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General equilibrium pricing with
information asymmetry
Yuzhong Zhang and Fangfei Dong*

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA

We propose a general equilibrium model for asset pricing that incorporates asymmetric

information as the key element determining security prices. In our setting, the concepts of

completeness, arbitrage, state price and equivalent martingale measure are extended to

the case of asymmetric information. Our model shows that in a so-called quasi-complete

market, agents with differential information can reach an agreement on an universal

equilibrium price. The corresponding state price and martingale measure are derived.

The key intuition is that agents evaluate consumption choices conditioned on their

private information and the public information generated by the price. As a consequence,

information asymmetry can lead to mispricing as well.

Keywords: general equilibrium, information asymmetry, martingale measure, state price, asset pricing,

Consumption-based CAPM

1. Introduction

General equilibrium theory deals with an economy consisting of multiple agents in a market
endowed with initial resources and willing to exchange commodities with others. It considers
the behavior of the economy as a closed and inter-related system. In a general equilibrium
perspective, each agent in themarket optimizes his/her behavior to achievemaximum consumption
utility. Agents’ optimal behavior represents the behavior of the economy. Equilibrium prices are
determined endogenously. The existence of such an equilibrium is based on the assumption
of perfect competition among agents. In other words, the model assumes all individuals are
price-takers, i.e., that they have zero price impact. This type of model is often called Walrasian
equilibrium, from the Walras [1] theory of markets. The modern version of general equilibrium
theory was formalized by Arrow and Debreu [2], Debreu [3] and McKenzie [4]. In the Arrow-
Debreu model, the market is static and deterministic. Radner [5–7] and Jordan and Radner [8]
explore the competitive equilibrium in the case of uncertainty. In a Radner-type economy, different
market agents are allowed to have different information. Agents in such an economy maximize
their expected utility with respect to the their own information. The work opens the possibility
of applying general equilibrium to financial markets to explain the prices of financial assets.
Breeden [9] develops the Consumption-Based Capital Asset PricingModel (CCAPM) that connects
continuous-time general equilibrium to characteristics of returns on securities. Cox et al. [10] also
examine the price behavior in a general equilibrium. Duffie and Zame [11] further study and extend
the approach.

Demarzo and Skiadas [12] further investigate asset pricing in economies with asymmetric
information, although not in a dynamic setting. The concept of quasi-completeness is introduced
to describe the feasibility of consumption conditioned on the agents individual information.
Also, in Yannelis [13] and Glycopantis and Yannelis [14], the core of an economy and its
related concepts are introduced and discussed to study information asymmetry. In Lengwiler
[15], Heer and Maussner [16], Black and Glaser [17], Starr [18], and Ludvigson [19],
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the modern general equilibrium pricing theory are elaborated
and reviewed. Recently, Biais et al. [20, 21] develop a two-
date equilibrium with differential information and demonstrates
that information is partially revealed by the price. Fama and
French [22] investigate the effects of disagreement and preference
differences on asset prices in a CAPM setting. Ostrovsky [23] uses
an extended sequential auction model based on market scoring
rules to study information aggregation with partially informed
trades. Iyer et al. [24] develop a market with heterogeneous
traders and a market maker to give a condition for information
aggregation. Equilibrium under information asymmetry has also
been studied in many other papers, including Bernardo and Judd
[25], Breon-Drish [26], Cao and Ou-yang [27], Gao et al. [28],
Banerjee and Green [29], among others. Meanwhile there also
exist many literatures investigating in the extensions of CAPM
theory, including Campbell and Cochrane [30], Dionne [31],
Breeden and Litzenberger [32], Barberis and Greenwood [33],
among others.

Our work is in line with the formalization of the
Consumption-based Capital Pricing Models in Duffie [34] and
Demarzo and Skiadas [12] model with differential information
among agents. We model asset price formation in a multi-period
general equilibrium framework. The concept of equivalent
martingale measure under quasi-completeness as in Demarzo
and Skiadas [12] and related concepts will be rephrased in
a CCAPM context. In our framework, the state-price can be
extended to a broader sense, so that it stays universal while
difference agent views it asymmetrically. It provides a convenient
tool for asset valuation. Also, the similar result that agents will
come to asymmetric betas in their beta form asset pricing, as
the CAPM in Demarzo and Skiadas [12]. The difference is that
our beta is based on consumption, thus not requiring the strict
mean-variance utility.

