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Investing in Global Markets: Big Data
and Applications of Robust
Regression
John B. Guerard*

Quantitative Research, McKinley Capital Management, LLC, Anchorage, AK, USA

In this analysis of the risk and return of stocks in global markets, we apply several

applications of robust regression techniques in producing stock selection models and

several optimization techniques in portfolio construction in global stock universes.We find

that (1) that robust regression applications are appropriate for modeling stock returns in

global markets; and (2) mean-variance techniques continue to produce portfolios capable

of generating excess returns above transactions costs and statistically significant asset

selection. We estimate expected return models in a global equity markets using a given

stock selection model and generate statistically significant active returns from various

portfolio construction techniques.

Keywords: outliers, big data, robust regression, portfolio selection, portfolio management

INVESTING IN GLOBAL MARKETS: BIG DATA, OUTLIERS, AND
ROBUST REGRESSION

In this study, we apply robust regression techniques to model stock returns and create stock
selectionmodels in a very large global stock universe.We employMarkowitz portfolio construction
and optimization techniques to a global stock universe. We estimate expected return models in the
global market using a given stock selectionmodel and generate statistically significant active returns
from various portfolio construction techniques. In the first section, we introduce the reader to the
risk and return trade-off analysis. In second section, we introduce the reader to modeling expected
returns and make extensive use of robust regression techniques. In the third section, we examine
the relationship of the (traditional) Markowitz mean-variance (MV) portfolio construction model
with a fixed upper bound on security weights. In fourth section, we discuss portfolio construction
and simulation, and present the empirical results. In fifth section, we offer conclusions and a
summary. We report that mean-variance techniques using robust regression-created expected
returns continue to produce portfolios capable of generating excess returns above transactions
costs and statistically significant asset selection in a global stock market offer the potential for
high returns relative to risk. The stock selection model used in this analysis is the “public form”
of the McKinley Capital Management proprietary model. The public form model produces highly
statistically significant asset selection and similar factor risk exposures to our proprietary model.

INTRODUCTION

Markowitz developed a portfolio construction model to achieve the maximum return for a
given level of risk or the minimum risk for a given level of return (1952, 1959, 1976, and
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TABLE 1 | Model financial characteristics.

Global (GEM3) universe

Backtest period: January 1998–August 2014

1998–2014 2005–2014 2009–2014

Top three Top Top three Top Top three Top

Information Decile Decile Information Decile Decile Information Decile Decile

Variable/model Coefficient (t-IC) Spreads Spread Coefficient (IC) Spreads Spread Coefficient (IC) Spreads Spread

EP 0.045 (3.97) 10.55 11.77 0.041 (3.61) 9.58 13.86 0.043 (3.76) 11.74 16.83

Bisquare regression 8-factor 0.045 (3.93) 14.92 25.00 0.038 (3.31) 11.65 20.87 0.038 (3.35) 11.74 21.59

Bisquare regression 10-factor 0.064 (5.64) 18.41 29.99 0.058 (5.08) 17.25 28.35 0.048 (4.23) 14.01 22.80

2013). We create a global set of portfolios over the 1997–2014
time period that offer substantial outperformance of a global
stock benchmark by using Beaton and Tukey [1], Gunst et al.
[2], Gunst andMason [3], Rousseeuw [4], Rousseeuw andHubert
[5], Rousseeuw and Leroy [6], Rousseeuw and Yohai [7], and
Yohai et al. [8] MM robust regression techniques, discussed
in Maronna et al. [9], to create expected returns and a mean-
variance tracking error at risk (MVTaR) portfolio construction
technique. The regression models used to create expected returns
combine well-established fundamental factors, such as earnings,
book value, cash flow, and sales, forecasted earnings acceleration,
and price momentum factors. Robust regression models are
used to estimate the determinants of total stock returns. The
regression techniques in this study include the Beaton-Tukey [1]
Bisquare weighting procedure that produces regression weights
for data1. The reader is referred to Bloch et al. [12], Guerard
et al. [13], and Guerard et al. [14]. These factors are statistically
significant in univariate models (tilts) and in multiple-factor
models (MFM). We briefly review the applied U.S. and Global
equity investment research in Guerard et al. [15], Guerard
et al. [13], and Guerard et al. [14]. We test whether a mean-
variance optimization technique using the portfolio variance
as the relevant risk measure dominates the risk-return trade-
off curve using a variation of the optimization model that
emphasizes systematic (or market) risk. A statistically-based
Principal Components Analysis (PCA) model is used to estimate
and monitor portfolio risk.

A measure of the trade-off between the portfolio expected
return and risk (as measured by the portfolio standard deviation)
is typically denoted by the Greek letter lambda (λ). Generally, the
higher the lambda, the higher is the ratio of portfolio expected
return to portfolio standard deviation. We assume that the
portfolio manager seeks to maximize the portfolio geometric
mean (GM) and Sharpe ratio (ShR) as put forth in Latane
et al. [16] and Markowitz [17, 18]. The reader is referred to
Elton et al. [19] for a complete discussion of modern portfolio
theory.

1The Beaton-Tukey analysis and its weighting of outliers built upon the work of

Anscombe [10] and Anscombe and Tukey [11]. The author has worked on robust

regression applications for several decades, and enjoyed personal communications

with Francis Anscombe on the issue of outliers and estimation in APL.

REGRESSION-BASED EXPECTED
RETURNS MODELING

In 1991, Markowitz headed the Daiwa Securities Trust Global
Portfolio Research Department (GPRD). The Markowitz team
estimated stock selection models, following in the tradition of
Graham and Dodd [20], Williams [21], Basu [22], Guerard and
Stone [23], Dimson [24], and Haugen and Baker [25], who
tested fundamental valuation variables, earnings, book value,
cash flow, and sales. The Markowitz team used relative variables,
defined as the ratio of the absolute fundamental variable ratios
divided by the 60-month averages of the fundamental variables.
Bloch et al. [12] reported a set of ∼200 simulations of United
States and Japanese equity models. The models produced out-
of-sample statistically significant excess returns in the portfolios.
Guerard et al. [15] extended a stock selection model originally
developed and estimated in Bloch et al. [12] by adding price
momentum variable, taking the price at time t-1 divided by
the price 12 months ago, t-12, denoted PM, and the consensus
(I/B/E/S) analysts’ earnings forecasts and analysts’ revisions
composite analysts’ efficiency variable (CTEF) to the stock
selection model. Guerard [26] used the CTEF variable that is
composed of forecasted earnings yield, EP, revisions, EREV, and
direction of revisions, EB, identified as breadth, as created in
Guerard et al. [27]2. Guerard also reported domestic (U.S.)
evidence that the predicted earnings yield is incorporated into
the stock price through the earnings yield risk index. Moreover,
CTEF dominates the historic low price-to-earnings effect, or
high earnings-to-price, EP. Fama and French [28–30] presented
evidence to support the BP and price momentum variables as
anomalies. Levy [31], Chan et al. [32], Conrad and Kaul [33,
34], Jegadeesh and Titman [35], Sadka [36], and Korajczyk and
Sadka [37] present the academic evidence to support the price
momentum hypothesis that past winners continue to win and
past losers continue to lose. Brush and Boles [38] and Brush
[39, 40] present the practitioner-oriented evidence to support
price momentum.

