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We propose a new methodology to estimate λ, the parameter of the Box–Cox

transformation, as well as an alternative method to determine plausible values for it.

The former is accomplished by defining a grid of values for λ and further perform a

normality test on the λ-transformed data. The optimum value of λ, say ∗λ , is such that the

p-value from the normality test is the highest. The set of plausible values is determined

using the inverse probability method after plotting the p-values against the values of λ

on the grid. Our methodology is illustrated with two real-world data sets. Furthermore,

a simulation study suggests that our method improves the symmetry, kurtosis and,

hence, the normality of data, making it a feasible alternative to the traditional Box–Cox

transformation.

Keywords: maximum likelihood estimation (MLE), combined p-value, normality test, grid-search

1. INTRODUCTION

Many researchers are faced with data that deviates from normality and that therefore requires
treatment such that the assumption is met or approximated. Normalizing data is particularly
relevant when parametric tests (e.g., analysis of variance [ANOVA] and linear mixed models) and,
even, non-parametric tests are used [1]. One of the methods to enhance data’s normality is via
transformations. While transformations need to be used cautiously [2], they have the added benefit
of not leading to the elimination of observations and also accommodating all observations into a
distribution that tends to be less skewed than the original data (see [3], for a comprehensive study
of the effects of applying transformations to positively skewed distributions). Also, transformations
are especially needed when dealing with repeated measures designs and when measures are taken
over a number of learning trials [4]. As a matter of fact, transforming data has been found helpful
in revealing statistically significant differences across experiments that would have been otherwise
missed if such treatment had not been applied [5]. A family of transformations commonly used in
various research fields is known as the Box–Cox transformation [6].

Box and Cox [7] proposed a parametric power transformation technique defined by a single
parameter λ, aimed at reducing anomalies in the data [7, 8] and ensuring that the usual assumptions
for a linear model hold [9]. This transformation results from modifying the family of power
transformations defined by Tukey [10] to account for the discontinuity at λ = 0 [8].

In regression analysis, the Box–Cox transformation is a fundamental tool [8, 11] and has been
extensively studied in the literature. For instance, robust [12–15], Bayesian [16], symmetry-based
[17], and quick-choice [18] estimators of λ have been proposed. The estimation [19], prediction
[20, 21], diagnostics [22] and potential problems in linear models when the variables are rescaled
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[23] have also been discussed. Additionally, some normality tests
for transformed data have been presented [17, 24, 25].

Because of the well-known properties of maximum likelihood
estimators (MLEs) [26], it is usual to estimate λ by λ̂MLE.
Additionally, any statistical analysis on the transformed data is
performed assuming that λ is known [9]. However, for any other
value of λ, say λ0, the normality assumption does not hold. As
a result, a non-regular estimation problem [27] arises since an
inappropriate likelihood function is obtained for all values of
λ but λ0. Hence, the λ̂MLE and the inference built upon are
not appropriate. Hernandez and Johnson [28] have consequently
derived asymptotic results for this case.

In this document, a new methodology for estimating λ and
an alternative method of determining plausible values for it
are proposed. To accomplish both goals, we use a grid-search
approach in combination with a normality test performed on
the λ-transformed data to determine λ∗, the optimum value of
λ, such that the p-value from the normality test is the highest.
We investigate the advantage of the proposed methodology
through two real data sets and simulated data, and append
the R [29] code to apply the method described herein (see
Appendix).

2. THE BOX–COX TRANSFORMATION

Let y = (y1, y2, . . . , yn)
′ be the data on which the Box–Cox

transformation is to be applied. Box and Cox [7] defined their
transformation as

y
(λ)
i =

{

λ−1(yλ
i − 1) if λ 6= 0

log(yi) if λ = 0
(1)

such that, for unknown λ,

y(λ) = Xβ + ǫ (2)

where y(λ) is the λ-transformed data, X is the design matrix
(possible covariates of interest), β is the set of parameters
associated with the λ-transformed data, and ǫ = (ǫ1, ǫ2, . . . , ǫn)
is the error term. Since the aim of Equation (1) is that

y(λ) ∼ N(Xβ, σ 2In), (3)

then ǫ ∼ N(0, σ 2). Note that the transformation in Equation (1)
is only valid for yi > 0, i = 1, 2, . . . , n, and modifications have
to be made when negative observations are present [7–9, 30].