In Section 2, we describe the setup of our model. In
Section 3, we re-introduce the concepts of arbitrage, state
price and martingale measure in the context of asymmetric
information. In Section 4, we define the equilibrium and discuss
the characteristics of the equilibrium price. Section 5 provides
several examples to illustrate the differences in equilibrium prices
between the case with information asymmetry and the one
without. Mispricing as a consequence of asymmetric information
is also discussed.

2. The Setup

In this section, We formulate a general equilibrium model with
information asymmetry in discrete time. In our setting, there
are finite number of agents in economy. As in other general
equilibrium models, the agents are assumed to be price takers.
Agents make their consumption plans based on not only their
own private information but also the information generated by
the price process. An agent prices a consumption process by her
own pricing function, which is obtained from maximizing her
utility. That means, for some consumption process, the prices
as seen by different agents are allowed to be different. However,
since agents are price takers and the market must clear, it is
shown that there exists a so-called quasi pricing kernel such that

the pricing function of each agent is the optimal projection of
the quasi pricing kernel onto her own information filtration.
Equivalently, there exists a probability measure, a so-called quasi
equivalent martingale measure, under which a security price
is viewed as a martingale for each agent (i.e., conditioned on
individual information filtration).

2.1. Uncertainty
There are T + 1 dates: 0, 1, ...,T. Denote by T = {0, 1, ...,T}
the time horizon. Then uncertainty is modeled by the probability
space (�,F,P) equipped with filtration F = {F0,F1, ...,FT}.
Ft denotes the information up to time t and FT = F . � denotes
the state space. P is the physical probability measure. Let L be the
space of all F-adapted processes.

2.2. Economy
In our economy, there are n agents. Denote by I = {1, ..., n}
the set of agents. Each agent i ∈ I is characterized by individual
belief (represented by probability measure P(i)), utility function
U(i), endowment e(i), and information flow, represented by the

filtration F
(i) = {F

(i)
t }t ∈T .

Each individual filtration satisfies F
(i)
t ⊆ Ft . It means each

agent can access some subset of the total information, which
allows that information available to agents is not symmetric.

Denote the common information by F t =
⋂

i∈ I F
(i)
t , and the

largest information that can be accessed by all agents as whole by

F t =
∨

i∈ I F
(i)
t which is the smallest σ -algebra contains all F

(i)
t .

Each agent knows her endowment process very well. In another
word, e(i) is F

(i)-adapted for each i ∈ I. Denote the aggregated
endowment by e(t) =

∑

i ∈ I e
(i)(t).

There existm assets; denote by J = {1, ...,m} the set of assets.
Each asset j ∈ J is associated with its dividend process δj = (δj(t)).
δ = (δ1(t), δ2(t), ..., δm(t)) denotes dividend process, which is
adapted to F. Assume that all agents can observe dividends, i.e.,
σ (δu : u ≤ t) ⊆ F t for all t ∈ T .

Definition 1 (Economy). The economy is defined as a collection

E = {(�,F, F,P), (P(i),U(i), F
(i), e(i))i∈ I, δ}.

For simplicity, we also assume all agents share the same (physical)
probability measure, i.e., P(i) = P for all i ∈ I.

2.3. Security Prices
The security price at time t is denoted by S(t) = (S1(t), ..., Sm(t)).
(S(t)) is adapted to F. Security price is public information, thus
given price process S, each agent i observes the information
generated by S as well as private information F (i). Denote by
Gt = σ (Su : u ≤ t) for t ∈ T the filtration generated by prices.
Assume that all agents are price-takers, thus the securities’ prices
S is the exact price at which agents trade.

2.4. Trading Strategies and Consumption
Agents in the economy will choose their trading strategies to
optimize their satisfaction (which will be represented by utility
later). However, the trading strategies each agent can access are
restricted by the information she can access. More information

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 August 2015 | Volume 1 | Article 8

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Zhang and Dong General equilibrium pricing

will give more choice of trading strategies. This means that an
agent’s trading strategies are adapted to the information available
to her.

