune cell function (e.g., CD4+ T cells) and allergic disease

pathogenesis (e.g., DUSP22, WTN7B) may also serve as the basis

for the heterogeneity of symptoms of asthma and seasonal

allergic rhinitis (68, 69). In the context of childhood allergic

diseases, nasal DNA methylation signatures in three CpG sites

were associated with changes in activated T cell and macrophage

populations in the nasal mucosa, leading to allergic

inflammation. These DNA methylation signals were also

associated with IgE sensitization driving various allergic

symptoms (70).

Similarly, the effect of histone acetylation has also been

described. Using an IgE-mediated cow’s milk allergy mouse

model, reduced percentages of Treg cells were associated with

decreased levels of H3 and H4 histone acetylation across specific

Treg cell loci. In the same study by Alhamwe et al., decreased

histone acetylation was also observed across Th1 loci, preceding

the typical reduction of Th1 cell populations associated with

allergic responses. This epigenetic mechanism may be involved in

a downregulatory mechanism that results in dysregulation of the

type 1/type 2 immune response balance (71). On effector cells

(e.g., mast cells), a study by Krajewski et al. describes alterations

in histone acetylation that regulate the activation of mast cells

involved in food allergies. Inhibition of the histone deacetylase

with trichostatin A, a broad-spectrum histone deactylase

inhibitor, led to changes in the intestinal cytokine profile,

decreased expression of FcϵRI and prevention of mast cell

degranulation (72).
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5. Macroecological factors associated
with allergic disease

5.1. Exogenous early-life determinants

Several environmental factors have also been identified to lead

to an increased risk for developing allergies. A study by Adami

et al. confirms the involvement of biota depleting factors in

worsening the severity of house dust mite-induced asthma,

following administration of antibiotics. By intermittently

allowing exposure to antibiotics during the early stages of life,

this leads to several debilitating effects on the host—airway

eosinophilia, airway hyperreactivity, and reduction in

pulmonary Treg cell populations which would lead to a decrease

in microbiome diversity and depletion of pro-regulatory species

of microbiota (i.e., Lachnospira sp.) (73). Moreover, early life

and prenatal exposure to different types of chemical compounds

derived from polycarbonate plastics (e.g., bisphenol A) have also

been shown to heighten the risk and severity of allergic diseases.

Exposure to endocrine-disrupting chemicals has been shown to

Th2/Treg cell imbalance, increased levels of IgE, and

inflammatory cytokine production. Increased levels mRNA

encoding of GATA-3, and decreased levels of mRNAs encoding

Foxp3 and Helios due to bisphenol A administration were

identified as the primary mediators driving Th2 cell

differentiation, leading to exacerbation of allergic asthma

(74–76). Interestingly, the interaction of the hormone estrogen

and exposure to bisphenol A has also been shown to contribute

to increased risk of allergic disease associated with prenatal

bisphenol A exposure (74). This pattern was also shown to be

present in a study that investigated maternal exposure across

different types of bisphenols (i.e., bisphenol F, bisphenol F).

The findings of the study revealed a dose and sex-specific

effect of bisphenol exposure leading to changes in the mucosal

and systemic immune system, leading to impaired

immunoregulation and developmental immunotoxicity (76).

Overall, these studies implicate the importance of appropriate

prenatal and antenatal practices in improving allergic disease

outcomes.
5.2. Pollution

Worsening of air quality due to the accumulation of air

pollutants and atmospheric particulate matter is one the most

prominent factors driving worsened allergic disease outcomes

among urban communities. The effect of pollution on allergy

pathogenesis manifests in different ways—through the

accumulation of reactive oxygen species leading to oxidative

stress, enhancement of Th2 responses, upregulation of IgE

production, eosinophilia, and impaired mucosal barrier function.

Firstly, Jung et al. highlighted in their study the impact of

environmental pollutants such as diesel exhaust particles,

showing that exposure led to increased levels of the

proinflammatory cytokine, IL-17, and worsened disease outcomes
Frontiers in Allergy 06
(77). Particulate matter and other air pollutants, which are

known to carry microbes and viruses from the environment,

found in haze are associated with house dust mite allergic

sensitization. These atmospheric pollutants are involved in

triggering and aggravating cellular inflammatory responses by

stimulating sIgE production, contributing to the build-up of

oxidative stress, and impairment of mucosal barrier function.