3. A p-VALUE-BASED APPROACH FOR λ

As reported above, λ has traditionally been estimated via theMLE
method, particularly via profile log-likelihoods. Our method
is characterized by pairing the value of λ, used to transform
a specific data set, with the associated p-value of a desired
normality test performed on the λ-transformed data. A key
characteristic of our method is that the selected λ is that paired
with the largest p-value given by the desired normality test.

3.1. Procedure
Let {λ}k be a sequence of k plausible values of λ (unknown) such
that

λL < λ2 < λ3 < λ4 < · · · < λk−1 < λU
︸ ︷︷ ︸

k-elements

(4)

Here, λL and λU are, respectively, the lower and upper bounds
of that sequence containing a (small) number of λs. This is
justified by the “fix one, or possibly a small number of λs and
go ahead with the detailed estimation” strategy presented in Box
and Cox [7].

Using the values of λ in Equation (4), our search strategy
involves the following steps:

1. Apply Equation (1) to y with λ = λj, j = 1, 2, . . . , k.

2. Perform a normality test on y(λj), and extract the p-value.
Denote this p-value as pj, j = 1, 2, . . . , k.

3. Let p(k) = max{p1, p2, . . . , pk}. On the pairs (λj, pj),
determine λ∗ as

λ∗ = {λj : pj = p(k)} (5)

4. Report λ∗.

Since λ∗ is such that the p-value for the normality test is the
highest for all possible values of λ ∈ (λL, λU) when a specific
normality test is applied, Equation (3) follows. However, it could
also be the case that, for the same value of λ∗, other normality
tests reject the null hypothesis (see Figure 2, for some examples).

3.2. Confidence Interval for λ
∗

In addition to the estimation of λ∗, our approach also allows
the possibility of calculating a confidence interval (CI) for this
parameter using the inverse probability method.

Consider Figure 1 and let α ∈ (0, 1) be the type I error
probability. The lower and upper limits 100×(1−α) CI are given
by

λL =
{

λi ∈ (λL, λ
∗) : min |pi − α|

}

(6)

and

λU =
{

λi ∈ (λ∗, λU) : min |pi − α|
}

. (7)

These two expressions are derived as follows. Initially, we
estimate λ∗ by finding the jth index such that the p-value of the
normality test is the highest, and further partition (Equation 4) as
A ∪ B, with A =

{

λ : λ ∈ (λL, λ
∗)

}

and B =
{

λ : λ ∈ (λ∗, λU)
}

.
Within each of these two sets, we calculate the absolute difference
between α and p-values of the normality test (associated with
each λ value in the set). Finally, λL and λU are such that these
differences are the minimum.

3.3. Selection of a Normality Test:
Combined p-values
Several normality tests could be used in the steps described above,
but their power depends on the sample size and the type of
distribution the data resembles [31]. An automated approach to
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FIGURE 1 | Construction of 100 × (1 − α) CI for λ
* using the inverse

probability method. The x-axis corresponds to the plausible values of λ in

Equation (4), the y-axis to the p-value of the normality test, and the horizontal

dotted line the type I error probability, α. It is worth mentioning that the

relationship between λ and the p-value of the normality shown here is for

illustration purposes only.

circumvent the job of selecting a normality test would be to fit
several potential parent distributions to the λj-transformed data,
find the distribution that gives the best fit (e.g., the lowest Akaike’s
Information Criterion [AIC]), and then choose the normality test
with the highest power against that distribution. The drawback of
this approach is there are also many candidate distributions that
could be fitted to the data and not all of them have been studied
in the context of normality tests. In other words, the power of all
normality tests against all probability distributions is unknown.

A more parsimonious approach would be to use the
combined p-value of a selected number of normality tests.
Approximately 40 different types of normality tests exist [32]
all of which can be coarsely classified in three categories: (i)
regression/correlation-, (ii) empirical distribution function-, and
(iii) measure of moments-based tests [31]. Thus, choosing an
equal number of tests from each category would enable an
educated assessment of the normality of a data set whose
likely parent distribution is unknown. In this article, we used
the Shapiro–Wilk (SW) and Shapiro–Francia (SF) tests from
category (i), Kolmogorov–Smirnov (KS) and Anderson–Darling
(AD) from category (ii), and Doornik–Hansen (DH) and robust
Jarque–Bera (rJB) from category (iii).