Definition 2 (Feasible trading strategies). A trading strategy
θ (i) = (θ (i)(t))t ∈T is feasible for agent i given price S if θ (i)(t)

is Gt ∨F
(i)
t -measurable, and the consumption process c(t; θ, S) ∈

R++ which is given by the budget constraint:

θ (i)(t) · S(t) =
t−1
∑

τ = 0

θ (i)(τ ) ·
(

S(τ + 1)− S(τ )+ δ(τ + 1)
)

+

t
∑

τ = 0

e(i)(t)−
t
∑

τ = 0

c(t; θ, S) a.s.

or equivalently,

c(t; θ, S) = e(t)+ θ(t − 1) ·
(

S(t)+ δ(t)
)

− θ(t) · S(t),

for t = 1, ...,T, and

c(0; θ, S) = e(0)− θ(0) · S(0).

The budget constraint makes sure that the consumption cannot
exceed the sum of endowment, dividends and trading profit.
Additionally, for convenience, we can define a strategy-generated
dividend process as follows.

Definition 3. Let θ(−1) = 0, then define the dividend process
generated by trading strategy θ as

δθ (t) = θ(t − 1) ·
(

S(t)+ δ(t)
)

− θ(t) · S(t). t ∈ T

The dividend generated by trading strategy θ can be interpreted
as the trading profit generated from price changes and dividends.
Then the feasible consumption set for agent i and a given price
process S can be written as

X(i),S =
{

e(i) + δθ ∈ L+ : θ ∈ L(i),S
}

.

3. Arbitrage, State Price Deflator,
Martingale

Definition 4 (Arbitrage). We call a trading strategy an arbitrage
for given (δ, S) if δθ > 0.

Recall L denotes the space of all F-adapted processes and
similarly denote by L(i),S the space of process adapted to the

filtration generated by {F
(i)
t ∨ Gt}t ∈T . Then M(i),S = {δθ

: θ ∈

L(i),S} and M = {δθ
: θ ∈ L} are linear subspaces of the space

of L.

Proposition 1. There is no arbitrage strategy in L′ if and only if
there is a strictly increasing linear function F : L → R such that
F(δθ ) = 0 for any θ ∈ L′. Here L′ can be L or L(i),S for some i ∈ I.

Corollary 1. If there is no arbitrage in L the space of all processes
adapted to the filtration generated by {F t ∨ Gt}t ∈T for a given S,
then there is no arbitrage in L(i),S for all i ∈ I.

Remark. When (δ, S) admits arbitrage in the trading strategy
space L, it is not necessary that there exists an arbitrage in a
smaller space L′ ⊂ L. That means an agent could not be able
to find arbitrage due to the lack of information. See the following
example.

Example 1 (Arbitrage in case of information asymmetry). Let
time T = 0, 1, 2, 3, and let there be one risky asset which pays
dividend δ(t), t = 0, 1, 2, where δ(t) satisfies

δ(t) = f (t)+ ǫD(t),

where f (t) is the fundamental value satisfying

f (t) = f (t − 1)+ ǫf (t), t = 1, 2, 3 and f (0) = 1,

and ǫD(t) is pure noise with ǫD(0) = 0, and ǫD(t), t = 1, 2, 3 are
i.i.d Bernoulli distributed

ǫD(t) =

{

0, with probability p
1, with probability q

and ǫf (t) is the pure noise with ǫf (0) = 0 and ǫf (t), t = 1, 2, 3
are i.i.d Bernoulli distributed

ǫf (t) =

{

0, with probability µ

1, with probability ν

Then this example can be illustrated by the tree with
(δ(t), f (t), ǫD(t)) as nodes, as shown in Figure 1.

Now suppose there two agents. One is uninformed and
can only observe dividends, and the other is an insider who
knows the true fundamental. Thus, the uninformed agent cannot
distinguish the two nodes A,B as shown in the red boxes, and the
insider can distinguish between the two nodes. Let price given by
probability measure p = 0.2, q = 0.8, µ = 0.5, ν = 0.5, then
the prices for the non-informed agent for state A and B are the
same, S = 2.9. However, the insider can easily obtain an arbitrage
opportunity bymaking a strategy as (i) Buy if state A happens, (ii)
Sell if state B happens, (iii) No trade if none of them happens.