Guerard et al. [15] referred to the stock selection model as a
United States Expected Returns (USER) Model. Guerard et al.

2Guerard et al. [14] reported highly statistically significant specific returns with

CTEF.
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[13] applied the USER Model a large set of global stocks for the
1997–2011 time period. Guerard et al. [13] refereed to the global
expected returns model as the GLER Model. We can estimate an
expanded stock selection model to use as an input of expected
returns in an optimization analysis.

The stock selection model estimated in this study, denoted as
GLER is:

TRt+ 1 = a0 + a1EPt + a2BPt + a3CPt + a4SPt + a5REPt

+a6RBPt + a7RCPt + a8RSPt + a9CTEFt

+a10PMt + et (1)

where:

TR= total stock returns;
EP = [earnings per share]/[price per share] = earnings-price
ratio;
BP = [book value per share]/[price per share] = book-price
ratio;
CP = [cash flow per share]/[price per share] = cash flow-price
ratio;
SP= [net sales per share]/[price per share]= sales-price ratio;
REP = [current EP ratio]/[average EP ratio over the past 5
years];
RBP = [current BP ratio]/[average BP ratio over the past 5
years];
RCP = [current CP ratio]/[average CP ratio over the past 5
years];
RSP = [current SP ratio]/[average SP ratio over the past 5
years];
CTEF = consensus earnings per share I/B/E/S forecast,
revisions and breadth;
PM= Price Momentum;

and
e= randomly distributed error term.

The GLER model is estimated using a weighted latent root
regression (WLRR), analysis on Equation (1) to identify variables
statistically significant at the 10% level; uses the normalized
coefficients as weights; and averages the variable weights over
the past 12 months. The 12-month smoothing is consistent with
the four-quarter smoothing in Bloch et al. [12]. While EP and
BP variables are significant in explaining returns, the majority
of the forecast performance is attributable to other model
variables, namely the relative earnings-to-price, relative cash-
to-price, relative sales-to-price, price momentum, and earnings
forecast variables. The CTEF and PM variables accounted 40%
of the weights in the GLER Model. We refer to using WLRR
on the first eight variables, the Markowitz Model, as REG8F
WLRR. Many statisticians prefer to describe this formulation as
the bisquare, or biweight function, see Maronna et al. [9].

One can estimate in Equation (1) using ordinary least squares,
using multiple regression.

β̂ = (X′X)X′Y (2)

The residuals of the multiple regression line is given by:

e = Y′ − β̂X
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FIGURE 1 | Risk-return portfolios for Beaton-Tukey regressions,

2005–2014.
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FIGURE 2 | Risk-return portfolios for alternative robust regressions,

2009–2014.

The regressions residuals are assumed to be independently and
identically distributed variables.

Bloch et al. [12] employed the Beaton-Tukey Bisquare
procedure to weight observations identified as outliers. There
are several methods that one can use to identify influential
observations or outliers, which are often referred to as an analysis
of influential observations3. Belsley et al. [41], showed that the
estimated regression coefficients change by an amount, DFBETA,
where:

DFBETAi =
(X′X)−1X′ei

1− hi
(3)

where hi = Xi(X
′X)−1X′

i
The hi or “hat,” term is calculated by deleting observation i.

The corresponding residual is known as the studentized residual,
sr, and defined as:

sri =
ei

σ̂
√
1− hi

(4)

where σ̂ is the estimated standard deviation of the residuals.
A studentized residual that exceeds 2.0 indicates a potential

3If one deletes observation i in a regression, then one can measure the change in

estimated regression coefficients and residuals. The standardized residual concept

can be modified such that the reader can calculate a variation on that term to

identify influential observations.
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TABLE 2 | Barra attribution of regression-based portfolio.

Global (GEM3) universe

Backtest period: February 2005–August 2014

MSCI Barra attribution, Lambda = 200

MVTaR REG8-Bisquare function

ATTRIBUTION REPORT

Annualized contributions to total return

Source of return Contribution (% return) Risk (% SD) Info ratio T-Stat

1. Risk free 1.47

2. Total benchmark 7.41 17.09

3. Currency selection 1.02 2.66 0.38 1.19

4. Cash-equity policy 0.00 0.00

5. Risk indices 0.59 6.65 0.19 0.59

6. Industries −1.02 2.14 −0.41 −1.27

7. Countries −0.26 5.36 −0.01 −0.05

8. World equity 0.00 0.00

9. Asset selection 7.78 5.60 1.21 3.76

10. Active equity [5+6+7+8+9] 7.09 10.66 0.66 2.07

11. Trading

12. Transaction cost −4.06

13. Total active [3+4+10+11+12] 4.19 11.39 0.41 1.28

14. Total managed [2+13] 11.59 21.71

ATTRIBUTION REPORT

Annualized contributions to risk index return

Source of return Average active exposure Contribution (% return) Total

Average [1] Variation [8] Total [1+2] Risk (% SD) Info ratio T-Stat

Momentum −0.63 −2.07 0.37 −1.69 2.33 −0.55 −1.71

Volatility 0.34 −0.73 1.14 0.41 3.09 0.19 0.60

Value 1.54 4.75 −0.08 4.67 2.40 1.84 5.73

Size −2.42 −1.50 −0.12 −1.62 3.90 −0.35 −1.09

Size non-linearity −0.78 −1.14 0.06 −1.08 0.85 −1.15 −3.59

Growth −0.57 −0.17 0.06 −0.11 0.56 −0.27 −0.83

Liquidity −0.33 0.28 −0.08 0.20 0.51 0.26 0.80

Financial Leverage 0.54 −0.42 0.23 −0.19 0.67 −0.15 −0.46

Total 0.59 6.65 0.19 0.59

MVTaR-REG10 WLRR

ATTRIBUTION REPORT

Annualized contributions to total return

Source of return Contribution (% return) Risk (% SD) Info ratio T-Stat

1. Risk free 1.47

2. Total benchmark 7.41 17.09

3. Currency selection 1.20 2.69 0.43 1.34

4. Cash-Equity policy 0.00 0.00

5. Risk indices 3.33 5.55 0.59 1.84

6. Industries −0.91 2.29 −0.32 −0.98

7. Countries 0.08 6.48 0.04 0.13

8. World equity 0.00 0.00

(Continued)
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TABLE 2 | Continued

