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In this paper we assess the partial hedging problems by formulating hedging strategies

that minimize conditional value-at-risk (CVaR) of the portfolio loss under stochastic

interest rate environment. The combination of stochastic interest and CVaR hedging

method makes the valuing approach more complex than the existing model with

constant interest rate. We take up two issues in searching the optimal CVaR hedging

strategy: given the initial capital constraint we minimize the CVaR of the portfolio loss; by

prescribing a bound on the risk, we also minimize the hedging cost. As an illustration of

this hedging technique we derive hedging strategies for a European call option with the

Black Scholes setting under HJM framework; explicit formulas are presented. We also

investigate CVaR hedging problems by using the real financial data.

Keywords: conditional value-at-risk, dynamic hedging, quantile hedging, stochastic interest rate

1. Introduction

The problem of pricing and hedging of a contingent claim is well understood in the context of a
complete market. Given a sufficient allocation of initial wealth, every contingent claim can be repli-
cated by a self-financing trading strategy, thereby being hedged perfectly. The cost of replication
defines the price of the claim, and can be computed as the expectation of the claim under a unique
equivalent martingale measure. The cost of perfect hedging however, is often too high for investors
in the financial market. Given a limited amount of capital, investors always seek as many business
opportunities as possible while taking the total risk associated under control. As such, more and
more studies focus on exploiting partial hedging techniques.

The main characteristic of partial hedging is that it allows investors to allocate a smaller amount
of initial capital than in the case of perfect hedging, while still managing the risk in a system-
atic way. Explicitly, let L denote the loss which equals the difference between the payoff of a
contingent claim and that of a replicating portfolio, partial hedging aims to minimize the risk
of the loss L. The performance of partial hedging mostly relies on the selection of the under-
lying risk measure. Different partial hedging approaches have been proposed and examined in
the literature. The well-known examples are quadratic hedging and quantile hedging. Quadratic
hedging minimizes the expectation of a quadratic error (L2). Such a measure has been criti-
cized for the consequence of penalizing both loss and profit equally, also for not being able
to capture the heavy-tailness phenomena in the financial market. Quantile hedging is proba-
bly the most studied approach. The first papers appearing in this research area were [1], [2]
and [3]. Later [4], [5] and [6] applied the quantile hedging technique on pricing equity-linked
life insurance products. Quantile hedging maximizes the probability that a hedge is success-
ful by applying a dynamic version of the static Varlue-at-Risk (VaR). VaR has been adopted as
a standard risk measure in the financial industry. It has a number of deficiencies recognized
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by financial professionals. More recently, [7] suggested address-
ing partial hedging problem by employing conditional Varlue-at-
Risk (CVaR). CVaR is a risk measure that is a superior alterna-
tive to VaR in that it conveys information about the average loss
exceeds the VaR level and also satisfies the sub-additive property.

In this paper we follow [7] adopting CVaR as the risk quanti-
fier. However, rather than assuming a constant interest rate, we
apply Heath-Jarrow-Morton (HJM) methodology proposed by
Heath et al. [8] to model the stochastic process of interest rate.
HJM is widely accepted as the most general framework derived
by directly modeling the dynamics of instantaneous forward-
rates. It is well known that in a no-arbitrage world there exists
an explicit relationship between the drift and volatility of the
forward-rate dynamics, thus forward price valuing can be done
from the knowledge of the volatility process and the initial rate.
Much of the existing literature pays attention to the application
of stochastic interest rate models, for example, Ciurlia and Gheno
[9] and Jalen and Mamon [10]. Gao et al. [11] studies quantile
hedging of life insurance contracts with stochastic interest rate
setting. However, the subject of CVaR hedging in a stochastic
interest rate environment has not been studied.

Our main objective is to construct a partial hedging strategy
by using CVaR. We take up two issues: given the initial capital
constraint we minimize the CVaR of the loss L; by prescribing a
bound on the risk, we minimize the cost of the target portfolio.
As an illustration of this hedging technique we derive hedging
strategies for a European call option. Hedging of options is one
of the basic problems in modernmathematical finance in the the-
ory and in the applications. This problemwas initiated in classical
works of Black and Scholes [12] and Merton [13], since that time
a number of works were devoted to different aspects of the prob-
lem. In this paper we consider a European call option with the
Black Scholes setting under HJM framework; explicit formulas
are derived.We also investigate CVaR hedging problems by using
the real financial data.

An outline of this paper is as follows: Section 2 reviews CVaR
and CVaR minimization problems, and then derives the solu-
tions to the minimization problems for a non-discounted port-
folio; Section 3 illustrates HJM methodology, and tackles CVaR
hedging problem under HJM framework. The last subsection
of Section 3 demonstrates the explicit solutions of the hedging
problems by taking a european call option as a motivating exam-
ple; Section 4 gives a numerical example of how CVaR hedging
techniques can be applied on a call option, where overnight ICE
LIBOR rate for US dollars and S&P 500 index price are employed.

2. Problem Setup and Main Results

2.1. Conditional Value-at-Risk
The partial hedging problem considers controlling the risk of
portfolio loss under certain constrains. The performance of par-
tial hedging mostly relies on the selection of the underlying risk
measure. The most studied approach in the literature, quantile
hedging, maximizes the probability that a hedge is successful by
applying a dynamic version of the static Varlue-at-Risk (VaR).
VaR has been widely adopted as a standard risk measure in the
financial industry. However, It has been criticized for it’s not

being subadditive, meaning that it cannot account for diversifica-
tion. The conditional value-at-risk CVaR which is closely related
to VaR, is often considered to be a better alternative. Unlike VaR,
CVaR is a coherent risk measure, thus subadditive. CVaR focuses
on the entire tail of the loss distribution, which makes it greater
than VaR.

To define CVaR, let (�, {Ft}t∈[0,T],F,P) be a standard prob-
ability space and L be a F-measurable random variable charac-
terizing the loss. We assume that EP[L] <∞.

The VaR of the loss L at a confidence level ǫ ∈ (0, 1) is
defined as:

VaRǫ(L) = inf{x : P(L > x) ≤ 1− ǫ},

and CVaR at a confidence level ǫ ∈ (0, 1) is defined as:

CVaRǫ(L) =
1

1− ǫ

[

EP[L1{L≥VaRǫ (L)}]+

VaRǫ(L)(1− ǫ − P(L ≥ VaRǫ(L)))
]

.