3.1. Classic Case
Lemma1. For each linear function F:L → R, there exists a unique
π in L such that for any x ∈ L

F(x) = E
P

[

T
∑

t= 0

π(t)x(t)

]

.

π is called the Riesz representation of F. If F is strictly increasing,
then π is strictly positive.

Proof. Apply Riesz representation theorem to the Hilbert
space L, where inner product is defined as 〈x, y〉 =

E
P

[

∑T
t= 0 x(t)y(t)

]

, x, y ∈ L.

We call a strictly positive process π , which is adapted to F, a
state-price deflator if, for all t ∈ T ,

S(t) =
1

π(t)
E
P





T
∑

j= t+1

π(j)δ(j)
∣

∣Ft



 .
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FIGURE 1 | Example: Arbitrage opportunity in case of information asymmetry.

Proposition 2. A strict positive process π ∈ L is a state-price
deflator if and only if, for any trading strategy θ ∈ L,

θ(t) · S(t) =
1

π(t)
E
P





T
∑

j= t+1

π(j)δθ (j)
∣

∣Ft



 , t < T.

Suppose there exists a risk-free short-rate process rf =

(rf (t))t ∈T , define the discount factor

R(s, t) =
t−1
∏

j= s

(1+ rf (j)).

Definition 5 (Equivalent Martingale Measure). We call a
probability measureQ an equivalent martingale measure (EMM)
if, Q is equivalent to P and

S(t) = E
Q





T
∑

j= t+1

1

R(t, j)
δ(j)

∣

∣Ft



 , t < T.

Theorem 1. π is a state-price deflator if and only if there exists an
equivalent martingale measure Q with the density process ξ such
that

ξ (t) =
R(0, t)π(t)

π(0)
,

where the density process ξ is defined by

ξ (t) = E
P

[

dQ

dP

∣

∣Ft

]

.

Proof. See Duffie [35] p. 30.

3.2. Case of Asymmetric Information
In the classic case of symmetric information, a security’s price
equals the expectation of aggregated future discounted dividend
flow under the equivalent martingale measure, and also equals
the expectation of aggregated discounted future dividend flows
under the physical probability measure. To extend the analysis
to asymmetric information, we allow each agent to have her
ownstate-price deflator, which is the optimal projection of the
universal state-price deflator to her own information.

Let us first investigate some process X ∈ L for a smaller
filtration H = {Ht}t ∈T , where Ht ⊆ Ft for all t. Denote by
XH the optimal projection of X onto H, i.e.,

XH(t) = E
P
[

X(t) |Ht
]

.

Some simple facts:

Fact 1. XH = X ⇐⇒ X is adapted to H.

Fact 2. XH is H-martingale if X is F-martingale under same
probability measure.

Fact 3. If X is a F-martingale, and adapted to H, then X is a
H-martingale.

For an equivalent probability measure Q, we define its density
process ξH on some smaller filtration H as the optimal projection
of ξ onto H, i.e.,

ξH(t) = E
P

[

dQ

dP

∣

∣Ht

]

= E
P
[

ξ (t)
∣

∣Ht
]

.
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Claim. If Q is an equivalent martingale measure, and π is the
corresponding state-price deflator as in Theorem 1, and R(s, t) is
Ht-measurable for all 0 ≤ s < t ≤ T, then

ξH(t) =
R(0, t)πH(t)

πH(0)
.

If there exists no arbitrage in L, and let π be the state-price
deflator, then the price viewed by the partially informed agent at
time t can be represented by

S(t) = E[S(t) |Ht] = E
P





1

π(t)

T
∑

j= t+1

π(j)δ(j)
∣

∣Ht



 ,

where Ht is the information set can be accessed at time t, and
S(t) is Ht-measurable, which means security prices are public
information. Moreover, for any strategy in LH, the space of
H-adapted processes,

θ(t) · S(t) = E
P





1

π(t)

T
∑

j= t+1

π(j)δθ (j)
∣

∣Ht



 .

Now, bearing in mind that all agents are price takers, we can start
to construct the martingale measure and state-price deflator for
asymmetric information. Assume that the risk-free rate is known
to all agents.

3.2.1. Assumption

R(s, t), s ≤ t ≤ T, is F (i)
t -measurable for all i ∈ I.