Some of the methods proposed for the combination of
p-values include Fisher’s, Tippet’s, Liptak’s, Sidak’s, Simes’s,
Stouffer’s (see [33], for a review), and Vovk’s [34]. In this article,
we chose Stouffer’s method because (i) it is more powerful and
precise than others methods for combining p-values [35, 36]; and
(ii) its simplicity by Z-transforming a set of p-values obtained
from independent tests.

Using the Stouffer’s method, the combined p-value of M
independent statistical tests is

pcombined = 1− 8−1(ZS), (8)

with

ZS =

∑M
m=1 wm Zm

√
∑M

m=1 w
2
m

· (9)

In the expressions above, 8 is the cumulative standard normal
distribution, wm is the weight of the mth study, and Zm is the
quantile of the standard normal distribution associated with
p-value of them statistical test,m = 1, 2, . . . ,M.

Now, suppose M normality tests are chosen and used such
that the pairs (λj, pj)m are calculated, j = 1, 2, . . . , k, m =

1, 2, . . . ,M. In addition, we combine pj,1, pj,2, . . . , pj,M to obtain
pj,combined, j = 1, 2, . . . , k. Finally, using Stouffer’s method, λ∗ is
estimated as

λ∗combined = {λj : pj,combined = p(k),combined} (10)

with p(k),combined being the maximum of the combined p-values.

4. EXAMPLES

In this section, we illustrate the usefulness of our method by
estimating λ∗ for two real data sets and compare the power of our
method with that of the traditional MLE approach via a statistical
simulation. Additionally, we provide an example demonstrating
how well our method works in the case of a linear regression
model.

4.1. Published Data
4.1.1. Example 1: Gesturing Movement Times
Salowitz et al. [37] measured the movement times of 13 autistic
and 14 typically developing children when imitating hand/arm
gestures and performing mirror drawing. Figure 2A represents
the movement times of the autistic children when their task
consisted of imitating a variety of gestures performed by a person
in a video1. The authors used a logarithmic transformation (λ =

0, Figure 2B) to normalize the movement times. It is clear from
Figure 2B that such transformation achieves normality for most
of the tests under consideration. However, the λ suggested by our
method using the combination of p-values (λ∗ = 0.332, 95%CI=
[−0.039, 0.707]) leads to a transformation with increased chances
of passing most normality tests (see Figures 2B,C).

4.1.2. Example 2: Consonant Classification Times
Marzouki et al. [38] investigated whether information from a
prime stimulus can be integrated with a target stimulus despite
the two stimuli appearing at different spatial locations. In order
to do so, five participants were asked to classify a set of target
consonants as being a consonant or a pseudo-consonant (i.e.,
visual modifications of the target consonant). Target consonants
appeared on seven different locations on the computer screen
along the horizontal meridian. In one condition, consonants were
primed by consonants and in the other consonants were preceded
by pseudo-consonants. Participants repeated this task over five
sessions during two blocks. Figure 2D represents the reaction
times when consonants were preceded by consonants and when
such pairings were presented on the extreme left area of the

1See [37], for details of the computation of the movement times.
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FIGURE 2 | Published data sets in which the Box–Cox transformations was used. (A–C) correspond to the data (n = 13) analyzed in Salowitz et al. [37]; (D–F)

to a set of observations (n = 917) analyzed in Marzouki et al. [38]. (A,D) correspond to the real data; (B,E) to the p-values of six normality tests and the Stouffer

method as a function of λ; and (C,F) to the λ*combined−transformed data sets. The horizontal line represents α = 0.05, and the red vertical line the value of λ used by

the researchers. Measures of skewness and kurtosis are also shown along with the p-values of the Kolmogorov–Smirnov (PKS test) and Shapiro–Wilk (PSW test)

normality tests. rJB, robust Jarque–Bera; KS, Kolmogorov–Smirnov; DH, Doornik–Hansen; SW, Shapiro–Wilk; AD, Anderson–Darling; SF, Shapiro–Francia.

screen. The researchers used λ = −1 to normalize the results. As
shown in Figure 2E, this value of λ would not lead to a successful
normalization.