Source of return Contribution (% return) Risk (% SD) Info ratio T-Stat

9. Asset selection 6.39 5.70 1.03 3.19

10. Active equity [5+6+7+8+9] 8.89 10.69 0.82 2.55

11. Trading

12. Transaction cost −4.10

13. Total active [3+4+10+11+12] 6.12 11.32 0.57 1.78

14. Total managed [2+13] 13.52 21.94

ATTRIBUTION REPORT

Annualized contributions to risk index return

Source of return Average active exposure Contribution (% return) Total

Average [1] Variation [8] Total [1+2] Risk (% SD) Info ratio T-Stat

Momentum −0.07 −0.24 0.80 0.56 1.40 0.42 1.31

Volatility 0.24 −0.51 0.89 0.38 2.71 0.16 0.49

Value 1.33 4.16 0.00 4.16 2.41 1.61 5.01

Size −2.11 −1.28 −0.19 −1.47 4.04 −0.32 −0.99

Size non-linearity −0.40 −0.59 0.20 −0.39 0.68 −0.52 −1.63

Growth −0.42 −0.12 0.02 −0.10 0.50 −0.27 −0.82

Liquidity −0.34 0.29 −0.13 0.16 0.59 0.15 0.48

Financial leverage 0.42 −0.33 0.37 0.04 0.58 0.12 0.38

Total 3.33 5.55 0.59 1.84

influential observation [41]4. As the researcher ormodeler deletes
observations, one needs to compare the original matrix of the
estimated residuals variance matrix. The COVRATIO calculation
performs this calculation, where:

COVRATIO = 1
[

n−p−1
n−p + e∗i

(n−p)

]p
(1− hi)

(5)

where n= number of observations,
p= number of independent variables,
and e∗i = deleted observations.

If the absolute value of the deleted observation >2, then the
COVRATIO calculation approaches:

1− 3p

n
(6)

A calculated COVRATIO that is larger than 3p/n indicates an
influential observation. Guerard [26] reported the usefulness
of the DFBETA, studentized residual, CookD, and COVRATIO
calculations performed with SAS and the GLER data during the
1997–2011 time period5. In robust regression one weights the

4Another distance measure has been suggested by Cook [42], which modifies the

studentized residual, to calculate a scaled residual known as the Cook distance

measure, CookD.
5The identification of influential data is an important component of regression

analysis. The modeler can identify outliers, or influential data, and re-run the

ordinary least squares regressions on the re-weighted data, a process referred to

as robust (ROB) regression. In ordinary least squares, OLS, all data is equally

weighted. The weights are 1.0.

data universally with its OLS residual; i.e., the larger the residual,
the smaller the weight of the observation in the robust regression.
In robust regression, several weights may be used.

We will review the Beaton-Tukey [1] bisquare weighting
scheme, where observations are weighted inversely with their
corresponding ordinary least squares residual, w:

where:

wi =
(

1−
( |ei|

σe
4.685

)2
)2

, if |ei|
σe

> 4.685;

1, if |ei|
σe

< 4.685.

(7)

A second major problem is one of multicollinearity, the
condition of correlations among the independent variables. If
the independent variables are perfectly correlated in multiple
regression, then the (X′X) matrix of Equation (1), cannot be
inverted and the multiple regression coefficients have multiple
solutions. In reality, highly correlated independent variables
can produce unstable regression coefficients due to an unstable
(X′X)−1 matrix. Belsley et al. advocate the calculation of a
condition number, which is the ratio of the largest latent root of
the correlation matrix relative to the smallest latent root of the
correlation matrix. A condition number exceeding 30.0 indicates
severe multicollinearity.

The latent roots of the correlation matrix of independent
variables can be used to estimate regression parameters in the
presence of multicollinearity. The latent roots, l1, l2, . . . , lp and
the latent vectors γ 1, γ 2, . . . γ p of the P independent variables
can describe the inverse of the independent variable matrix of
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TABLE 3 | Barra attribution of regression-based portfolios.