Definition 6 (Quasi Equivalent Martingale Measure). We call an
equivalent probability measure Q a quasi equivalent martingale
measure (Quasi-EMM) if, for all i ∈ I,

S(t) = E
Q





T
∑

j= t+1

1

R(t, j)
δ(j)

∣

∣F
(i)
t ∨ Gt



 , t < T.

Denote the density processes of Q respect to P for the filtrations
F (i) ∨ Gt, i ∈ I by

ξ (i)(t) = E
P

[

dQ

dP

∣

∣F
(i)
t ∨ Gt

]

.

Under a Quasi-EMM, a security’s price equals the expectation
of discounted future dividends conditioned on individual
information for every agent. All agents in our economy agree
on the same (fair) prices of securities, which are exactly
consistent with the assumption that all agents are price takers.
Correspondingly, we can define a quasi state-price deflator as
follows.

Definition 7 (Quasi State-price Deflator). A strictly positive
process π is called a quasi state-price deflator if, for all i ∈ I,

S(t) =
1

π (i)(t)
E
P





T
∑

j= t+1

π (i)(j)δ(j)
∣

∣F
(i)
t ∨ Gt



 ,

where π (i) is the optimal projection of π onto {F
(i)
t ∨ Gt}t ∈T .

Proposition 3. If π is a quasi state-price deflator, then for any
trading strategy θ (i) ∈ L(i),S, i ∈ I,

θ (i)(t)·S(t) =
1

π (i)(t)
E
P





T
∑

j= t+1

π (i)(j)δθ (i) (j)
∣

∣F
(i)
t ∨ Gt



 , t < T.

The following theorem shows the relationship between a quasi-
EMM and a quasi state-price deflator, which is similar to the
classic case of symmetric information.

Theorem 2. π is a quasi state-price deflator if and only if there
exists an quasi equivalent martingale measure Q with the density
process ξ such that

ξ (i)(t) =
R(0, t)π (i)(t)

π (i)(0)
, for all i ∈ I,

where the density process ξ is defined by

ξ (i)(t) = E
P

[

dQ

dP

∣

∣F
(i)
t ∨ Gt

]

, i ∈ I.

The following proposition gives a strong condition for the
existence of a quasi state-price deflator, which is actually for the
case of symmetric information.

Proposition 4. If there exists a quasi state-price deflator, then
there is no arbitrage in L(i),S for all i ∈ I. If there is no arbitrage
in L, then there exists a quasi state-price deflator.

3.2.2. Pricing Consumption Process
The use of quasi state-price deflator π is to price any
consumption process, that is, the price of a consumption process

c in L+ is given byE
P
[

∑T
t= 0 c(t)π(t)

]

. Thus,π will be also called

a pricing kernel.
If c ∈ X(i),S for some i, then the price for this particular agent

i is given by

E
P

[

T
∑

t= 0

c(t)π(t)

]

= E
P

[

T
∑

t= 0

c(t)π (i)(t)

]

.

But for some other agent j in whose information c is not
accessible, then the price will be

E
P

[

T
∑

t= 0

c(t)π (j)(t)

]

,

which does not necessarily coincide with 5(c). The difference
between them comes from asymmetry of information, thus for
agent j to access this consumption c, she will have to pay a fee to
obtain more information. This, fee, which we call an information
fee η, should be

η = E
P

[

T
∑

t= 0

c(t)π(t)

]

− E
P

[

T
∑

t= 0

c(t)π (i)(t)

]

> 0.

This argument can be extended to any consumption c ∈ L+. The
price of any consumption c ∈ L+ for an agent i is
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E
P

[

T
∑

t= 0

c(t)π (i)(t)

]

.

And the information fee η is

η = E
P

[

T
∑

t= 0

c(t)π(t)

]

− E
P

[

T
∑

t= 0

c(t)π (i)(t)

]

≥ 0.

Thus, η = 0 when c ∈ X(i),S.

4. Equilibrium

4.1. Individual Agent Optimality
The objective of each agent is to maximize her individual utility
by choosing the optimal feasible trading strategy. Then the
optimization problem for agent i can be written as

max
c ∈ X(i),S

U(i)(c). (1)

The following claims show the relation between arbitrage and
individual optimization problem.