A similar result is obtained only when the SW normality test
and the combined p-value approach are used with our method.
However, the value λ∗DH = −1.3703 (95%CI= [−1.469,−1.272])
transforms the data such that most normality tests, but SW,
judge it as normal (Figure 2F shows the data transformed with
this λ).

These two data sets further show that different normality tests
can give different results regarding the normality of a specific
data set and this is particularly evident in the difference between
p-values given by the KS and SW tests. Specifically, the SW
test is much more stringent than the KS test even when the
data is assessed as normal by other normality tests (see the p-
values in Figures 2A,F, as well as the results shown in the second
column of that figure). The fact that normality tests give such
different results simply reflects their power against different types
of distributions and sample sizes [39]. Due to such a discrepancy
in results, methods of combining p-values are helpful in gauging
a p-value that would represent the normality of a specific data
set as evaluated by a set of selected normality tests. Although our
method can rely on one normality test alone, we believe using

combined p-values, specifically the Stouffer method, is a sound
and safe way to estimate λ.

4.2. Normalizing Residuals in Linear
Regression
Suppose an outcome y and a predictor x are measured, and that it
is of interest to apply a Box–Cox transformation when fitting the
linear model

y = β0 + β1x+ ǫ (11)

where ǫ is the error term. For simplicity, we simulate n = 50
observations with x uniformly distributed on the interval (1, 10)
and ǫ from an exponential distribution with parameter µ = 1.
Under this setting, it is clear that the error term does not meet
the usual regression assumptions.

We estimate the parameter of the Box–Cox transformation
using both MLE and our p-value-based approach using the
Stouffer’s method. In the first case, the boxcox function in
Venables and Ripley [40] was used, whereas for our method
a function in R was programmed. For a fixed value of λ, this
function applies the Box–Cox transformation on y, fits the
regressionmodel, calculates the residuals, applies a normality test
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and finally extracts the p-value of such a test. As shown in §3.1,
the value of λ∗ will be that for which the p-value of the normality
test is the highest.

The combined p-value approach was also utilized to find
the value of λ MLE and that provided by our p-value-based
approach (see §3.3, for more details). In the first case, λ̂MLE

combined
=

0.282 and pMLE
combined

= 0.0755, whereas λ∗
combined

= 0.4514
and pcombined = 0.7297 using our approach. Furthermore, a
comparison of the symmetry (γ ) and kurtosis (β) coefficients
for the residuals of model (Equation 11) after transforming y
using the values found with each method revealed the residuals
produced by our method are more symmetric (γMLE = −0.31
vs. γcombined = 0.097) and have a kurtosis closer to that of the
normal distribution (βMLE = 2.791 vs. βcombined = 3.089).
The values of γ → 0, β → 3, and pcombined → 1 suggest
that our method is efficient at normalizing the residuals of this
regression model.

4.3. Simulated Data
Several probability distributions have been proposed in the
literature to model positively-skewed data, such as reaction
and response time data. Distributions such as the Log-Normal,
Weibull, and Wald have been suggested as candidate parent
distributions for these types of data. However, the most studied
is the Ex-Gaussian (EG) distribution [39].

In order to determine the performance of the MLE of λ and
our p-value-based approach, we conducted a simulation study
in which data sets from three EG distributions with parameters
θ1 = (300, 20, 300), θ2 = (400, 20, 200), and θ3 = (500, 20, 100)
were generated (referred to as EG1, EG2 and EG3, respectively).
These parameters were chosen because they represent three levels
of skewness in the data ranging from high (θ1) to low (θ3). The
probability densities of these EG distributions can be seen in
Marmolejo-Ramos and González-Burgos [39].

We implemented the following algorithm in R:

1. For fixed i and n, draw a random sample of size n from
the ith distribution, i = 1, 2, 3. Denote this sample as y =

(y1, y2, . . . , yn).
2. Let M be the total number of normality tests. Apply

Equation (1) on y and estimate λ̂MLE. Now, on the λMLE-
transformed data, apply the M normality tests and determine
pMLE
1 , pMLE

2 , . . . , pMLE
M , the p-values of the M normality tests.