Global (GEM3) universe

Backtest period: February 2009–August 2014

MVTaR REG8-Bisquare function

ATTRIBUTION REPORT

Annualized contributions to total return

Source of return Contribution (% return) Risk (% SD) Info ratio T-Stat

1. Risk free 0.09

2. Total benchmark 16.51 17.53

3. Currency selection 0.47 3.08 0.22 0.52

4. Cash-Equity policy 0.00 0.00

5. Risk Indices 6.88 8.34 0.81 1.94

6. Industries 0.58 2.65 0.24 0.57

7. Countries −1.83 5.58 −0.26 −0.63

8. World equity 0.00 0.00

9. Asset selection 6.17 6.73 0.74 1.77

10. Active equity [5+6+7+8+9] 11.79 12.44 0.88 2.09

11. Trading

12. Transaction cost −4.47

13. Total active [3+4+10+11+12] 12.59 13.43 0.88 2.10

14. Total managed [2+13] 24.72 24.90

ATTRIBUTION REPORT

Annualized contributions to risk index return

Source of return Average active exposure Contribution (% return) Total

Average [1] Variation [8] Total [1+2] risk (% SD) Info ratio T-Stat

Momentum −0.71 −1.85 1.88 0.03 3.48 0.22 0.52

Volatility 0.37 −0.07 1.20 1.13 3.87 0.32 0.75

Value 1.55 6.96 −0.43 6.54 2.93 1.86 4.42

Size −2.20 0.05 0.11 0.16 4.13 0.03 0.07

Size non-linearity −0.62 −1.15 0.02 −1.13 0.82 −1.07 −2.56

Growth −0.51 −0.47 0.05 −0.42 0.59 −0.59 −1.40

Liquidity −0.34 0.45 −0.11 0.34 0.55 0.41 0.97

Financial leverage 0.50 0.13 0.11 0.24 0.77 0.32 0.76

Total 6.88 8.34 0.81 1.94

MVTaR REG8-Optimal

ATTRIBUTION REPORT

Annualized contributions to total return

Source of return Contribution (% return) Risk (% SD) Info ratio T-Stat

1. Risk free 0.09

2. Total benchmark 16.51 17.53

3. Currency selection 0.35 1.99 0.25 0.59

4. Cash-Equity policy 0.00 0.00

5. Risk indices 6.48 6.02 1.01 2.41

6. Industries −0.56 2.18 −0.08 −0.19

7. Countries −0.16 4.24 −0.03 −0.06

8 World equity 0.00 0.00

9 Asset selection 7.83 5.06 1.19 2.84

10 Active equity [5+6+7+8+9] 13.60 9.37 1.26 3.01

(Continued)
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TABLE 3 | Continued

Source of return Contribution (% return) Risk (% SD) Info ratio T-Stat

11 Trading

12 Transaction cost −4.45

13 Total active [3+4+10+11+12] 14.16 9.89 1.26 3.01

14 Total managed [2+13] 26.33 22.34

ATTRIBUTION REPORT

Annualized contributions to risk index return

Source of return Average active exposure Contribution (% return) Total

Average [1] Variation [8] Total [1+2] Risk (% SD) Info ratio T-Stat

Momentum −0.34 −0.84 2.75 1.92 2.18 0.92 2.20

Volatility 0.28 −0.01 1.17 1.16 3.34 0.37 0.87

Value 0.89 4.02 −0.01 4.01 1.47 2.23 5.30

Size −1.89 0.07 0.30 0.37 3.27 0.08 0.19

Size non-linearity −0.35 −0.69 0.04 −0.65 0.49 −0.97 −2.32

Growth −0.49 −0.47 −0.24 −0.71 0.64 −0.88 −2.09

Liquidity −0.34 0.43 −0.17 0.26 0.47 0.37 0.87

Financial leverage 0.63 0.17 −0.06 0.11 0.99 0.18 0.42

Total 6.48 6.02 1.01 2.41

MVTaR-RobREG10 MM-Yohai

ATTRIBUTION REPORT

Annualized contributions to total return

Source of return Contribution (% return) Risk (% SD) Info ratio T-Stat

1. Risk free 0.09

2. Total benchmark 16.51 17.53

3. Currency selection 0.42 2.02 0.23 0.54

4. Cash-Equity policy 0.00 0.00

5. Risk indices 7.59 5.70 1.19 2.83

6. Industries −1.57 1.92 −0.53 −1.26

7. Countries 0.02 4.69 0.01 0.02

8. World equity 0.00 0.00

9. Asset selection 6.41 5.57 0.93 2.21

10. Active equity [5+6+7+8+9] 12.45 9.52 1.15 2.74

11. Trading

12. Transaction cost −4.06

13. Total active [3+4+10+11+12] 13.09 10.02 1.16 2.76

14. Total managed [2+13] 29.60 22.16

ATTRIBUTION REPORT

Annualized contributions to risk index return

Source of return Average active exposure Contribution (% return) Total

Average [1] Variation [8] Total [1+2] Risk (% SD) Info ratio T-Stat

Momentum 0.16 0.39 3.43 3.83 1.86 1.79 4.25

Volatility 0.36 0.00 0.34 0.34 3.40 0.17 0.40

Value 0.89 4.03 −0.08 3.95 1.68 1.94 4.63

Size −1.76 0.05 0.34 0.38 3.34 0.09 0.21

Size non-linearity −0.27 −0.52 0.03 −0.49 0.56 −0.64 −1.52

Growth −0.31 −0.29 −0.33 −0.62 0.60 −0.85 −2.02

(Continued)
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TABLE 3 | Continued

Source of return Average active exposure Contribution (% return) Total

Liquidity −0.23 0.29 −0.46 −0.16 0.54 −0.30 −0.71

Financial leverage 0.58 0.17 0.19 0.36 1.10 0.32 0.76

Total 7.59 5.70 1.19 2.83

TABLE 4 | Robust regression with the Beaton-Tukey WLRR procedure.

Factor attribution: Factor contributions

Portfolio: WLRR_10Factors Returns scaling: Annualized (Geometric)

Benchmark: ACWI_Benchmark Risk type: Realized risk

Period: 1998-01-30 to 2015-02-27 (Monthly)

Risk model: WW21AxiomaMH

Base currency: USD

Source of return Contribution Avg. exposure Hit rate Risk IR T-Stat

Portfolio 22.10% 16.29%

Benchmark 6.11% 16.29%

Active 15.99% 0.00% 11.50% 1.39 5.75

Specific return 12.82% 0.00% 6.62% 1.94 8.00

Factor contribution 3.17% 0.00% 13.17% 0.24 1.00

Style 0.29% 9.56% 0.03 0.13

Exchange rate sensitivity −0.05% 0.0395 46.83% 0.19% −0.26 −1.07

Growth 0.08% 0.1135 54.15% 0.29% 0.26 1.07

Leverage −0.23% 0.1170 46.34% 0.30% −0.79 −3.26

Liquidity −1.15% −0.3901 39.51% 1.01% −1.13 −4.67

Medium-Term momentum 3.14% 0.4506 65.85% 2.42% 1.30 5.36

Short-Term momentum −1.90% 0.1157 34.63% 2.08% −0.91 −3.77

Size −1.20% −1.2029 52.20% 7.66% −0.16 −0.65

Value 2.85% 0.5237 66.34% 1.68% 1.70 7.02

Volatility −1.24% 0.0317 44.39% 3.01% −0.41 −1.70

Country 1.14% 5.69% 0.20 0.83

Industry 0.57% 3.45% 0.16 0.68

Currency 0.92% 1.85% 0.50 2.06

Local 0.27% 0.55% 0.49 2.01

Market −0.02% 0.14% −0.14 −0.59

Report generated on 2015-07-08 16:11:46.