Proposition 5. The optimization problem (1) for agent i and given
S has a solution⇒ there exists no arbitrage in L(i),S.

Corollary 2. There exists no arbitrage in L(i),S and U(i) is
continuous ⇒ Optimization problem for agent i given S has a
solution.

4.1.1. First-order Condition
If the individual optimization (1) has a strictly positive solution
c∗, and U(i) is continuously differentiable at c∗, then

∇U(i)(c∗; δθ ) = 0, ∀θ ∈ L(i),S,

where ∇U(x; y) denotes the ∇U(x) at y, i.e.,

∇U(x; y) ≡ lim
α→0

U(i)(x+ αy)− U(i)(x)

α
.

Note that ∇U(i)(c∗; ·) : L → R is a linear function. The following
proposition shows that this linear function gives the pricing
kernel for the individual agent.

Proposition 6. Suppose the individual optimization problem (1)
has a strict positive solution c∗ and U has a strictly positive
continuous derivatives at c∗. Then the Riesz representation π of
∇U(i)(c∗; ·) satisfies that

S(t) =
1

π (i)(t)
E
P





T
∑

j= t+1

π (i)(j)δ(j)
∣

∣F
(i)
t ∨ Gt



 .

If we restrict utility satisfying additive form, then we can have the
following. Suppose U(i), for each i ∈ I, has the additive form:

U(i)(c) = E
P

[

T
∑

t= 0

u(i)t (c(t))

]

.

Then for any t ≤ τ ,

S(t) =
1

u′t(c
∗(t))

E
P



S(τ )u′τ (c
∗(τ ))

+

τ
∑

j= t+1

δ(j)u′j(c
∗(j))

∣

∣F
(i) ∨ Gt



 .

4.2. Equilibrium Asset Pricing
Definition 8. A security-spot market equilibrium (SSE) is

a collection
{

(θ (i))i∈ I, S
}

, such that, for each i, θ (i) solves

individual optimization

max
c ∈ X(i),S

U(i)(c), (2)

under market clearing condition

∑

i∈ I

θ (i) = 0. (3)

If a SSE equilibrium exists, that means the equilibrium
consumption

c∗ = (c(1)
∗

, c(2)
∗

, ..., c(n)
∗

)

solves all individual optimization problems. From last section, we
have the result that there is no arbitrage opportunity for each
individual agent. Also, each ∇U(i)(c(i)∗; ·) gives this agent i a
pricing kernel π (i), which is adapted to individual information
filtration, up to a positive multiplier. In order to construct a
universal pricing kernel π , such that π (i) equals to the optimal
project of π on individual information. If this universal pricing
kernel π exists, then π is a quasi state-price deflator, and 5(c) ≤

5(e) implies 5(i)(c) ≤ 5(i)(e(i)) for all c ∈ L(i),S+ , where 5(·) =

〈π, ·〉, 5(i)(·) = 〈π (i), ·〉.

Proposition 7. Suppose that there exist an equilibrium satisfying
(2)(3), then (π (1), ..., π (n)) obtained from Proposition 6 admits a
quasi state-price deflator.

Definition 9. We say the market is quasi-complete if for each
i ∈ I,

L(i),S =
{

(θ(t) · δ(t)) : θ ∈ L(i),S
}

.

When themarket is quasi-complete, the existence of the universal
π will reduce the individual optimization to the following form:

max
c∈L(i),S+

U(i)(c) subject to 5(c) ≤ 5(e(i)). (4)

Since U(i) is strictly increasing, there is a Lagrange multiplier λ(i)

such that the optimization above is equivalent to

max
c∈L(i),S+

λ(i)U(i)(c)−
(

5(c)− 5(e(i))
)

.
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Define the utility function Uλ : L+ → R by

Uλ(x) = max
c(i)∈L(i),S+ ,i∈I

∑

i∈ I

λ(i)U(i)(c(i)) subject to
∑

i∈ I

c(i) ≤ x.

Proposition 8. Suppose that there exists an equilibrium satisfying
(2)(3) for a quasi-complete market, then the equilibrium
consumption solves

max
c(i)∈L(i),S+ ,i∈I

∑

i∈ I

λ(i)U(i)(c(i)) subject to
∑

i∈ I

c(i) ≤
∑

i∈ I

e(i).