(78). A study by Fernandes et al. showed that exposure to

smoking and household air pollution also led to worsened

disease outcomes across asthmatic adults. Many lifestyle practices

such as domestic wood burning, which increased exposure to

wood stove smoke, have debilitating effects on lung function,

sensitivity to inhaled corticosteroids, and augments airway

inflammation, leading to worsened disease outcomes. Across

many urban communities, most individuals are subjected to dual

exposure to household pollution and smoking, leading to

harmful additive effects (79). Therefore, the control of biomass

combustion, smoking prevalence, and the production of toxic

exhaust fumes are necessary in order to reduce the harmful

effects of pollutants.
5.3. Global environment

The dispersion of environmental allergens has also been

implied to be responsible for variations in the global

distribution of allergic disease. Aeroallergens (e.g., pollen, fungal

spores) have increased in atmospheric abundance due to

urbanization and green architectural practices. The increased

public health risk for allergic diseases across developed

countries may be attributed to two major driving factors—

reduced biochemical diversity of pollen allergens and increased

atmospheric pollen counts (80–82). These factors also shape the

host microbiome composition, due to micro-ecologic related to

lifestyle and the immediate surrounding environment. Seasonal

changes in the incidence of allergic symptoms have also been

reported, due to fluctuations in atmospheric pollen counts,

domestic aeroallergens, and mite allergens across various

geographic locations (83). Across temperate countries, there

exists a distinct seasonality of different allergic diseases (e.g.,

allergic rhinitis, asthma, allergic conjunctivitis, atopic

dermatitis) due to changes in daily temperature and humidity

across different seasons (i.e., spring, summer, autumn, winter)

(84). In contrast, among tropical and subtropical countries, a

smaller subset of allergen classes typically predominates leading

to an increased prevalence of a narrower spectrum of allergic

diseases (85). Anthropogenic climate change, leading to

increased global temperatures, has led to longer and more

widespread pollen seasons, and increased pollen load—resulting

in greater exacerbation and negative impacts on the respiratory

health of allergic individuals (86, 87). Therefore, strategic design

of residential and green spaces must consider the interactions of

the type (e.g., temperate, subtropical, tropical) and quality of

the ecosystem, its impact of air and soil pollution, and the

impact on allergic disease incidence.
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6. Microecological factors associated
with allergic disease

6.1. Human microbiome

Despite its established significance in the context of other

diseases, the microbiome has only recently gained attention in

terms of its involvement in allergic disease outcomes. A stable

microbiome has generally been shown to be associated with less

severe forms of allergic diseases (88, 89). The biota alteration

theory attributes change in endogenous microbial communities

to inflammatory diseases, of which allergies have been described

in detail. Several factors are involved in reshaping the plasticity

for healthy state interactions, the stability of the microbial

composition, and the adaptability to inflammatory responses

(Figure 2). Moreover, there exists a standard microbiota

composition that is typically altered in diversity and abundance

of specific microbial species leading to pathologic states. The

microbial species typically associated with healthy states include

Prevotella sp., Lactobacillus spp., and Bacteroides spp. Therefore,

the pathology of allergic diseases has been reshaped to recognize

the microbiota as a key player in directing the host response and

disease outcome (89).

Recent studies on the human microbiome have attempted to

characterize the composition of the gut microbiota in association

with the systemic manifestations of various allergic diseases.
FIGURE 2

Adaptation of microbiota to allergic inflammation. During allergic inflammatio
between internal host and external environmental factors. In a healthy host
and a healthy state persists. In periods of acute inflammation, ecologica
ecosystem to become inherently unstable and is modified by the immun
interactions occurring in the healthy state. In periods of chronic inflammatio
of inflammation persists. Recovery requires resuscitation from the chronic s
comprising the host microbiota.
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This would include diseases such as allergic eczema and hives,

and more common diseases such as allergic rhinitis. According

to Su et al., certain Bacteroides sp., together with Romboustia sp.

and Sutterella sp. were associated with the disease eczema. In

contrast, species correlated with allergic rhinitis consisted of

Clostridia bacteria, Ruminococcaceae bacteria, Lachnospiraceae

bacteria, Eubacterium coprostanoligenes, and Atopobium sp., all of

which differed in abundance across allergic individuals (88).