Equation (1). The models produced out-of-sample statistically
significant excess returns in the portfolios.

(X′X)−1 =
p
∑

j= 1

l−1
j γjγ

′
j (8)

Multicollinearity is present when one observes one or more
small latent vectors. If one eliminates latent vectors with small
latent roots (l < 0.30) and latent vectors (γ < 0.10), the
“principal component” or latent root regression estimator may be
written as:

β̂LRR =
P
∑

j= 0

fjδj (9)

where fj =
−ηγ0λ

−1
j

∑

q γ 2
0 λ−1

q

where n2 = 6(y− ȳ)2 (10)

and λ are the “non-zero” latent vectors. One eliminates the
latent vectors with non-predictive multicollinearity. Guerard
et al. [13] reported the effective ness of the WLRR models that
made extensive use of outlier-induced collinearities, originally
formulated in Webster et al. [43], Gunst and Mason [44], Mason
and Gunst [45], and Carrillo-Gambos and Gunst [46].

Maronna et al. [9] surveyed robust statistics. Considerable
attention was paid to the MM-estimates techniques pioneered
by Yohai [47], Yohai and Zamar [48], and Yohai et al. [8].
The MM estimates used a high break point, often low normal
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efficient estimate with a robust scale of residuals, and iterated
to produce high break point and efficient estimates, see Ruppert
[49] for modeling with residual scaling. We refer to using MM-
estimation, on the first eight variables (the Markowitz Model),
using the Yohai-optimal influence function, as REG8-Optimal.
We refer to using MM-estimation, using all 10 variables and
the Yohai-optimal function, as REG10-Optimal. We report both
WLRR and Yohai’s optimal function MM-Method estimates in
Section The Data and Empirical Results.

CONSTRUCTING MEAN-VARIANCE
EFFICIENT PORTFOLIOS

Portfolio construction and management, as formulated in
Markowitz seeks to identify the efficient frontier, the point at
which the portfolio return is maximized for a given level of
risk, or equivalently, portfolio risk is minimized for a given level
of portfolio return. The portfolio expected return, denoted by
E (RP), is calculated by taking the sum of the security weight
multiplied by their respective expected return:

E(RP) =
N
∑

i= 1

wiE(Ri) (11)

The portfolio standard deviation is the sum of the weighted
securities covariances:

σ2p =
N
∑

i= 1

N
∑

j= 1

wiwjσij (12)

where N is the number of candidate securities, wi is the weight
for security i such that

∑N
i= 1 wi = 1 indicating that the portfolio

is fully invested, and E(Ri) is the expected return for security i.
The Markowitz [50–52] framework measures risk as the

portfolio standard deviation, a measure of dispersion or total
risk. One seeks to minimize risk, as measured by the covariance
matrix in the Markowitz framework, holding constant expected
returns. The decision variables estimated in theMarkowitz model
are the security weights. The Markowitz model minimized the
total risk, or variance, of the portfolio. Investors are compensated
for bearing total risk.

Portfolio risk can be decomposed into systematic risk (market
risk) and unsystematic risk (non-market, or stock-specific risk).
The market may be represented by the Standard & Poor’s 500
Index, S&P500, created in 1957, or the Morgan Stanley Capital
International (MSCI) All World Country (MSCI AWC) Index.
The beta is the slope of the market model in which the stock
return is regressed as a function of the market return. An investor

TABLE 5 | Robust regression with WLRR.

Factor attribution: Factor contributions

Portfolio: WLRR Base currency: USD

Benchmark: MSCI_ACWI Return scaling: Annualized (geometric)

Period: 1997-01-31 to 2015-06-30 (monthly) Risk Type: Realized risk

Risk model: WW21AxiomaMH Long/short: Long only

Source of return Contribution Avg. exposure Hit rate Risk IR T-Stat

Portfolio 21.85% 16.45%

Benchmark 6.46% 16.07%

Active 15.39% 0.00% 10.98% 1.40 6.01

Specific return 8.51% 0.00% 6.50% 1.31 5.61

Factor contribution 6.88% 0.00% 12.92% 0.53 2.28

Style 2.20% -0.0123 8.63% 0.25 1.09

Exchange rate sensitivity −0.06% 0.0685 47.51% 0.23% −0.28 −1.18

Growth 0.12% 0.0900 57.47% 0.24% 0.48 2.07

Leverage 0.02% 0.0276 47.06% 0.25% 0.07 0.30

Liquidity −1.17% −0.3814 38.91% 0.94% −1.24 −5.34

Medium-Term momentum 1.73% 0.2523 61.99% 1.65% 1.05 4.50

Short-Term momentum −1.23% 0.0804 39.82% 1.61% −0.76 −3.28

Size −1.58% −1.1142 52.04% 7.29% −0.22 −0.93

Value 4.15% 0.9910 66.06% 2.50% 1.66 7.13

Volatility 0.23% −0.0267 47.96% 3.43% 0.07 0.29

Country 2.79% −0.17% 6.43% 0.43 1.86

Industry 0.15% −0.17% 3.56% 0.04 0.18

Currency 0.32% 0.03% 2.01% 0.16 0.68

Local 1.42% 3.25% 2.25% 0.63 2.69

Market 0.01% −0.17% 0.06% 0.18 0.79

Sectors 0.15% −0.17% 3.56% 0.04 0.18

Report generated using 2015.1.4 on: 2015-10-26 18:30:48.
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is not compensated for bearing risk that may be diversified away
from the portfolio. The one-factor model, in which the stock beta
characterizes risk, is generally known as the Capital Asset Pricing
Model (CAPM). Implicit in the development of the CAPM by
Sharpe [53], Lintner [54], and Mossin [55, 56] is that investors
are compensated for bearing not total risk, rather market risk,
or systematic risk, as measured by the stock beta. The initial
CAPM development of the Sharpe, Lintner, and Mossin CAPM
led to restatements of the risk-return trade-off work of Stone
[57], Ross [58], and Fama and MacBeth [59]. The development
of the CAPM and its beta coefficient led to linear programming
models by Sharpe [60, 61], Rudd and Rosenberg [62], and Stone
[63]. Critics of the CAPM point to Black et al. [64] as evidence
that the one-factor CAPM was statistically weak. An extension to
the Markowitz total variance portfolio construction risk model
involves the use of a multi-factor risk model. The multi-factor
risk models evolved in the works of King [65], Elton and Gruber
[66], Ross [58], Reinganum [67], Rosenberg [68], Rosenberg and
Marathe [69], Rudd and Rosenberg [70], Ross and Roll [71], Blin
et al. [72], Elton et al. [73, 74], Farrell [75], Stone [76], Dhrymes
et al. [77], and Menchero et al. [78]. Traditional investment
text such as Farrell [79], Markowitz [50], Haugen [80], and
Conner and Korajczyk [81] present multi-factor presentations.
An outstanding research Monograph by Connor et al. [82]

discusses the development of risk models. The total excess return
for a MFM in the Rosenberg methodology for security j, at time
t, dropping the subscript t for time, may be written like this:

E(Rj) =
K
∑

k= 1

βjk f̃k + ẽj (13)

The non-factor, or asset-specific return on security j, is the
residual risk of the security after removing the estimated impacts
of the K factors. The term f is the rate of return on factor
“k.” A single-factor model, in which the market return is the
only estimated factor, is the basis of the CAPM. Additional
factors may include country, industry, and style factors. One
can use two sets of risk models to estimate Equation (9). The
first set is a fundamental risk model, such as the Axioma
World-Wide Equity Risk Factor Model (AX-WW2.1), which
seeks to forecast medium-horizon risk, or risk 3–6 months
ahead. The Axioma Fundamental Risk Model uses nine style
factors: exchange rate sensitivity, growth (historical earnings
and sales growth), leverage (debt-to-assets), liquidity (1 month
trading volume divided by market capitalization), medium-term
momentum (cumulative returns of the past year, excluding the
previous month), short-term momentum (last month return),

TABLE 6 | Robust regression with Huber.

Factor attribution: Factor contributions

Portfolio: MHuber Base currency: USD

Benchmark: MSCI_ACWI Return scaling: Annualized (geometric)

Period: 1997-01-31 to 2015-06-30 (Monthly) Risk type: Realized risk

Risk model: WW21AxiomaMH Long/short: Long only

Source of return Contribution Avg. exposure Hit rate Risk IR T-Stat

Portfolio 22.74% 15.85%

Benchmark 6.46% 16.07%

Active 16.28% 0.00% 11.05% 1.47 6.32

Specific return 10.53% 0.00% 7.01% 1.50 6.45

Factor contribution 5.75% 0.00% 12.37% 0.47 2.00

Style 2.08% 0.0625 8.45% 0.25 1.06

Exchange rate sensitivity −0.04% 0.0337 48.87% 0.20% −0.19 −0.81

Growth 0.25% 0.1479 61.99% 0.29% 0.86 3.67

Leverage 0.08% 0.0399 52.04% 0.31% 0.26 1.14

Liquidity −1.09% −0.3823 38.91% 0.95% −1.15 −4.94

Medium-Term momentum 1.35% 0.2260 63.35% 1.74% 0.77 3.32

Short-Term momentum −1.18% 0.0688 40.27% 1.72% −0.69 −2.94

Size −1.46% −1.1075 52.04% 7.21% −0.20 −0.87

Value 4.20% 1.0479 66.06% 2.60% 1.61 6.92

Volatility −0.03% −0.0120 47.51% 3.20% −0.01 −0.04

Country 2.08% −0.11% 6.12% 0.34 1.46

Industry −0.60% −0.11% 3.42% −0.18 −0.76

Currency 0.77% 0.01% 2.06% 0.37 1.60

Local 1.44% 4.15% 2.36% 0.61 2.62

Market −0.01% −0.11% 0.07% −0.18 −0.79

Sectors −0.60% −0.11% 3.42% −0.18 −0.76

Report generated using 2015.1.4 on: 2015-10-26 20:18:08.
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TABLE 7 | Robust regression with the S-procedure of Tukey.

Factor attribution: Factor contributions

Portfolio: STukey Base currency: USD

Benchmark: MSCI_ACWI Return scaling: Annualized (geometric)

Period: 1997-01-31 to 2015-06-30 (monthly) Risk type: Realized risk

Risk model: WW21AxiomaMH Long/short: Long only

Source of return Contribution Avg. exposure Hit rate Risk IR T-Stat

Portfolio 21.24% 16.73%

Benchmark 6.46% 16.07%

Active 14.77% 0.00% 11.30% 1.31 5.61

Specific return 9.78% 0.00% 7.07% 1.38 5.94

Factor contribution 4.99% 0.00% 12.84% 0.39 1.67

Style 2.13% 0.0691 8.59% 0.25 1.07

Exchange rate sensitivity 0.03% 0.0237 50.68% 0.19% 0.17 0.72

Growth 0.26% 0.1685 62.90% 0.25% 1.05 4.51

Leverage −0.09% 0.0723 44.34% 0.27% −0.35 −1.52

Liquidity −1.15% −0.3919 38.01% 0.97% −1.18 −5.08

Medium-Term momentum 1.28% 0.1740 59.28% 1.59% 0.81 3.46

Short-Term momentum −1.16% 0.0649 39.82% 1.73% −0.67 −2.88

Size −1.47% −1.0995 52.04% 7.12% −0.21 −0.89

Value 4.21% 1.0842 66.06% 2.70% 1.56 6.69

Volatility 0.23% −0.0272 47.96% 3.38% 0.07 0.29

Country 1.80% −0.21% 6.31% 0.29 1.23

Industry −0.77% −0.21% 3.55% −0.22 −0.93

Currency 0.79% −0.01% 2.00% 0.40 1.70

Local 1.05% 3.64% 2.15% 0.49 2.10

Market −0.02% −0.21% 0.10% −0.23 −0.98

Sectors −0.77% −0.21% 3.55% −0.22 −0.93

Report generated using 2015.1.4 on: 2015-10-26 22:29:05.

size (natural logarithm of issuer market capitalization), value
(book-to-price and earnings-to-price ratios), and volatility (3
months average of absolute returns divided by cross-sectional
standard deviation). The Axioma fundamentally-based risk
model evolved from the MSCI Barra risk model developed in
Rosenberg [68], Rosenberg and Marathe [69] and thoroughly
discussed in Rudd and Rosenberg [70] and Grinold and Kahn
[83]. Statistically-based risk models developed in the works of
Ross and Roll [71], and Dhrymes et al. [77]. The Axioma
Statistical Risk Model, World-Wide Equity Risk Factor Model,
AX-WW2.1, estimates 15 principal components to measure risk.
See Guerard et al. [14] for a comparison of Axioma Fundamental
and statistically based risk models. Guerard et al. [14] reported
that the statistical model dominated the fundamental risk model
in producing a higher set of returns for a given level of risk.
We use the Sungard APT risk model, which uses principal
components in its estimation, in this analysis. The reader is
referred to Guerard et al. [15] for evidence supporting the
APT risk model and portfolio optimization techniques. An
extensive review of factor risk models can be found in Connor
et al. [82].