If the cumulative distribution function FL(l): = P(L ≤ l) is con-
tinuous, VaR is simply the inverse function of FL, and CVaR can
be rewritten as:

CVaRǫ(L) = EP[L|L ≥ VaRǫ(L)],

which equals to the expected shortfall (ES), and

CVaRǫ(L) =
1

1− ǫ

∫ 1

ǫ

VaRu(L)du,

which equals to the average value-at-risk (AVaR).
There are convenient methods of computing and estimating

CVaR. Rockafellar and Uryasev [14] showed the possibility of
computing both VaR and CVaR simultaneously by introducing
an auxiliary function:

Fǫ(z) = z +
1

1− ǫ
EP[(L− z)+].

CVaR of the loss L is the solution of the minimization problem:

CVaRǫ(L) = min
z∈R

Fǫ(x, z) (1)

2.2. Problem Setup
Consider a portfolio consists of a risky asset S and a default-free
bond R. Let {S(t)}t∈[0,T] represents the price of the asset S at time
index t, and {R(t)}t∈[0,T] represents the price of the bond R at
time t. We assume that both S(t) and R(t) are Ft measurable.
Define ξS(t) and ξR(t) as the number of shares held on S and R
at time t ∈ [0,T]. The value of the portfolio V at time t is give by:

V(t) = ξS(t)S(t) + ξR(t)R(t), t ∈ [0,T].

Let ξ (t): = (ξS(t), ξB(t)) be a self-financing strategy, then V(t)
satisfies the following stochastic differential equation:

V(t) = V(0)+

∫ t

0
ξS(s)dS(s)+

∫ t

0
ξR(s)dR(s), t ∈ [0,T].
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A strategy {ξt}t∈[0,T] is admissible if

V(t) ≥ 0, for all t ∈ [0,T], P − a.s.

In the context of a complete market, every contingent claim can
be replicated by a self-financing strategy {ξ∗(t)}t∈[0,T]. Let H(T),
(H(T) ≥ 0), be the payoff of a contingent claim at time T; H(T)
is a FT measurable random variable. The cost of the replication
defines the price of the contingent claim: let Q be the unique
equivalent martingale measure, the value of the claim can be
replicated by {ξ∗(t)}t∈[0,T] which requires an initial amount of

V∗(0) = ξ∗S (0)S(0) + ξ∗B (0)B(0) = EQ[R(T)−1H(T)].

Such a strategy is served as a perfect hedge for the claim H(T).
In the case of partial hedging it only requires a smaller initial
amount V(0) of no larger than ν, that is,

V(0) ≤ ν < EQ[R(T)−1H(T)].

What would be the optimal partial hedge that can be achieved?
An investor who shorts the contingent claim H(T) wants to

construct a portfolio {V(t)}t∈[0,T] with a purpose of hedging the
potential loss L = H(T) − V(T) at maturity time T. Note that
in a complete market if the initial value V(0) is smaller than the
price of the claim, then L 6= 0. Our goal is to find the most effi-
cient strategy such that the risk is controlled. This paper takes two
issues in locating optimal strategy: one is to minimize the CVaR
of the loss L, with respect to the constraint that the initial cost
V(0) is smaller than some number ν:

min
V(0),ξ

CVaRǫ(H(T)− V(T)) (2)

s.t. V(0) ≤ ν

where ν < EQ[R(T)−1H(T)]; the other one is to minimize the
hedging cost V(0) so that the CVaR is less than or equal to a
number c:

min
V(0),ξ

V(0) = EQ[R(T)−1V(T)] (3)

s.t. CVaRǫ(H(T)− V(T)) ≤ c

These two problems are discussed in the following sections.

2.3. Minimizing CVaR
We first consider the CVaR minimizing problem Equation (2).
According to the CVaR representation Equation (1) we have

minV(0),ξ minz∈R z + 1
1− ǫ E

P[(H(T)− V(T)− z)+]

s.t. V(0) ≤ ν

Melnikov and Smirnov [7] shows that we can interchange the
order of two minimization problems:

minz∈R z + 1
1− ǫ minV(0),ξ E

P[(H(T)− V(T)− z)+] (4)

s.t. V(0) ≤ ν

For z ≥ 0, we have (H(T) − V(T) − z)+ = ((H(T) − z)+ −

V(T))+; then we can write Equation (4) to be

minV(0),ξ E
P[((H(T)− z)+ − V(T))+] (5)

s.t. V(0) ≤ ν

In this paper, we quantify the loss of an undiscounted portfolio.
This is different from Föllmer and Leukert [1], Gao et al. [11] and
Melnikov and Smirnov [7]. Despite the fact that we want to con-
trol the risk of a hedging portfolio at maturity T rather than its
current value, dealing with CVaR of a discounted portfolio would
result in computational inefficiency. To see this, take a call option
H(T) = (S(T) − K)+ as an example, which we will see later: by
taking the discount factor into account, (H(T) − z)+ in Equa-
tion (5) is replaced by (R(T)−1H(T) − z)+ = R(T)−1(H(T) −
zR(T))+ = R(T)−1(S(T) − K − zR(T))+, where S(T) − zR(T)
is a linear combination of two log normal random variables, and
difficult to generate a closed solution.