Further, combine these p-values using Equation (8) to obtain
pMLE
combined

.
3. Determine the pairs (λ∗m, p∗m), m = 1, 2, . . . ,M.

Subsequently, for each value of λj in the sequence
λL, λ2, . . . , λU , combine the p-values of theM normality tests
to obtain pj,combined, j = 1, 2, . . . , k. From these p-values,
obtain λ∗

combined
and pcombined.

4. Report n, λ̂MLE, p
MLE
1 , pMLE

2 , . . . , pMLE
M , pMLE

combined
, the pairs

(λ∗m, p∗m),m = 1, 2, . . . ,M, and
(λ∗

combined
, pcombined).

5. Repeat steps 1–4, B times.

For analysis purposes, the rejection rate (RR) of theM normality
tests and the combined p-values were calculated for each method

(MLE and p-value-based). The RR was defined as

RR = B−1
B

∑

b=1

I{pb<α} (12)

where pb is the p-value of the test under evaluation in the bth
iteration (b = 1, 2, . . . ,B), and I is an indicator variable. The
proportion of normalization can be thus obtained as 1− RR.

In the simulation set up, we used n = {10, 30, 50, 100, 500}

as sample sizes and considered the Shapiro–Wilk
(shapiro.test in R), Anderson–Darling (ad.test in
Gross and Ligges [41]), robust Jarque–Bera (rjb.test in
Gastwirth et al. [42]), Shapiro–Francia (sf.test in Gross and
Ligges [41]), Kolmogorov–Smirnov (lillie.test in Gross
and Ligges [41]), and Doornik–Hansen (normality.test1
in Wickham [43]) normality tests. The Box–Cox transformation
parameter was estimated with the powerTransform function
in the car package [44]. As suggested by Robey and Barcikowski
[45], a total of B = 1000 iterations were used.

4.3.1. Results
Figures 3, 4 show the main results. For each of the normality
tests when λMLE and the combined p-value approaches were used,
no obvious differences in the proportion of normalization were
shown. However, as shown in Figure 3C, combining the p-values
given by the normality tests for both the MLE and our method
showed a slightly better performance of our method over the
MLE, particularly when n < 100 across the three distributions.
Figures 3A,B further suggests that our method does a better job
than theMLE at normalizing less skewed distributions (like EG3).

In order to formally determine differences between the
methods tested, we compared the probability densities of the
combined p-values obtained in the simulation. The results
corroborated that our method performed better than the MLE
method at normalizing non-normal distributions with low
skewness across the sample sizes tested (see the third column
in Figure 4). Additionally, this analysis showed that our method
outperformed the MLE when distributions had mild (like EG2)
to high (like EG1) levels of skewness and very small sample sizes
(e.g., n = 10).

5. DISCUSSION AND CONCLUSIONS

The combined p-value approximation provides a better way
of finding the appropriate λ for achieving normality since it
considers the degree of agreement between the λ-transformed
data and the normal distribution. If the p-value is sufficiently
larger for more than one value of λ, we conclude that there is
no way to guarantee normality with a single value of λ using our
methodology; however this scenario seems unlikely. Although
in our current implementation (see Appendix) of the proposed
method it is not possible to select an optimal grid to search, we
suggest exploring intervals and elements within these intervals
to obtain a more precise value of λ∗. Further implementations
should include adaptive- and/or random-based search methods
[46, 47]. Despite this, we believe that our methodology provides
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FIGURE 3 | Proportion of normalization achieved by the (A) MLE and (B) p-value-based approaches for six normality tests in three Ex-Gaussian

distributions, and (C) all p-values of the normality tests are combined using Stouffer’s method. Abbreviations as in Figure 2.

a new, easy-to-use and robust tool to help the data analyst decide
which value of λ needs to be used in order to transform any data
set so that its normality is guaranteed.