Guerard [26] reported the effectiveness of the Blin and Bender
APT and Sungard APT systems in portfolio construction and

management. The determination of security weights, the ws, in
a portfolio is the primary calculation of the Markowitz portfolio
management approach. The security weight is the proportion
of the portfolio value invested in the individual j security. The
portfolio weight of security j is calculated as

w(P)j =
MVj

MVP
(14)

Where MVj is the market value of security j and MVp is the
portfolio market value.

The active weight of the security, w(a)j is calculated by
subtracting the security weight in the (index) benchmark b,w(b)j,

from the security weight in the portfolio:

w(a)j = w(P)j − w(b)j (15)

Markowitz analysis and its efficient frontier minimize risk
for a given level of return. Blin and Bender created APT,
Advanced Portfolio Technologies, and its Analytics Guide,
which built upon the mathematical foundations of their
APT system, published in Blin et al. [72]. Our review draws
upon the APT Analytics Guide. Volatility can be decomposed
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TABLE 8 | Robust regression with MM-procedure with Tukey 99.

Factor attribution: Factor contributions

Portfolio: Tukey99 Base currency: USD

Benchmark: MSCI_ACWI Return scaling: Annualized (geometric)

Period: 1997-01-31 to 2015-06-30 (Monthly) Risk type: Realized risk

Risk model: WW21AxiomaMH Long/short: Long only

Source of return Contribution Avg. exposure Hit rate Risk IR T-Stat

Portfolio 23.25% 16.08%

Benchmark 6.46% 16.07%

Active 16.79% 0.00% 11.10% 1.51 6.49

Specific return 10.24% 0.00% 6.98% 1.47 6.30

Factor contribution 6.55% 0.00% 12.46% 0.53 2.25

Style 2.46% 0.0400 8.43% 0.29 1.25

Exchange rate sensitivity −0.04% 0.0450 47.96% 0.19% −0.19 −0.83

Growth 0.21% 0.1232 62.90% 0.24% 0.85 3.63

Leverage 0.06% 0.0442 48.87% 0.26% 0.24 1.04

Liquidity −1.14% −0.3937 39.37% 0.95% −1.20 −5.13

Medium-Term momentum 1.56% 0.2421 61.99% 1.67% 0.93 3.99

Short-Term momentum −1.20% 0.0786 39.82% 1.69% −0.71 −3.03

Size −1.44% −1.1034 52.04% 7.19% −0.20 −0.86

Value 4.26% 1.0235 66.06% 2.58% 1.65 7.07

Volatility 0.19% −0.0196 47.51% 3.29% 0.06 0.25

Country 2.47% −0.11% 6.44% 0.38 1.64

Industry −0.79% −0.11% 3.54% −0.22 −0.96

Currency 1.10% 0.03% 2.04% 0.54 2.31

Local 1.31% 3.53% 2.16% 0.61 2.61

Market −0.01% −0.11% 0.08% −0.08 −0.34

Sectors −0.79% −0.11% 3.54% −0.22 −0.96

Report generated using 2015.1.4 on: 2015-10-26 13:50:38.

into independent variance components, systematic and
specific risk.

σ2P = σ2βP + σ2SP (16)

where

σ2P = total portfolio variance;
σ2βP = systematic portfolio volatility;
σ2SP = specific portfolio volatility.

Tracking error is a measure of volatility applied to the active
return of funds (portfolio) benchmark against an index. Portfolio
tracking error is defined as:

σte =
√

Var(rP − rb) =
√

E[(rP − rb)− E(rP−rb)]
2 (17)

where σte is the square root of the variance of annualized tracking
error, and rP and rb are the actual (annual) portfolio return
and benchmark return respectively. Systematic tracking error of
a portfolio is a forecast of the portfolio active annual returns
as a function of the securities returns associated with APT

risk (factor) model components. The annualized APT calculated
portfolio tracking error vs. a benchmark is:

σP,b =
√

52(wP − wb)
′(B′B+ 6)(wP − wb) (18)

and

σste =
√

52(wP−wb)
′
6(wP−wb) (19)

and σ2
P,b

−σ2ste is the systematic tracking variance of the portfolio
and its square root is the systematic tracking error.

We can define the portfolio Value-at-Risk (VaR) as the
probability that the value of the portfolio is going to decline, from
its current value,V0, by at least the amountV(α,T) whereT is the
time horizon and α is a specified parameter, i.e., α = 0.05, then

Prob
(

VT>V0 − V(α,T)
)

≥ 0.95 or

Prob
(

VT<V0 − V(α,T)
)

≤ 0.05, ifα = 0.95 (20)

The second case says that the probability that the value of the
portfolio will decline by an amount V(α,T) with T holding
period is at most 0.05.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 February 2016 | Volume 1 | Article 14

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Guerard Big Data and Applications of Robust Regression

TABLE 9 | Global broad regression BackTest summary results.

Annualized return Annualized risk Sharpe ratio Information ratio

JANUARY 1997–JUNE 2015

MM-Procedure Tukey 99 16.74 15.88 0.906 0.92

MM-Procedure Yohai 99 16.34 15.88 0.881 0.89

M-Procedure Huber 16.11 15.67 0.878 0.87

M-Procedure WLRR 15.54 16.35 0.807 0.83

S-Procedure Tukey 14.84 16.61 0.752 0.74

MSCI ACW 6.46 16.10 0.255

JANUARY 2010–JUNE 2015

Tukey 99 27.08 15.65 1.726 1.22

Yohai 99 27.66 15.92 1.732 1.20

MSCI ACW 13.05 11.52 0.808

JANUARY 2003–DECEMBER 2009

Tukey 99 23.71 18.52 1.152 1.69

Yohai 99 23.46 18.35 1.148 1.77

MSCI ACW 9.30 16.64 0.416

JANUARY 1997–DECEMBER 2002

Tukey 99 7.70 15.52 0.209 0.48

Yohai 99 6.92 15.48 0.160 0.53

MSCI ACW 0.70 17.16 −0.290

Blin et al. [71] used a 20-factor beta model of covariances
based on 3.5 years of weekly stock returns data. The Blin and
Bender Arbitrage Pricing Theory (APT) model followed the
Roll factor theory, but Blin and Bender estimated at least 20
orthogonal factors. The trade-off curves in Guerard [26] were
created by varying lambda, a measure of risk-aversion, as a
portfolio decision variable. As lambda rises, the expected return
of the portfolio rises and the number securities in the portfolio
declines.