To solve the optimization problem in Equation (5), we sug-
gest applying the measure transformation method to the dis-
counted problem before addressing the undiscounted one. The
discounted problemwas well-studied by Föllmer and Leukert [2]:

Theorem 1. Let H(T) be the payoff of a contingent claim, then the
optimal hedging strategy (V∗(0), ξ∗) of the shortfall minimization
problem:

minV(0),ξ E
P[R(T)−1(H(T)− V(T))+]

s.t. V(0) ≤ ν < EQ[R(T)−1H(T)]

is the perfect hedge for the claim H∗(T) = H(T)ψ∗, where

ψ∗ = 1
{ dP
dQ
>a∗}

+ γ 1
{ dP
dQ

=a∗}

a∗ = inf{a ≥ 0 : EQ[R(T)−1H(T)1
{ dP
dQ
>a}

] ≤ ν}

γ =

ν − EQ[R(T)−1H(T)1
{ dP
dQ
>a∗}

]

EQ[R(T)−1H(T)1
{ dP
dQ

=a∗}
]

By Theorem 1, we can generate the following theorem for the
undiscounted process:

Theorem 2. Let H(T) be the payoff of a contingent claim, then the
optimal hedging strategy (V∗(0), ξ∗) of the shortfall minimization
problem:

minV(0),ξ E
P[(H(T)− V(T))+]

s.t. V(0) ≤ ν < EQ[R(T)−1H(T)]

is the perfect hedge for the claim H∗(T) = H(T)ψ∗, where

ψ∗ = 1
{R(T) dP

dQ
>a∗}

+ γ 1
{R(T) dP

dQ
=a∗}

a∗ = inf{a ≥ 0 : EQ[R(T)−1H(T)1
{R(T) dP

dQ
>a}

] ≤ ν}

γ =

ν − EQ[R(T)−1H(T)1
{R(T) dP

dQ
>a∗}

]

EQ[R(T)−1H(T)1
{R(T) dP

dQ
=a∗}

]
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Proof. Define

dP∗

dP
=

R(T)

EP[R(T)]
,

then

EP[(H(T)− V(T))+] = E[R(T)]EP∗
[R(T)−1

(H(T)− V(T))+]. (6)

To minimize Equation (6) we apply Theorem 1, then

dP∗

dQ
=

R(T)

EP[R(T)]

dP

dQ
,

finishes the proof.

We can apply Theorem 2 to solve problem Equation (5) by
letting H̃(T): = (H(T)−z)+; and that gives the solution to Equa-
tion (2). Based on the result in Melnikov and Smirnov [7], we
conclude that:

Theorem 3. The optimal strategy (V(0)∗, ξ∗) for the CVaR mini-
mization problem Equation (2) is a perfect hedge for the contingent
claim (H − z∗)+ψ∗(z∗), where ψ∗(z) is given by

ψ∗(z) = 1
{R(T) dP

dQ
>a∗(z)}

+ γ (z)1
{R(T) dP

dQ
= a∗(z)}

a∗(z) = inf{a ≥ 0 : EQ[R(T)−1(H(T)− z)+1
{R(T) dP

dQ
>a}

] ≤ ν}

γ (z) =
ν − EQ[R(T)−1(H(T)− z)+1

{R(T) dP
dQ
>a∗(z)}

]

EQ[R(T)−1(H(T)− z)+1
{R(T) dP

dQ
= a∗(z)}

]

and z∗ is the solution of minimization problem:

min
z>0

c(z)=

{

z+ 1
1−ǫ E

P[(H(T)− z)+(1− ψ∗(z))] if 0 ≤ z < ẑ

z if z ≥ ẑ

ẑ is the solution of

EQ[R(T)−1(H(T)− z)+] = ν

Note that only when z ≥ 0 can we use the result of Equation (5)
to solve Equation (2). Nonethless, we do not need to worry about
the case when z < 0 because we assume that for any ǫ that is close
enough to 1, the optimal ẑ that equals to theVaRǫ of the portfolio
is always nonnegative.

2.4. Minimizing Hedging Costs
In this subsection we address the hedging costs minimization
problem arised in Equation (3). Let us take the shortfall optimiza-
tion problem as the point of departure.

Theorem 4. Let H(T) be the payoff of a contingent claim, then the
optimal hedging strategy (V∗(0), ξ∗) of the shortfall minimization
problem:

minV(0),ξ V(0) = EQ[R(T)−1V(T)] (7)

s.t. EP[(H(T)− V(T))+] ≤ c < EP[H(T)]

is the perfect hedge for the claim H∗(T) = H(T)(1− ψ∗), where

ψ∗ = 1
{R(T)−1 dQ

dP
>a∗}

+ γ 1
{R(T)−1 dQ

dP
= a∗}

a∗ = inf{a ≥ 0 : EP[H(T)1
{R(T)−1 dQ

dP
>a}

] ≤ c}

γ =
c− EP[H(T)1

{R(T)−1 dQ
dP
>a∗}

]

EP[H(T)1
{R(T)−1 dQ

dP
=a∗}

]

Proof. Follow the proof of Theorem 3, we reformulate the prob-
lem Equation (7) to be:

minV(0),ξ V(0) = EQ[R(T)−1V(T)] (8)

s.t. EP∗
[R(T)−1(H(T)− V(T))+] ≤ c

EP[R(T)]

where

dP∗

dP
=

R(T)

EP[R(T)]

As in Föllmer and Leukert [1] and Föllmer et al. [15], we rewrite
the problem Equation (8) by employing a random test ψ :

minψ∈F[0,1] E
Q[R(T)−1H(T)(1− ψ)] (9)

s.t. EP∗
[R(T)−1H(T)ψ] ≤ c

EP[R(T)]

To see this, first we assume that V̂(T) is the solution of problem
Equation (8) and ψ̃ is the solution of problem Equation (9), then
Ṽ(T): = H(T)(1 − ψ̃) satisfies the constraint within Equation
(8). Thus, we have

EQ[R(T)−1H(T)(1− ψ̃)] = EQ[R(T)−1Ṽ(T)] ≥

EQ[R(T)−1V̂(T)].

On the other side ψ̂ : = (1 − V̂(T)/H(T))1{V̂(T)≤H(T)} ∈ [0, 1]

satisfies the constraint within Equation (9), and

EQ[R(T)−1H(T)(1− ψ̃)] ≤ EQ[R(T)−1H(T)(1− ψ̂)] ≤

EQ[R(T)−1V̂(T)].

Apply Neyman-Pearson’s lemma we can solve problem Equation
(9). See [15] for details. The solution is given by ψ∗.