For skin allergies, Staphylococcus aureus has been shown to affect

the severity and progression of skin allergies. Firstly, enterotoxins

damage the epithelial lining of the skin, resulting in impairment

of the protective barrier. As a result, a state of inflammation

would occur and be maintained by the bacteria (90).

Furthermore, the intake of specific dietary factors may also serve

as adjuvants to allergic disease-associated immune responses,

leading to sensitization against certain foodborne allergens. This,

in turn, leads to the production of harmful bioactive metabolites

that causes disruption of the gut barrier. Thus, the systemic

manifestation of allergic diseases (i.e., food allergies) may be

attributed to loss of structural integrity of the gut epithelial lining

and increased gut permeability to inflammatory mediators (91).

Other factors which have been identified to contribute to

increased risk for allergic diseases due to changes in host

microbiota include cultural factors such as a sedentary lifestyle,

and nutritional factors such as deficiency in vitamin D (i.e., lack

of exposure to sunlight), iron, and other essential
n, the microbiota undergoes changes as a result of a complex interplay
or microbiota ecosystem, the microbiota is adapted to the healthy host
l factors (i.e., allergen exposure, viral infection) cause the microbiota
e effector responses while retaining a level of plasticity to preserve
n (i.e., allergies), the microbiota is adapted to inflammation and the state
tate of inflammation by restoring the normal endogenous communities
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micronutrients (25). Alterations in the host microbiota cause

changes in levels of several bioactive metabolites that affect the

host immune system, leading to changes in the progression of

allergic diseases (92–95). Hence, Meyer et al. suggests vitamin

and mineral supplementation to reduce the incidence and

severity of food allergies among malnourished children (94).

Additionally, Trompette et al. described the association of

increased levels of circulating short-chain fatty acids (e.g.,

propionate) and protection against allergic inflammation in the

lung (96). In effect, the importance of proper nutrition to attain

a balance of microbiota-derived metabolites and improve overall

gut microbiota metabolism is emphasized in allergic diseases. By

the perspective posed in the biota alteration theory, the need to

elucidate the interactions of the host microbiota and the role

various metabolites play in allergic disease progression could help

to augment the development of microbiome-targeted therapies.

Apart from the gut microbiome, several studies have attempted

to characterize the differences in the microbial composition of

other regions of the body, such as the respiratory microbiome. A

study by Che et al. attempted to characterize and compare the

nasal microbiome of individuals with allergic rhinitis to those

who were unaffected. Findings from their study revealed that the

presence of species such as Vibrio vulnificus and Acinetobacter

baumanni in the nasal microbiome allergic individuals led to an

increase in allergic mediators (e.g., GM-CSF, IFNβ, IL-27, IL-1β),

leading to allergic rhinitis and asthma (97). Differences in the

microbial composition of individuals with respiratory allergies

were evident in the nasopharyngeal microbiome, presenting a

possible predictor for allergic disease progression in early

childhood. Dysbiosis of the nasopharyngeal microbiome was

shown to potentiate respiratory allergic responses, with the

predominance of Moraxella sp. leading to induced pulmonary

epithelial damage and increased proinflammatory cytokine

expression (98). The microbiota composition of the upper and

lower respiratory tract was also shown to be associated with

allergic respiratory tract diseases, in a study by Cui et al. From

the findings of their study, bacterial species such as Haemophilus

sp., Streptococcus sp., Staphylococcus sp., and Clostridium sp.

were shown to be associated with inflammation in the lower

respiratory tract, parallel to their effect in the gut microbiome.

Additionally, pharyngeal colonization of Haemophilus sp. and

Streptococcus sp., together with the upper respiratory tract

pathogen Moraxella sp., was identified as a risk factor for acute

and aggravated allergic asthma episodes among children (99).