Corollary 3. Moreover, if for each i that U(i) is of additive form

U(i)(c) = E
P

[

T
∑

t= 0

u(i)t (c(t))

]

,

then Uλ is also of additive form

Uλ(c) = E
P

[

T
∑

t= 0

uλt(c(t))

]

.

where

uλt(x) = max
c(i)∈L(i),S+ ,i∈I

∑

i∈I

λ(i)u(i)(c(i)) subject to
∑

i∈I

c(i) ≤ x.

for any t ≤ τ ,

S(t) =
1

u′t(c
∗(t))

E
P
[

S(τ )u′τ (c
∗(τ ))

+

τ
∑

j= t+1

δ(j)u′j(c
∗(j))

∣

∣F
(i) ∨ Gt



 .

4.3. State-price Beta Model
Denote by Ei,t the expectation conditioned on F

(i)
t ∨ Gt , by

Vari,t the variance conditioned on F
(i)
t ∨ Gt , and by Covi,t the

covariance conditioned on F
(i)
t ∨ Gt .

Now, let us define the capital returns generated by a trading
strategy θ by

rθ (t) =
θ(t − 1) · (S(t)+ δ(t))

θ(t − 1) · S(t − 1)

Denote by r(i),0(t) the risk-free return for agent i. Thus, r(i),0 is
the return of a strategy θ0, such that,

θ0 ∈ L(i),S, and corrPi,t−1(r
(i),0, π(t)) = 0,

where corri,t is the correlation conditioned on F
(i)
t ∨ Gt .

Each agent also believes in her own market portfolio. That is,
for each agent i, she constructs the optimal market portfolio from
L(i),S by maximizing the the correlation with π conditioned on

their own information. That is , at time t, the market portfolio is
given by

max
θ∈L(i),S

corrPi,t−1

(

rθ (t), π(t)
)

.

Let r(i),M(t) denote the market return. Then the maximization
implies

π(t) = r(i),M(t)+ ǫ(t),

where CovPi,t−1

(

ǫ(t), rθ (t)
)

= 0 for all θ ∈ L(i),S. Note that

CovPi,t−1

(

rθ (t), π(t)
)

= π (i)(t − 1)

(

1−
E
P
i,t−1

[

rθ (t)
]

E
P
i,t−1

[

r(i),0(t)
]

)

.

Then we can obtain the beta form of the CAPM:

E
P
i,t−1

[

rθ (t)− r(i),0(t)
]

= βθ
i,t−1E

P
i,t−1

[

r(i),M(t)− r(i),0(t)
]

where

βθ
i,t−1 =

CovPi,t−1

(

rθ (t), r(i),M(t)
)

VarPi,t−1

(

r(i),M(t)
) .

5. Examples and Discussion

5.1. Equilibrium Price
Example 2 (Quasi-EMM and Price in Case of No Private
Information). Let time T = 0, 1, 2, and there is one risky asset
which pays dividend δ(t) satisfying

δ(t) = f (t)+ ǫD(t), t = 0, 1, 2,

where f (t) is the fundamental value satisfying

f (t) = f (t − 1)+ ǫf (t), t = 1, 2, and f (0) = 1,

and ǫD(t) is noise with ǫD(0) = 0, and ǫf (t) is noise with ǫ(0) =
0. Assume that ǫD(1), ǫD(2), ǫf (1), ǫf (2) are jointly normally
distributed.

Now suppose no agents has private information, i.e., the only
information agents can access are generated by dividend and
price.

Let (Quasi-)EMM be the probability measure under which
ǫD(1), ǫD(2), ǫf (1), ǫf (2) are independent standard normally
distributedN(0, 1). Then the price given by the following is valid,

S(1) = E
Q
[

δ2| δ(1), S(1)
]

=
1

3
δ(1)+

2

3

S(0) = E
Q[δ(1)+ δ(2)] = 2

In this case, price reveals no additional information beyond
dividends.

Example 3 (Quasi-EMM and Price in Case of Symmetric Private
Information). Within the framework as in Example 2, we
additionally introduce one signal process y(t) satisfying

y(t) = f (t)+ ǫy(t), t = 1, 2, and y(0) = 1,
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where ǫy(t) is noise. All agents can access signal y as their private
information.