By following lemma 2.5 and lemma 2.6 in Melnikov and
Smirnov [7] we have

Theorem 5. If EP[H] > c(1 − ǫ) and EP[(H − c)+] > 0, then
the optimal strategy (V(0)∗, ξ∗) for the hedging costs minimization
problem Equation (3) is a perfect hedge for the contingent claim
(H − z∗)+(1− ψ∗(z∗)), where ψ∗(z) is given by

ψ∗(z) = 1
{R(T)−1 dQ

dP
> a∗(z)}

+ γ (z)1
{R(T)−1 dQ

dP
= a∗(z)}

a∗(z) = inf{a ≥ 0 : EP[(H(T)− z)+1
{R(T)−1 dQ

dP
> a}

]

≤ (c− z)(1− ǫ)}

γ (z) =
(c− z)(1− ǫ)− EP[(H(T)− z)+1

{R(T)−1 dQ
dP
> a∗(z)}

]

EP[(H(T)− z)+1
{R(T)−1 dQ

dP
= a∗(z)}

]

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 May 2015 | Volume 1 | Article 2

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Tsao et al. CVaR hedging

and z∗ is the solution of

min
z∈[0,c]

EQ[R(T)−1(H − z)+(1− ψ∗(z))].

3. CVaR Hedging for European Call Option
Under HJM Framework

3.1. Option Pricing Under HJM
HJM is widely accepted as themost general framework derived by
directly modeling the dynamics of instantaneous forward-rates.
In this subsection we tackle the option pricing problem under
HJM framework. Take a European call option as an example, the
objective function for pricing the option is formulated as:

V(0) = EQ[R(T)−1(S(T)− K)+],

where T is the maturity and K is the strike price of the option.
We start by introducing the basic assumptions concerning the
financial setup.

The setup is similar to Amin and Jarrow [16] and Gao et
al. [11]. Fix a complete probability space (�, {Ft}t∈[0,T],F,P)
where P is the real-world probability measure. Let {BP

1 (t)}t∈[0,T]
be a standard Brownianmotion defined on (�, {Ft}t∈[0,T],F,P).
For a given continuous initial forward rate curve {f (0, t)}t∈[0,T],
we assume that the forward rate process follows Itô’s formula
dynamics

f (t,T) = f (0,T)+

∫ t

0
α(u,T)du+

∫ t

0
σ (u,T)dBP

1 (u),

where α(t,T) and σ (t,T) are drift and volatility processes,
respectively.

The spot interest rate at time t, {r(t)}t∈[0,T] is given by the
instantaneous forward rate of a forward contract, i.e.,

r(t) = f (t, t) = f (0, t)+

∫ t

0
α(u, t)du+

∫ t

0
σ (u, t)dBP

1 (u).

For every maturity time T, the forward price {P(t,T)}t∈[0,T] can
be written as

P(t,T) = exp

(

−

∫ T

t
f (t, u)du

)

= P(0,T)+

∫ t

0
P(u,T)

(

r(u)− α∗(u,T)+
1

2
σ ∗(u,T)2

)

du−

∫ t

0
P(u,T)σ ∗(u,T)dBP

1 (u),

where

σ ∗(t,T) =

∫ T

t
σ (t, u)du,

α∗(t,T) =
∫ T
t α(t, u)du.

The dynamic of the price process {R(t)}t∈[0,T] for a zero-coupon
bond is described by

R(t) = exp

(∫ t

0
r(u)du

)

=
1

P(0, t)
exp

(∫ t

0
α∗(s, t)ds+

∫ t

0
σ ∗(s, t)dBP

1 (s)

)

.

Consider the return process of the risky-asset S. Given the prob-
ability space (�, {Ft}t∈[0,T],F,P), where {Ft}t∈[0,T] is the aug-
mented filtration driven by two independent Brownian motions
{(BP

1 (t),B
P
2 (t))}t∈[0,T] initialized at zero. The dynamic of the asset

price is governed by the stochastic differential equation:

S(t) = S(0)+

∫ t

0
(µ(u)+ r(u))S(u)du+

∫ t

0
σ1(u)S(u)dB

P
1 (u)

+

∫ t

0
σ2(u)S(u)dB

P
2 (u)

where {µ(t)}t∈[0,T] denotes the excess return process without
randomness. The summation of µ and r represents the expected
growth rate.

Let Q be a probability measure which is equivalent to P. The

Radon-Nikodym derivative dQ
dP

transforms the real-world mea-
sure P into the risk-neutral measure Q with the assumption of
no-arbitrage, i.e.,

dQ
dP

= exp

(

− 1
2

∫ T
0 θ1(u)

2du− 1
2

∫ T
0 θ2(u)

2du

+
∫ T
0 θ1(u)dB

P
1 (u)+

∫ T
0 θ2(u)dB

P
2 (u)

)

.

By Girsanov’s theorem, the processes

B
Q
1 (t) = BP

1 (t)−
∫ t
0 θ1(u)du, (10)

B
Q
2 (t) = BP

2 (t)−
∫ t
0 θ2(u)du, (11)

are two independent Q-Brownian motions. As both
{B(t)−1S(t)}t∈[0,T] and {B(t)−1P(t,T)}t∈[0,T] are martingales
under Q, we have

−α∗(t,T)+ 1
2σ

∗(t,T)2 − σ ∗(t,T)θ1(t) = 0,

µ(t)+ σ1(t)θ1(t)+ σ2(t)θ2(t) = 0.

Thus,

θ1(t) =
−α∗(t,T) + 1

2σ
∗(t,T)2

σ ∗(t,T)
,

θ2(t) =
−µ(t)σ ∗(t,T) + σ1(t)α

∗(t,T) − 1
2σ1(t)σ

∗(t,T)2

σ2(t)σ ∗(t,T)
.
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Apply Equations (10) and (11) we can obtain the explicit repre-
sentations of S(t) and R(t) under Q:

S(t) = S(0)R(t) exp

(

−
1

2

∫ t

0
(σ 2

1 (u)+ σ
2
2 (u))du+

∫ t

0
σ1(u)B

Q
1 (u)+

∫ t

0
σ2(u)B

Q
2 (u)

)

, (12)

R(T) =
1

P(0,T)
exp

(

1

2

∫ T

0
σ ∗(u,T)2du+

∫ T

0
σ ∗(u,T)dB

Q
1 (u)

)

. (13)

Recall the option pricing problem:

V0 = EQ[R(T)−1(S(T)− K)+],

Based on Equations (12) and (13), we derive the following
solution:

EQ[R(T)−1(S(T)− K)+] = S(0)N(d1)− KP(0,T)N(d2),(14)

where

d1 =

log

(

S(0)
P(0,T)K

)

+ 1
2

∫ T
0

(

(

σ ∗(u,T)+ σ1(u)
)2
+σ2(u)

2

)

du

√

∫ T
0

(

(

σ ∗(u,T)+ σ1(u)
)2

+ σ2(u)2
)

du

, (15)

d2 =

log

(

S(0)
P(0,T)K

)

− 1
2

∫ T
0

(

(

σ ∗(u,T)+ σ1(u)
)2

+ σ2(u)
2

)

du

√

∫ T
0

(

(

σ ∗(u,T)+ σ1(u)
)2

+ σ2(u)2
)

du

. (16)

(Proof please see Appendix A)

3.2. Main Result
In this subsection we integrate HJM methodlgy and CVaR hedg-
ing results from Section 2. Again, take the European call option as
an example, whose payoff is given byH(T) = (S(T)−K)+, where
K is the strike price. The problem formulation is as discussed in
the Section 2.1.