Finally, the impact of synergistic infections with respiratory

pathogens, such as the influenza A virus and Streptococcus

pneumoniae was also implicated to interact with factors

associated allergic inflammation to Aspergillus fumigatus. These

findings indicate a “triple-disease” burden linking asthma,

influenza virus infection, and pneumococcal pneumonia in the

context of respiratory health (100). Although underlying

immunologic responses and host cell signaling pathways may

exist that may explain the complex host-pathogen-microbiome

interactions present, these have yet to be fully elucidated. Overall,

current studies reinforce the existence of a multifactorial
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crosstalk between different synergistic microbial factors, which

may explain the variations in allergic disease progression.
6.2. Indoor microbiome

The effect of the distribution and abundance of

microorganisms (e.g., bacteria, fungi) and their derivatives (e.g.,

endotoxins, spores) in the indoor microbiome has also been

characterized in terms of the immunopathogenesis of asthma and

exacerbation of airway inflammation through cytokines

mediating type 2 immune cell responses (101–104). Several

studies across various geographic regions have attempted to

characterize the indoor microbiome across different populations,

in relation to allergic disease severity. One study done in

Malaysia identified various bacterial (i.e., Sphingobium sp.,

Rhodomicrobium sp., Shimwellia sp., Solirubrobacter sp.,

Pleurocapsa sp.) and fungal species (e.g., Torulaspora sp., family

Leptosphaeriaceae) with protective roles in the context of

respiratory health and asthma severity across tropical areas.

Similarly, several species of bacteria (e.g., Izhakiella sp.,

Robinsoniella sp.) were also identified to be associated with

asthma exacerbation. Factors which were identified to shape the

indoor microbial composition include building infrastructure, the

abundance of common household insect pests, and the presence

of molds (105). Two separate studies in different schools across

China investigated the association of the indoor microbiome and

the severity of various allergic diseases (e.g., rhinoconjunctivitis,

asthma, rhinitis, eczema). Bacteria such as Prevotella sp.,

Lactobacillus iners, and Dolosigranulum sp. were shown to induce

a protective effect against rhinitis for preschool children. In

contrast, fungi such as Aspergillus subversicolor and bacteria such

as Collinsella sp. and Cutibacterium sp. were associated with

worsened disease outcomes for asthma, rhinitis, and eczema

respectively. These opportunistic pathogenic species are often

associated with chronic inflammatory diseases and unregulated

immunoactivation due to the production of highly potent

virulence factors (e.g., cAMPs, porphyrins, hyaluronate lyase)

across different mucosal surfaces of the body. Differences in the

microbial composition of urban and rural schools were also

shown to be a primary factor in shaping the prevalence of

various allergic diseases. For example, species of Brachybacterium

was more common across rural areas and was generally

associated with improved disease outcomes across high school

children with allergic rhinitis. In contrast, potentially pathogenic

species of microbes such as Pseudoalteromonas sp.,

Microbacterium foliorum, a prominent member of the

phyllosphere microbiome, and the protist, Neospora caninum,

were associated with increased incidence of wheeze, rhinitis, and

rhinoconjunctivitis. These microbes were shown to interact with

different components of the immune system, leading to Th1/Th2

imbalance and IgE antibody production (106, 107). Findings

from a study in the United States revealed that other factors

involved in altering fungal allergen load (i.e., Aspergillus sp.,

Alternaria sp.) include the alpha diversity of bacterial species
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(e.g., Staphylococcus sp., Porphyromonas sp., Moraxella sp.,

Sutterella sp., Clostridim sp., family Neisseraceae), window

opening, and the presence of pets and flowering plants within

the vicinity. From these studies, it was established that the

microbial species which are most prevalent in an area are

referred to as the “core microbiome” (108). The exact influence

of changes in the core microbiome and an individual’s

susceptibility to allergic disease due to allergen load and changes

in host metabolic and immunologic profiles remains to be fully

elucidated.
6.3. Virus respiratory infections

Several types of viral infections have been shown to worsen and

exacerbate allergic disease outcomes. This is particularly relevant in

cases of respiratory allergies, with rhinoviruses, respiratory

syncytial viruses, influenza viruses, and coronaviruses identified

as exacerbating agents of allergic diseases. For one, adult asthma

exacerbations were associated with viral respiratory infections

(VRIs) caused by human rhinovirus, human metapneumovirus,

influenza virus, and respiratory syncytial virus (109–115). Other

factors involved include seasonal variations in viral infection

incidence and the genetic divergence of viruses across

populations. As a result, the incidence of VRIs were identified as

a predictive factor for adult asthma exacerbations in patients

across various seasons (116). Conversely, atopic individuals were

shown to be predisposed to more severe viral respiratory

diseases. The mechanistic basis for the interactions of VRIs and

allergic disease progression may be attributed to several factors

that are still being investigated. Current findings, however,

suggest that respiratory viruses prevent the development of

immune tolerance and enhance allergic sensitization to

aeroallergens. This results in increased inflammation and

hyperresponsiveness in the respiratory tract. As a result, the

airway mucosa becomes significantly more permeable to

penetration by allergens, leading to various effector functions

characteristic of respiratory allergic diseases (117, 118).