The results of the simulation study suggest that our method
seems to be an improvement in the search of a λ in order
to achieve normality, and posit topics for future investigation.
The value of λ∗ can be affected by (i) the number and type of
normality tests employed and (ii) the way the combined p-value
is computed. It is important to recall that all available methods
of combining p-values need the p-values given by independent
tests, in our case normality tests. Although six normality tests
from three different categories were used, it is tenable that if more
tests are included in the estimation of the combined p-values,
the results might be somewhat different. Indeed, results can be
dramatically different if tests from only one or two categories are
included in the computations. On the other hand, the estimation
of the combined p-values is another aspect that plays a key role.
We used the Stouffer’s method based on its neat properties.
However, the statistical properties of λ∗ and the power of other
methods which combine p-values remain to be elucidated.

An issue in relation to the strength of our method is related
to the parent distribution representing the data. It is clear that as
the sample size increases, the normalization of the data becomes

more challenging (see Figure 3), but also the type of distribution
can add an extra challenge to the success of the transformation.
Although we employed the Ex-Gaussian distribution, a type of
untruncated continuous distribution, our method needs to be
tested with other classes of non-normal distributions such as
those used to model count and Likert-type data (be it truncated
discrete or continuous) in the context of transformations (see
[49] for count data, and [50–52] for Likert-type data). These ideas
also apply to linear regression. That is, further testing is needed to
evaluate the ability of our method to normalize residuals coming
from regression models in which other non-normal distributions
are used to represent the error term and outcome in the model,
and when high leverage points or heteroskedasticity are present.
It is also important to recall that the Yeo-Johnson transformation
[30] should be used instead of the Box–Cox transformation when
negative values are present in the data.

Finally, it is important to quantify how our p-value-based
approach (to estimate λ) is affected by outliers. Although it
is well-known that the traditional Box–Cox transformation is
affected by outliers [7, 8], it remains to be elucidated if this is
the case when our p-value-based approach is used. One way of
addressing this issue would be to carry out a simulation study in
which the underlying distribution of both the data and outlier
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FIGURE 4 | Comparison of probability densities between the MLE and Stouffer–combined p-value approaches to estimate λ. A permutation test of

equality with nboot = 1000 samples was utilized (see [48], for details). The x-axis represents the p-value obtained by combining six normality tests using the Stouffer’s

method; the support of the p-values is the interval (0,1). Results for the sample sizes n = 10,30,50, and 100 are shown by row. The gray band represents the 95% CI

for the difference between densities.

generating process are known, and a fixed number of outliers
are introduced to the uncontaminated data. Subsequently, an
outlier detection method could be applied to the combined
data (i.e., uncontaminated data + outlier observations) and the
number of outliers detected would be further compared with
that initially introduced. In fact, we have recently found that an
outlier detection procedure known as the Ueda’s method [53]
is more likely to detect outliers when the data’s distribution
becomes more skewed and asymmetric [54]. Using the Ueda’s
method for the quantification of outliers affecting distributions
transformed via the approach proposed herein is a topic for
future investigation.

The application of our method in situations when the
researcher has more than one vector of data to be transformed

is important. This is the case, for instance, of reaction times
measured on the same group of participants over x number of
experimental conditions, and it is of interest to use a One-Way
repeatedmeasures ANOVA. By using ourmethod and calculating
the 95%CI around λ∗, we argue that the user has a range of λs to
select from in order to achieve, or approximate, the normality of
those vectors obtained in each experimental condition. Further,
it is possible that these CIs overlap with each other, and that
a common λ∗ can successfully transform all vectors. This same
idea would apply to a hypothetical case in which different
participants are allocated to different experimental conditions
and a One-Way independent measures ANOVA is to be used to
analyse the data. Hence, we believe that the method proposed
here is an improvement on the estimation of λ in the Box–Cox
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transformation and can be used by any researcher dealing with
data that needs to meet the normality assumption.
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APPENDIX

A Implementation in R

## load the necessary functions and packages

if(!require(devtools)) install.packages("devtools")

devtools:::source_url("http://bit.ly/1eY6ZP2")

# simulated data

set.seed(7)

y <- rexp(50, 1/100)

# find lambda* between -1 and 2 using the combined p-values (Stouffer’s method)

# and plotALL = TRUE the results

res0 <- lambda_star(y, lambdas = seq(-0.2, 1, length = 500),

method = "combined", plotALL = TRUE)

res0
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