We assume that the probability measures are atomless; this
implies that the component 1

{R(T) dP
dQ

= a∗(z)}
in Theorem 3 and

Theorem 5 can be ignored. To apply Theorem 3 and Theorem 5
we need to compute the following three functions:

f1(z, a) = EQ[R(T)−1(H(T)− z)+1
{R(T) dP

dQ
> a}

],

f2(z, a) = EP
[

(H(T)− z)+1
{R(T) dP

dQ
≤ a}

]

,

f3(z) = EQ[R(T)−1(H(T)− z)+].

The optimization problem in theorem 3 can be rewritten as:

min
z> 0

c(z) =

{

z + 1
1− ǫ f2(z, a

∗(z)) if 0 ≤ z < ẑ

z if z ≥ ẑ

where

a∗(z) = inf{a ≥ 0 : f1(z, a) ≤ ν},

and ẑ is the solution of

f3(z) = ν.

Theorem 5 can be reformulated as:

min
z∈[0,c]

f1(z, a
∗(z)−1),

where

a∗(z) = inf{a ≥ 0 : f2(z, a
−1) ≤ (c− z)(1− ǫ)}.

We assume that z > 0, therefore ((S(T)− K)+ − z)+ = (S(T)−
K − z)+. Then for a call option we have

f call1 (z, a) = EQ[R(T)−1(S(T)− K − z)+1
{R(T) dP

dQ
> a}

],

f call2 (z, a) = EP
[

(S(T)− K − z)+1
{R(T) dP

dQ
≤ a}

]

,

f call3 (z) = EQ[R(T)−1(S(T)− K − z)+].

Recall that f call3 (z) is the option pricing formula which has already
been studied in Section 3.1:

f call3 (z) = S(0)N(d1(z))− (K + z)P(0,T)N(d2(z))

where

d1(z) =

log

(

S(0)
P(0,T)(K+ z)

)

+ 1
2

∫ T
0

(

(

σ ∗(u,T) + σ1(u)
)2

+ σ2(u)
2

)

du

√

∫ T
0

(

(

σ ∗(u,T) + σ1(u)
)2

+ σ2(u)2
)

du

d2(z) =

log

(

S(0)
P(0,T)(K+ z)

)

− 1
2

∫ T
0

(

(

σ ∗(u,T) + σ1(u)
)2

+ σ2(u)
2

)

du

√

∫ T
0

(

(

σ ∗(u,T) + σ1(u)
)2

+ σ2(u)2
)

du

Similarly, we can obtain the closed form solution for f1 and f2.
Let N2(x, y): = N(x)N(y) be the distribution function of two
independent standard normal random variables, we have

f call1 (z, a) = S(0)N2(6
−1/2η1(z, a))

−(K + z)P(0,T)N2(6
−1/2η2(z, a)), (17)

where

η1(z, a) =





− log(aP(0,T)) + 612 −
1
2611

log

(

S(0)
P(0,T)(K+ z)

)

+ 1
2622



 , (18)

η2(z, a) =





− log(aP(0,T)) − 1
2611

log

(

S(0)
P(0,T)(K+ z)

)

− 1
2622



 , (19)
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FIGURE 1 | Optimal CVaRs against hedging costs.

FIGURE 2 | Optimal hedging costs against CVaR.
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6 is a 2× 2 positive definite matrix given by

611 =

∫ T

0
((θ1(u)− σ

∗(u,T))2 + θ2(u)
2)du (20)

622 =

∫ T

0
(σ ∗(u,T)+ σ1(u))

2 + σ2(u)
2du (21)

612 = 621 = −

∫ T

0
(θ1(u)− σ

∗(u,T))(σ ∗(u,T)+ σ1(u))du

−

∫ T

0
θ2(u)σ2(u)du. (22)

And

f call2 (z, a) =
S(0)

P(0,T)
eAN2(6̃

−1/2ζ1(z, a))

− (K + z)N2(6̃
−1/2ζ2(z, a)), (23)

where

ζ1(z, a) =

(

log(aP(0,T))− A− 1
2611

log
(

S(0)
P(0,T)(K+z)

)

+ A+ 1
2622

)

, (24)

ζ2(z, a) =

















log(aP(0,T))−
∫ T
0

(

α∗(u,T)

+ 1
2 (θ1(u)

2 + θ2(u)
2)
)

du

log
(

S(0)
P(0,T)(K+ z)

)

+
∫ T
0

(

µ(u)

+α∗(u,T)− 1
2 (σ1(u)

2 + σ2(u)
2)
)

du

















,

(25)

A =

∫ T

0

(

µ(u)+ α∗(u,T)+
1

2
σ ∗(u,T)2

+ σ ∗(u,T)σ1(u)

)

du (26)

and

6̃: =

(

611 −612

−621 622

)

.

(Proof please see Appendix B and C)

4. Numerical Example

In this section we apply our results from previous sections to the
one factor Hull-White model in which the short rate dynamic is
modeled by

dr(t) = (b(t)− ar(t))dt + σf dB
P
1 (t),

where a and σf are the parameters regulating mean reverting and
volatility respectively, and b(t) is determined by:

b(t) =
∂f (0, t)

∂t
+ af (0, t)+

σ 2
f

2a
(1− e−2at).