Additionally, certain viruses (i.e., rhinoviruses) have also been

implicated in persistent Th1/Th2 imbalance among patients with

allergic asthma (119). Therefore, understanding the complexity

surrounding the relationship of VRIs and allergic diseases must

be integrated with the growing incidence of viral pathogens (i.e.,

SARS-CoV-2).
7. Therapeutic and control strategies
for allergic diseases

Within the past decade, several treatment methods have been

investigated for their applicability in clinical practice, ranging

from the use of pharmaceutical drugs, inhalers, nebulizers, and

other immunomodulatory and immunotherapeutic agents (120,

121). Some studies also describe a competition between IgG and

IgE antibodies for antigenic sites on specific allergens, with IgG

binding leading to desensitization of the host to the specific
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allergen due to reduced binding sites for IgE. However, the exact

mechanistic basis for the competition of IgG and IgE binding

and how this can be exploited further to develop new prevention

strategies remains poorly elucidated (122, 123). Current findings,

however, indicate the involvement of low affinity IgG and its

interactions with the inhibitory receptor, FcγRIIb, leading to

inhibition of mast cell degranulation (124).

Various public health programs against allergies have been

established and implemented globally. While allergen avoidance

initially persisted as the primary prevention strategy for allergic

diseases, recent findings have suggested the opposite—repeated

exposure to allergen can lead to attenuation and possibly

eradication of severe disease symptoms. To address the ecological

aspect of allergic disease incidence, urban ecosystems must be

designed to maximize biodiversity of native, non-allergenic

vegetation and grassland species (81). Seasonal variations due to

geographic differences must also be considered in the

implementation therapeutic strategies (125).
7.1. Pharmaceuticals and biologics

Most pharmaceutical drugs typically target a component

involved in mediating the allergic response by disrupting or

abrogating its function or inducing a tolerogenic state within the

host. For example, leukotriene receptor antagonists which target

and suppress cysteinyl leukotrienes that function in eosinophilia,

inflammation, and airway hyperresponsiveness associated with

viral-induced asthma exacerbation have been identified as

effective treatments (126). Antihistamines are another prominent

classification of anti-allergy drugs routinely used in clinical

practice. This class of pharmaceuticals mainly act by

antagonizing the action of smooth muscle cells by stimulating

histamine action in the H1-receptors (127). However, a

prominent adverse reaction often associated with the use of

antihistamines is sedation, which is mainly found in first-

generation antihistamines. This is due to low brain uptake when

bound to blood proteins such as serum albumin (128). Second-

generation antihistamines (e.g., bilastine, loratadine,

desloratadine, cetyrisine, levocetirisin) remain as one of the most

widely available pharmaceutical drugs for allergic diseases

worldwide (129). Many attempts have been made to further

characterize the interactions of such widespread pharmaceutical

drugs in the context of different types of allergic diseases. A

pharmacokinetic study on cetirizine, one of the most widely

distributed and cost-effective antihistamine, revealed zwitterionic

and lipophilic properties which possible serves as the basis for

the differences in antihistamine potency (128). Pharmacogenomic

studies revealed the association of certain gene polymorphisms

(e.g., CRTH2) and the effective dosage of antihistamine needed

to alleviate symptoms of allergic diseases (e.g., chronic urticaria)

(130). Investigations on the different molecular properties of the

molecule can enable further improvement of the efficacy and

potency of pharmaceuticals as treatments for allergic diseases.