Case 1. Let Quasi-EMM be the probability measure under
which ǫD(1), ǫD(2), ǫf (1), ǫf (2), ǫy(1) are independent standard
normally distributed N(0, 1). Then the price given by the
following is valid,

S(1) = E
Q
[

δ2| δ(1), S(1), y(1)
]

=
1

3
δ(1)+

1

3
y(1)+

1

3

S(0) = E
Q[δ(1)+ δ(2)] = 2

Case 2. Let Quasi-EMM be the probability measure under
which ǫf (1), ǫD(1), ǫy(1), ǫf (2), ǫD(2) are jointly normally
distributed with mean 0 and covariance matrix













1 3
4

1
2 0 0

3
4 1 1

4 0 0
1
2

1
4 1 0 0

0 0 0 1 0
0 0 0 0 1













.

Then the price given by the following is valid,

S(1) = E
Q
[

δ2| δ(1), S(1), y(1)
]

=
1

2
δ(1)+

1

2

S(0) = E
Q[δ(1)+ δ(2)] = 2

In this example, we can see when there exists private information,
either case can happen: (i) the signal is incorporated into price
as factor, and (ii) price is very inefficient and reveals no private
information.

Example 4 (Quasi-EMM and Price in Case of Asymmetric
Private Information). As in Example 3, we introduce not one but
two signal processes y1(t) and y2(t) satisfying

y1(t) = f (t)+ ǫ1(t), t = 1, 2, and y1(0) = 1,

y2(t) = f (t)+ ǫ2(t), t = 1, 2, and y2(0) = 1,

where ǫy(t) is noise. There are two agents in economy, agent 1
can access signal y1, and agent 2 can access signal y2.

Let Quasi-EMM be the probability measure under which
ǫD(1), ǫD(2), ǫf (1), ǫf (2), ǫ1(1), ǫ2(1) are independent standard
normally distributed N(0, 1). Then the price given by the
following is valid,

S(1) = E
Q
[

δ2| δ(1), S(1), y1(1)
]

= E
Q
[

δ2| δ(1), S(1), y2(1)
]

=
1

4
δ(1)+

1

4
y1(1)+

1

4
y2(1)+

1

4

S(0) = E
Q[δ(1)+ δ(2)] = 2

In this example, price reflects aggregated private information.

5.2. Mispricing
Suppose we have a pricing kernel π and that its optimal
projections on individual information filtration are π (i)’s.
Consider a derivative written by agentw and it is traded at time 0.
This derivative pays dividend δθ , where θ is a trading strategy in
L(w),S. Thatmeans the writer, agentw, can replicate this derivative
and that the value of this derivative is 0. Agent w want to sell this
derivative to other agents. The question is what would be the fair
price of this derivative for some agent i.

If θ ∈ L(i),S, agent i can replicate this derivative easily, and also
the consumption process c = e(i) + δθ cannot increase the utility
of this agent i. Thus, agent iwill not pay any positive price for this
derivative.

If θ 6∈ L(i),S, agent i cannot reach this dividend with a
trading strategy based on her own information. Thus, agent
i will buy this derivative if the consumption process c =

e(i) + δθ can increase her maximum utility, i.e., U(i)(c) >

U(i)(c(i)∗). The maximum price at which agent i will to pay
will be 5(i)(c) − 5(i)(c(i)∗). In this case, agent w is just taking
advantage of better information than agent i. The true value
of this derivative is in fact 0, since some agent can get this
dividend without any cost. This mis-pricing can be regarded as a
bubble, since agents still want to buy this derivative even though
they know the price of this derivative is higher than its true
value.

6. Conclusion

In this paper, we formulate a general equilibrium asset pricing
model in discrete time. It is shown that with the existence
of differential information, agents can still achieve agreement
on a universal trading price. This equilibrium price reflects
the private information through the individual choice of
consumption. As an inter-related system, the equilibrium price
is also viewed as a public information resource by each
agent. The information asymmetry also influences individuals
portfolio choices and the consumption beta. This is rooted
in the fact that agents price the same consumption choices
differently. Mispricing is also discussed as a consequence of these
facts.
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