By solving the differential equation we obtain

r(t) = f (0, t)+
σ 2

2a
(1− e−at)2 + σf

∫ t

0
ea(u− t)dBP

1 (u).

Note that f (0, t) is generally fitted by an initial yield curve.
In this example since we consider 3-month short term option,
f (0, t) can be simplify assumed to be a constant. For the spot
rate data we download overnight ICE LIBOR rate for US dol-
lar from Bloomberg, ranging from 3/11/2012 to 3/10/2013. The
generalized method of moments (GMM) is adopted to fit a and
σf , see [17] for detail. For the stock price, we download the
daily returns of S&P 500 index from “Yahoo! finance,” rang-
ing from 3/11/2012 to 3/10/2013. Maximum likelihood method
is employed to estimate both µ and σ 2 = σ 2

1 + σ 2
2 . The

correlation between the two Brownian motions is assumed to
be 0.5.

For the call option of S&P 500 index of three different maturi-
ties: T = 30, 60, 90, given the strike price K = S0, we tackle the
CVaRminimization problem and the hedging costsminimization
problem based on the results in Sections 3.1 and 3.2. The results
are shown in Figures 1, 2.

Figure 1 plots the optimal CVaRs with respect to the con-
straint on the initial costs ν, which is given by the fraction of
the risk neutral price. One can observe that the optimal CVaRs
decrease to zero when ν equals to the risk neutral price, mean-
ing that the call option is hedged perfectly. CVaRs reach to
the maximum values when the fraction equals to zero, imply-
ing that the investor is exposed to the full risk. The optimal
CVaR comes near zero when the allocation of initial wealth
approaches to the risk neutral price in the case of perfect hedg-
ing. The optimal CVaRs also increases as the the maturity T
increases, showing that the risk is larger for portfolios held
longer.

Figure 2 plots the optimal hedging costs according to the con-
straint c on CVaR. We can see that Figure 2 demonstrates sim-
ilar trends as in Figure 1. When c reaches to 350, the result-
ing risk is close the the maximum CVaR in Figure 1, and
its corresponding optimal hedging cost equals to zero. When
the CVaR value is fixed at zero, we obtain the perfect hedg-
ing. The minimal optimal hedge equals to the risk neutral
price.

5. Conclusion

The purpose of this paper is to construct CVaR hedging strate-
gies under stochastic interest rate environment. We first gener-
alize the results presented by Melnikov and Smirnov [7], and
then add the stochastic interest rate component. Modeling the
stochastic movements of interest rates is essential in pricing and
hedging interest-rate-sensitive price; the result of this paper can
be applied on pricing a variety of equity-linked life insurance
products, for example. The Neyman Pearson lemma shows that
the optimal strategy of CVaR hedging is a perfect hedge for an
adjusted claim.

To illustrate this hedging technique we consider a European

call option, explicit formulas for solving CVaR minimization
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problems under HJM framework are derived. Note that the geo-

metric Brownian motion is employed in monitoring the asset
dynamics. As the risk of Brownian motion is completely deter-

mined by its variance, the advantage of CVaR is not shown in
this thin-tailed model. For future work we consider improving

CVaR hedging by adopting heavy-tailed models and adding jump

components.

Author Contributions

Three authors contributed significantly to all aspects of this work.

Acknowledgments

Many thanks to Professor Svetlozar Rachev for stimulating
discussions. Without his help, this paper could not be finished.

References

1. Föllmer H, Leukert P. Quantile hedging. Finance Stochast. (1999) 3:251–73.

doi: 10.1007/s007800050062

2. Föllmer H, Leukert P. Efficient hedging: cost versus shortfall risk. Finance

Stochast. (2000) 4:117–46. doi: 10.1007/s007800050008

3. Krutchenko R, Melnikov A. Quantile hedging for a jump-diffusion finan-

ciall market model. In: Kohlmann M, editor. Trends in Mathematics.

Basel/Switzerland: Birkhauser-Verlag (2001).

4. Melnikov A. Quantile hedging of equity-linked life insurance policies. Dokl

Akad Nauk. (2004) 396:601–3.

5. Melnikov A, Romanyuk Y. Efficient hedging and pricing of equity-linked

life insurance contracts on several assets. Int J Theor Appl Finance. (2008)

11:295–323. doi: 10.1142/S0219024908004816

6. Melnikov A, Skornyakova V. Quantile hedging and its application to life

insurance. Stat Decis Int J Stochast Methods Models. (2005) 23:301–16. doi:

10.1524/stnd.2005.23.4.301

7. Melnikov A, Smirnov I. Dynamic hedging of conditional value-at-risk.

Insurance (2012) 51:182–190. doi: 10.1016/j.insmatheco.2012.03.011

8. Heath D, Jarrow R, Morton A. Bond pricing and the term structure of inter-

est rates: a new methodology for contingent claims valuation. Econometrica

(1992) 60:77–105. doi: 10.2307/2951677

9. Ciurlia P, Gheno A. A model for pricing real estate derivatives with

stochastic interest rates. Math Comput Model. (2009) 50:233–47. doi:

10.1016/j.mcm.2008.12.005

10. Jalen L, Mamon R. Valuation of contingent claims with mortality

and interest rate risks. Math Comput Model. (2009) 49:1893–904. doi:

10.1016/j.mcm.2008.10.014

11. Gao Q, He T, Zhang C. Quantile hedging for equity-linked life insurance con-

tracts in a stochastic interest rate economy. Econ Model. (2011) 28:147–56.

doi: 10.1016/j.econmod.2010.09.016

12. Black F, Scholes M. The pricing of options and corporate liabilities. J Polit

Econ. (1973) 81, 637–54. doi: 10.1086/260062

13. Merton RC. Option pricing when underlying stock returns are discontinuous.

J Financ Econ. (1976) 3:125–44. doi: 10.1016/0304-405X(76)90022-2

14. Rockafellar RT, Uryasev S. Optimization of conditional

value-at-risk. J Risk. (2000) 2:21–42. Available online at:

http://www.ise.ufl.edu/uryasev/files/2011/11/CVaR1_JOR.pdf.

15. Föllmer H, Schied A, Lyons TJ. Stochastic Finance. An Introduction in Discrete

Time. Berlin: Springer (2004).