In terms of biologics, the humanized recombinant IgG

monoclonal antibody, omalizumab (i.e., XOLAIR), has emerged
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as a prospective therapeutic agent to effectively treat and mitigate

IgE-mediated allergic diseases. It functions by targeting IgE to

prevent the activation of effector cells which cause the symptoms

of allergic disease (131, 132). This causes a competitive binding

inhibitory effect, leading to IgE clearance and immune cell

inactivation. This is carried out through an exploitation of the

intrinsic flexibility of IgE, leading to accelerated dissociation. The

presence of specific structural features in IgE, when compared to

other antibody isotypes, such as the Cϵ2 domains and globule-

like properties of the Cϵ3, enable the formation of an allosteric

communication pathway to prevent the simultaneous binding of

IgE to both of its receptors (i.e., FcϵRI, FcϵRII). This property

would, therefore, prevent allergen-independent activation of mast

cells due to crosslinking of FcϵRI-bound IgE by CD23. However,

the cost of production and resources required limits the

widespread distribution and effective implementation of this

biologic drug as a treatment for allergic diseases (133). Beyond

logistical and economic constraints, there still exists a lack of

understanding on the basis for dissociation of allergen specific

IgE on mast cells caused by the anti-IgE molecule. Attempts to

further circumvent the inherent limitations of omalizumab

treatment was done through the development of an omalizumab

biobetter antibody with improved stability, binding affinity, and

efficacy when compared to the standard omalizumab molecule

(134). Despite the pathological role of IgE being implicated by

the function of IgE, adverse reactions to omalizumab have also

been reported due to the formation of immune complexes

between the monoclonal antibody and its target IgE antibody,

leading to the manifestation of skin inflammation and

anaphylaxis through an IgG receptor-dependent mechanism (i.e.,

Fcγ) (135).

Ligelizumab, another type of monoclonal anti-IgE antibody,

is also being prospected for its enhanced neutralization of free

serum IgE, inhibition of IgE binding to FcϵRI, basophil

activation, IgE production by plasma cells, and prevention of

passive systemic anaphylaxis when compared to omalizumab.

However, omalizumab remains more potent in terms of

inhibiting IgE:CD23 interaction to prevent allergen presentation

and other transport processes associated with allergic responses

(136). Beyond omalizumab and ligelizumab, several other

attempts at developing improved anti-IgE biologics (e.g., UB-

221, 8D6, MeDI4212) for treatment of various allergic diseases

have also been made but have yet to reach late-stage clinical

trials (137–139).

Apart from anti-IgE biologics, Schanin et al. report the use

sialic acid-binding immunoglobulin-like lectin immunoregulatory

receptor (Siglec)-6 on mast cells as a potential target for

therapeutic use. In their study, Siglec-6 monoclonal antibody

clones were developed, with the AK04 variant being capable of

inducing receptor cluster formation containing inhibitory

phosphatase. The epitope-specific agnostic activity of the Siglec-6

mab prevented systemic anaphylaxis with a single dose and

reduced overall mast cell activity with chronic dosing (140).

Although the therapeutic strategy has shown potential in driving

this occurrence, the lack of a mechanistic basis for its mechanism

eludes its prospective use in clinical practice.
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7.2. Microbiota-targeted therapies

Interestingly, the recognition of the involvement of the

microbiome has enabled the investigation of the use of prebiotics

and probiotics as attenuating agents against the progression of

allergic diseases. However, further investigation is required to

elucidate the exact causal mechanism and strategies for

improving the efficacy of microbiome-based therapeutic for

treatment of allergic diseases (Figure 3) (141). Current findings

suggest that allergy attenuation can be achieved by microbiota-

dependent upregulation of immunomodulatory Treg cell

populations. Turner et al. describes the use of species of

Clostridiales to induce the expression of TGF-β1 receptors

among Treg cells, leading to regulate allergic disease progression

(21). Similarly, Karimi et al. illustrated the potent

immunoregulatory capacity of oral treatment with live

Lactobacillus reuteri, leading to the attenuation of airway

hyperresponsiveness and inflammation (142). Future studies that

investigate the immunomodulatory potential of Lactobacillus sp.

probiotics must consider the interactions these bacteria have on

the amelioration of disease symptoms. The presence of

immunosuppressive motifs across the genome sequences of

probiotic species of Lactobacillus associated with reduced

allergenicity have been identified and could serve as the basis for

the selection of probiotic species to be utilized in treatment

strategies (143). Additionally, previous investigations suggest

prebiotic and probiotic supplementation to promote greater

abundance of Prevotella spp. and Bifidobacterium spp.,

respectively, as microbiota-directed treatment strategies for atopic

patients (144, 145). A study by Zhen et al. attempted to elucidate

this relationship by correlating the presence of various bacterial

enterotypes to the tryptophan metabolic pathways. Findings from

the study revealed that the production of indole derivatives was

associated with the attenuation of the disease. Indole-3-lactic acid

and indole-3-butyric acid inhibited allergic pathogenesis by

suppressing the production of IL-4 and IL-5 in macrophages.

Indole acetic acid, on the other hand, was shown to be involved

in balancing Th17/Treg responses, together with ILA. Plasma

components, such as lysozyme C, cystatin-3, and kininogen-1

were also shown to decrease allergic symptom severity (146).

Moreover, the consumption of dietary fibers as a prebiotic

source may attenuate allergic disease symptoms by the

production of short-chain fatty acids which would inhibit the

formation of type 2 dendritic cells that would mediate allergic

airway inflammation (96).
7.3. Immunotherapy

The emergence of immunotherapies as effective treatment

strategies to various types of allergic diseases can be attributed to

several factors impacting several aspects of the immune system.

In a study by Scadding et al., patients treated with

immunotherapies experienced less severe symptoms, had better

respiratory function, and reduced levels of nasal fluid
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FIGURE 3

Therapeutic targets and strategies for allergic diseases. There are several therapeutic strategies being developed for the control and mitigation of allergic
diseases—(1) environmental interventions, (2) microbiota-targeted therapy, (3) immunotherapy, and (4) pharmaceuticals and biologics. Environmental
interactions include public health programs involving infrastructure development and changes to lifestyle factors. Microbiota-based therapies consist
of prebiotic, probiotic, and synbiotic use to restore the host microbiome to reduce predisposition to inflammation. Immunotherapies involve repeated
exposure to gradually increasing dosages of allergens to ameliorate the host immune response. Pharmaceuticals include traditional oral
antihistamines, inhalers, and nebulizers to target specific components of the host immune response whereas biologics include monoclonal antibodies
targeting IgE and other components of the allergic response.
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concentrations of IL-4, IL-9 and eotaxin, a potent eosinophil

chemoattractant, after challenge with grass pollen (147).

Immunotherapies have been tested against milk allergies via oral

administration, for hymenopteran venom allergies, grass pollen

allergies, and even house dust mite allergies (147–149). Jung

et al. demonstrates in their study the viability of two different

types of sublingual immunotherapy as a treatment strategy for

patients with dust mite-induced allergic rhinitis, each with a

distinct set of benefits (150). Similar findings were also reported

by Matsumoto et al., wherein long-term immunotherapy with

house dust extracts led to amelioration pulmonary function

across asthmatic patients (148). Thus, the growing success of

such studies highlights the potential of immunotherapies as

viable preventive measures for severe allergic disease symptoms.

However, safety concerns remain a primary roadblock to the

effective implementation of immunotherapies in clinical

practices. Additionally, adjuvant therapies using chitin, a major

component of various allergy-causing organisms (e.g., house dust

mites, crustaceans, fungi), may be utilized to improve the efficacy

of therapeutics that attenuate the Th2 response (101). Current

studies have attempted to compare different components of
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immunotherapy extracts that would produce the most desirable

clinical outcomes. For example, a study by Du et al. attempted to

compare the potency of house dust extracts from house dust

mite allergen extracts. Findings from their study revealed greater

allergenic potential of house dust mite allergen extracts,

implicating its overall preferability over standard house dust

extracts (151). The ability to exactly determine at what point and

at what dosage re-exposure to an allergen would induce a

beneficial, long-lasting, protective effect rather than a life-

threatening, anaphylactic shock remains a major gap in current

research and necessitates further investigation. The

standardization of allergen immunotherapy extracts may improve

the therapeutic efficacy birch, ragweed, dog hair, and Alternaria

allergies, as highlighted by Due et al. (152).

Other prospective targeted therapies are also being explored for

their capacity as immunotherapeutic strategies for allergic diseases.

In the context of cow’s milk allergy, oral immunotherapy alleviated

allergic symptoms and reduced levels of cow’s milk-specific IgE.

However, adverse reactions were observed in several individuals

on oral immunotherapy (153). As a potential alternative, the

holoprotein form of the lipocalin beta-lactoglobulin (holo-BLG)
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protein is being investigated for its immunotherapeutic potential.