16. Amin KI, Jarrow RA. Pricing options on risky assets in a stochastic inter-

est rate economy. Math Finance. (1992) 2:217–37. doi: 10.1111/j.1467-

9965.1992.tb00030.x

17. Park F. Implementing Interest Rate Models: A Practical Guide. Capital Markets

and Portfolio Research (CMPR) (2004).

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Copyright © 2015 Tsao, Shi and Melnikov. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this jour-

nal is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 May 2015 | Volume 1 | Article 2

http://www.ise.ufl.edu/uryasev/files/2011/11/CVaR1_JOR.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Tsao et al. CVaR hedging

Appendix

Appendix A. Calculation of Equation (14)
Here we review the valuation of European call option under HJM
model. Recall that the price of the option is given by:

V0 = EQ[R(T)−1(S(T)− K)+]

=EQ[R(T)−1S(T)1{S(T)>K}]− EQ[R(T)−1K1{S(T)>K}].

First define

dQ1

dQ
: = exp

(

−
1

2

∫ T

0
(σ1(u)

2 + σ2(u)
2)du+

∫ T

0
σ1(u)dB

Q
1 (u)+

∫ T

0
σ2(u)dB

Q
2 (u)

)

,

then under we have

B
Q
1 (t) = B

Q1
1 (t)+

∫ t

0
σ1(u)du, (A1)

B
Q
2 (t) = B

Q1
2 (t)+

∫ t

0
σ2(u)du, (A2)

where B
Q1
1 and B

Q1
2 are two independent Brownian motions

under Q1. Thus,

S(T) = S(0)R(T) exp

(

−
1

2

∫ T

0
(σ1(u)

2 + σ2(u)
2)du+

∫ T

0
σ1(u)dB

Q
1 (u)+

∫ T

0
σ2(u)dB

Q
2 (u)

)

=
S(0)

P(0,T)
exp

(

1

2

∫ T

0

(

(

σ ∗(u,T)+ σ1(u)
)2
+

σ2(u)
2
)

du+

∫ T

0
(σ ∗(u,T)+ σ1(u))dB

Q1
1 (u)+

∫ T

0
σ2(u)dB

Q1
2 (u)

)

.

The event S(T) > K implies that

∫ T
0 (σ ∗(u,T)+ σ1(u))dB

Q1
1 (u)+

∫ T
0 σ2(u)dB

Q1
2 (u)

> log

(

P(0,T)K
S(0)

)

− 1
2

∫ T
0

(

(

σ ∗(u,T)+ σ1(u)
)2

+ σ2(u)
2
)

du.

Thus, we have

EQ[R(T)−1S(T)1{S(T)>K}] = S(0)EQ1 [1{S(T)>K}] = S(0)N(d1),

where d1 is given by Equation (15). On the other side, define

dQ2

dQ
: = exp

(

−

∫ T

0
σ ∗(u,T)dB

Q
1 (u)−

1

2

∫ T

0
σ ∗(u,T)2du

)

,

Then we have

B
Q
1 (t) = B

Q2
1 (t)−

∫ t

0
σ ∗(u,T)du (A3)

B
Q
2 (t) = B

Q2
2 (t) (A4)

where B
Q2
1 and B

Q2
2 are two independent Brownian motions

under Q2. Thus,

S(T) =
S(0)

P(0,T)
exp

(

−
1

2

∫ T

0

(

(

σ ∗(u,T)+ σ1(u)
)2
+ σ2(u)

2
)

du

+

∫ t

0
(σ ∗(u,T)+ σ1(u))dB

Q2
1 (u)+

∫ t

0
σ2(u)dB

Q2
2 (u)

)

.

The event S(T) > K implies that

∫ T
0 (σ ∗(u,T)+ σ1(u))dB

Q2
1 (u)+

∫ T
0 σ2(u)dB

Q2
2 (u)

> log

(

P(0,T)K
S(0)

)

+ 1
2

∫ T
0

(

(

σ ∗(u,T)+ σ1(u)
)2

+ σ2(u)
2
)

du.

Then

EQ[R(T)−1K1{S(T)>K}] = KP(0,T)N(d2)

where d2 is given by Equation (16).

Appendix B. Calculation of Equation (17)
We can decompose f call1 to be:

f call1 (z, a) = EQ[R(T)−1(S(T)− K − z)+1
{R(T) dP

dQ
>a}

]

= S(0)EQ1 [1{S(T)>K+ z}1{R(T) dP
dQ
>a}

]−

(K + z)P(0,T)EQ2
[

1{S(T)>K+ z}1{R(T) dP
dQ
>a}

],

where Q1 and Q2 are defined in the previous section. Then apply
Equations (A1) and (A2) we obtain the dynamic of R(T)dP/dQ

under Q1:

R(T)
dP

dQ
=

1

P(0,T)
exp

(

1

2

∫ T

0
(σ ∗(u,T)2 − θ1(u)

2 − θ2(u)
2)

du+

∫ T

0
(σ ∗(u,T)− θ1(u))dB

Q
1 (u)

−

∫ T

0
θ2(u)dB

Q
2 (u)

)

=
1

P(0,T)
exp

(

612 −
1

2
611 −W1

)

,

where611,612 are given by Equations (20, 22), and

W1 :

d
=
∫ T
0 (θ1(u)− σ

∗(u,T))dB
Q1
1 (u)+

∫ T
0 θ2(u)dB

Q1
2 (u)

Therefore, R(T)dP/dQ > a implies

W1 < − log(aP(0,T))+612 −
1

2
611.
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On the other side, recall S(T) > K + z implies

W2 :

d
=−

∫ T

0
(σ ∗(u,T)+ σ1(u))dB

Q1
1 (u)−

∫ T

0
σ2(u)dB

Q1
2 (u)

< log

(

S(0)

P(0,T)(K + z)

)

+
1

2

∫ T

0

(

(

σ ∗(u,T)+

σ1(u)
)2

+ σ2(u)
2
)

du

= log

(

S(0)

P(0,T)(K + z)

)

+
1

2
622,

where 622 is given by Equation (21). Note that (W1,W2) are
binormal distributed with zero mean and covariance matrix 6.
It is easy to compute that the entries of6

611 = E[W2
1 ] =

∫ T

0
((θ1(u)− σ

∗(u,T))2

+ θ2(u)
2)du,

622 = E[W2
2 ] =

∫ T

0
(σ ∗(u,T)+ σ1(u))

2

+ σ2(u)
2du,

612 = 621 = E[W1W2] = −

∫ T

0
(θ1(u)− σ

∗(u,T))

(σ ∗(u,T)+ σ1(u))du−

∫ T

0
θ2(u)σ2(u)du.