Despite being a component of cow’s milk, which has been shown

to induce allergies as well, this protein was identified as a novel

component in inducing a farm protective effect against pollen

allergies among farmers by promoting regulatory cell function

and downregulating antigen presentation to effector cells.

Prophylactic treatment with the protein results in disruption of

specific IgE production and attenuated the type 2 response (154).

Although not readily used or available for the clinical treatment

of cow’s milk allergy, these findings on holo-BLG represent a

myriad of potential directions for immunotherapeutic

development for allergic disease mitigation.

An interesting prospect that could be undertaken in future

research on immunotherapy potency is the combination of

immunotherapeutic extract use with administration of biologics

and other readily available treatments. A study by Bożek and

colleagues showed that a combination of an allergen vaccine with

the biologic, omalizumab, significantly increased the efficacy of

allergen immunotherapy by reducing the incidence of asthma

exacerbation and the daily dose of inhaled corticosteroids

required by patients with house dust mite-driven asthma (155).

Together, these findings highlight the importance of an

integrated approach to provide complete amelioration of
FIGURE 4

Proposed framework for allergic disease based on tinbergen’s four questions (1
are postulated to be a form of antiparasitic immunity that persisted across ver
efforts and improved sanitation practices resulted in changes in the persisten
helminthic parasites. This resulted in a mechanism involving misdirected resp
conferred survival value for immune homeostasis.
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quality-of-life and improve overall disease outcomes for

allergic individuals.
8. Discussion

The past century has been a revolutionary period for

immunology, with new findings reshaping our understanding of

the fundamental aspects of the immune system. From the

discovery of underlying molecular pathways and mechanisms to

the development of novel theories on the evolution of the

immune system, these breakthroughs culminate in the current

state of our global health scheme. This is especially relevant in

the context of allergic diseases, which are regarded as one of the

leading chronic inflammatory diseases globally.

To better understand the interrelationships of the various

factors that underlie the pathogenesis and progression of allergic

diseases, this review has adopted an integrative approach to

correlate the historical, immunologic, and genetic aspects of the

disease. Accordingly, a framework for these factors which

utilized Tinbergen’s four questions is proposed (Figure 4) (156).

In terms of evolutionary history, the ancestral allergic response

is postulated to primarily be a form of antiparasitic immunity
56). In the context of evolutionary history, the ancestral allergic responses
tebrates. In terms of development, the emergence of global de-worming
ce and primary function of the trait, masking its original function against
onses against innocuous allergens. However, the trait persisted due to its

frontiersin.org

https://doi.org/10.3389/falgy.2023.1215616
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


Falcon and Caoili 10.3389/falgy.2023.1215616
utilized by mammalian species, mediated primarily by the IgE

immune responses. A primitive form of antiparasitic immunity

is also exhibited in other vertebrates such as avian and non-

avian reptiles mediated by the IgY antibody (4–6). However, the

survival value for IgE responses has been largely masked with

the advent of global deworming efforts, improved sanitation,

and changes in global environmental conditions (16, 25, 157).

Several theories postulating the basis of the continued

persistence of the IgE responses, leading into allergic diseases,

have been made in relation to the interactions of the immune

system with host genetic, micro-ecologic, and macro-ecologic

factors (18, 25). However, the concurrent evolution of these

responses resulted in the reliance on a state of complete

immunologic, genetic, and ecologic homeostasis as evidenced by

the emergence of selective IgE deficiency syndromes that occur

as a result of dysregulated immune function (45, 46). These

observations highlight the importance of attenuating excessive,

uncontrolled immune reactions and effector functions by

restoring a proper balance (e.g., Th1/Th2, microbiome

composition) in various aspects involved in allergic diseases.

Therapeutics and control strategies at both the individual and

macroscale level must consider this complex interplay of

immunologic, genetic, and ecologic factors in order to better

achieve desirable health outcomes without severely affecting

other aspects.

In the pursuit of more effective diagnostic, preventive, and

therapeutic strategies, a better understanding of the interplay of

these factors is essential. Reshaping current perspectives about

allergic diseases would help in the development of effective

approaches in the global health scheme, to remedy the public

health burden posed by such chronic conditions.
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