Thus, we have:

S(0)EQ1 [1{S(T)>K+ z}1{R(T) dP
dQ
>c}

] = S(0)N2(6
−1/2η1(z, a)),

where η1(z, a) is given by Equation (18). Similarly under Q2 we
have

R(T)
dP

dQ
=

1

P(0,T)
exp

(

−
1

2

∫ T

0
((θ1(u)− σ

∗(u,T))2+

θ2(u)
2)du+

∫ T

0
(σ ∗(u,T)− θ1(u))dB

Q2
1 (u)−

∫ T

0
θ2(u)dB

Q2
2 (u)

)

=
1

P(0,T)
exp

(

−
1

2
611 −W1

)

,

and that R(T)dP/dQ > a implies

W1 < − log(aP(0,T))−
1

2
611.

And recall that S(T) > K + z implies

W2 < log

(

S(0)

P(0,T)(K + z)

)

−
1

2

∫ T

0

(

(

σ ∗(u,T)+ σ1(u)
)2

+ σ2(u)
2
)

du

= log

(

S(0)

P(0,T)(K + z)

)

−
1

2
622.

Note that here we keep use (W1,W2) to denote a bivariate nor-
mal random vector under Q2 instead of Q1 for simplicity. Thus,
we have

(K + z)P(0,T)EQ2
[

1{S(T)>K+z}1{R(T) dP
dQ
>c}

] = (K + z)

P(0,T)N2(6
−1/2η2(z, a)),

where η2(z, a) is given by Equation (19).

Appendix C. Calculation of Equation (23)
Recall that the dynamic of stock price process under market
measure P is given by

S(t) = S(0)R(t) exp

(∫ t

0

(

µ(u)−
1

2
(σ1(u)

2 + σ2(u)
2)

)

du+

∫ t

0
σ1(u)dB

P
1 (u)+

∫ t

0
σ2(u)B

P
2 (u)

)

=
S(0)

P(0, t)
exp

(∫ t

0

(

µ(u)+ α∗(u, t)−
1

2
(σ1(u)

2+

σ2(u)
2)

)

du

+

∫ t

0
(σ ∗(u, t)+ σ1(u))dB

P
1 (u)+

∫ t

0
σ2(u)B

P
2 (u)

)

.

Consider the decomposition of f call2 :

f call2 (z, a) = EP
[

S(T)1{S(T)>K+ z}1{R(T) dP
dQ

≤ a}

]

−

(K + z)EP
[

1{S(T)>K+ z}1{R(T) dP
dQ

≤ a}

]

.

Here to define a new measure P̃:

dP̃

dP
: = exp

(∫ T

0
(σ ∗(u,T)+ σ1(u))dB

P
1 (u)+

∫ T

0
σ2(u)B

P
2 (u)−

1

2

∫ T

0
(σ ∗(u,T)+ σ1(u))

2 + σ2(u)
2)du

)

.

Then we have

EP
[

S(T)1{S(T)>K+ z}1{R(T) dP
dQ

≤ a}

]

= S(0)
P(0,T)

eAEP̃
[

1{S(T)>K+ z}

1
{R(T) dP

dQ
≤ a}

]

,

where A is given by Equation (26). By Girsanov theorem we have

BP
1 (t) = BP̃

1 (t)+

∫ t

0
(σ ∗(u,T)+ σ1(u))du,

BP
2 (t) = BP̃

2 (t)+

∫ t

0
σ2(u)du.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 May 2015 | Volume 1 | Article 2

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Tsao et al. CVaR hedging

where BP̃
1 and BP̃

2 are two independent Brownian motions under

P̃. Then S(T) and R(T)dP/Q becomes:

S(T) =
S(0)

P(0,T)
exp

(∫ T

0

(

µ(u)+ α∗(u,T)−
1

2
(σ1(u)

2+

σ2(u)
2)

)

du+

∫ T

0
(σ ∗(u,T)+ σ1(u))dB

P
1 (u)+

∫ T

0
σ2(u)B

P
2 (u)

)

=
S(0)

P(0,T)
exp

(

A+
1

2
622 −W2

)

,

and

R(T)
dP

dQ
=

1

P(0,T)
exp

(∫ T

0

(

α∗(u,T)+
1

2
(θ1(u)

2+

θ2(u)
2)

)

du−

∫ T

0
(θ1(u)− σ

∗(u,T))dBP
1 (u)−

∫ T

0
θ2(u)dB

P
2 (u)

)

=
1

P(0,T)
exp

(

A+
1

2
611 −W1

)

Thus, R(T)dP/dQ ≤ a implies

−W1 ≤ log(aP(0,T))− A−
1

2
611,

and S(T) > K + z implies

W2 < log

(

S(0)

P(0,T)(K + z)

)

+ A+
1

2
622.

It is easy to see that (W1,W2) ∼ N(0, 6̃). Then we have

EP
[

S(T)1{S(T)>K+z}1{R(T) dP
dQ

≤ a}

]

=
S(0)

P(0,T)
eAN2(6̃

−1/2ζ1(z, a)),

where ζ1(z, a) is given by Equation (24). On the other side we do
not need to change the measure. For {R(T)dP/dQ ≤ a} we have

−W1 ≤ log(aP(0,T))−

∫ T
0

(

α∗(u,T)+ 1
2 (θ1(u)

2 + θ2(u)
2)

)

du,

and for S(T) > K + z we have

W2 < log

(

S(0)

P(0,T)(K + z)

)

+

∫ T

0

(

µ(u)+ α∗(u,T)

−
1

2
(σ1(u)

2 + σ2(u)
2)

)

du.

Finally we will get

(K+z)EP
[

1{S(T)>K+z}1{R(T) dP
dQ

≤ a}

]

= (K + z)N2(6̃
−1/2ζ2(z, a)),

where ζ2(z, a) is given by Equation (25).
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