Guerard et al. [13] estimated a Global Model, GLER, using
Equation (30) and the FactSet database for global securities
during the January 1999–December 2011 period. In the world
of business, one does not access academic databases annually, or
even quarterly. Most industry analysis uses FactSet database and
the Thomson Financial (I/B/E/S) earnings forecasting database.
Guerard et al. [13] estimated tracking error at risk portfolio
(MVTaR) model for the 7500 largest securities, in terms of
market capitalization, for stocks Thomson Financial and FactSet
databases, some 46,550 firms in December 2011, and 64,455
stocks in December 2013.

THE DATA AND EMPIRICAL RESULTS

The data used in this analysis is the Barra Global Equity Risk
Model (GEM3) universe. The universe is ∼10,000 stocks per
month for the January 1997–August 2014 period. We require
stocks to be covered by at least two analysts on the Institutional
Brokerage Estimate Services (I/B/E/S) universe. That is, stocks
must have at least two analysts forecast 1-year–ahead and 2-year-
ahead earnings.

The purpose of this section is to address the effectiveness
of alternative robust regression techniques. The authors have

stated historically, that the low price-to-earnings of Graham
and Dodd [20] and Williams [21], model is a very substantial
benchmark to out-perform. The authors rely upon three levels

of testing, as noted in Guerard et al. [13]; the first level is the

information coefficients, ICs, where ranked subsequent stock
returns are regressed vs. the ranked strategy, and the slope
coefficient is the information coefficient (and its corresponding
t-statistic determines its statistical significance); the second level
is a full efficient frontier by varying the portfolio lambda, or level
of risk-aversion; and the third level is the Markowitz and Xu [84]
Data Mining Corrections test. We report the first two level tests
in this analysis.

The information coefficients of the low price-to-earnings
multiple, or the (high) earnings-to-price (EP) ratio, is shown
in Table 1. The high EP model is highly statistically significant
during the entire period, 1998–2014, with an IC of 0.045 and
its corresponding t-statistic is 3.97. The original eight-factor
Markowitz model also has an IC of 0.045 and a t-statistic of 3.93
for the entire period. The GLER model, incorporating forecasted
earnings variable, CTEF, and price momentum, has an IC of.064
and a corresponding t-statistic of 5.64. The decile spreads, buying
the highest one (or three decile) stocks and shorting the lowest
one (or three) stocks favor the Markowitz model relative to the
high EP model. The GLER model has the highest three decile
spread, 29.99%, vs. the Markowitz model spread, 25%, and the
high EP model, 11.77%. In Table 1, we report the post-financial
crisis period. The high EP model, the original Markowitz
eight-factor model, denoted REG8, and the GLER model are
statistically significant (post-publication for the first twomodels);
and the GLER model has the highest IC, 0.048 (t-statistic of
4.23) and top decile spread of 22.80%. In Figure 1, we show the
level two test results in which mean-variance tracking error at
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risk portfolio returns rise relative to risk (and the benchmark),
as the lambda is increased, for the 2005–2014 period. The level
two test results are and particularly for the post-financial crisis,
2009–2014 period, see Figure 2. We estimated the Beaton-Tukey
Bisquare and the Yohai Optimal influence function using the
85% efficiency level. We report that the Beaton-Tukey Bisquare
function out-performed the Yohai Optimal function during the
2005–2014 period; the Yohai Optimal function out-performed
the Bisquare in the post-financial crisis period, see Figure 2. Both
robust regression techniques produced positive and statistically
significant asset selection in the MSCI Barra attribution analysis
2005–2014 period, shown in Table 2; the Bisquare function asset
selection of the Markowitz model is 7.78% (t-statistic of 3.76);
whereas the corresponding asset selection of GLER Model is
6.39% (t-statistic of 3.19). The GLERmodel estimated with Yohai
Optimal function is 2.37%, which is not statistically significant for
the 2005–2014 period (t-statistic of 1.09). In the post-financial
crash analysis, reported in Table 3, the asset selection of the
Markowitz Model with the Beaton-Tukey Bisquare function
is 6.17%, with a corresponding t-statistic of 1.77 (statistically
significant at the 10% level). The post-financial crash analysis
of the GLER model produces Barra-estimated asset selection of
7.83% (t-statistic of 2.84) with the Bisquare weighting and 6.41%
(t-statistic of 2.74) with the Yohai Optimal function. We refer to
non-WLRR robust regression modeling of the 10-factor model,
Equation (1), as RobREG10, in Table 3. The choice of Bisquare
and Yohai Optimal functions estimation procedures in robust
regression appears to be a tie; both estimates produce statistically
significant excess returns. The GLER model estimated with the
Bisquare and Yohai Optimal functions offers great promise as
models of asset selection, particularly in the post-financial crash
period6.

6Doug Martin suggested that the author re-run the robust regressions using the

Bisquare and Optimal S-Method models with various efficiency levels (95, 90, and

99%). We ran the analysis from January 1998–February 2015 on an all I/B/E/S

forecast global universe that approached 16,000 stocks per month. The Sharpe

Ratio is the portfolio excess returns divided by the portfolio standard deviation.

The Information Ratio, IR, is the portfolio excess returns divided by the portfolio

tracking error. The Yohai Optimal 85% Function produced a Geometric Mean of

18.75%, a Sharpe ratio of 1.251, and an Information ratio of 1.09. The Beaton-

Tukey Bisquare produced a Geometric Mean of 19.56%, a Sharpe Ratio of 1.056,

and an information Ratio of 1.14. Thus, over a 17-year backtest, the Beaton-

Tukey Bisquare produced a higher portfolio standard deviation, leading to a lower

Sharpe Ratio, but a higher return relative to its tracking error, leading to a higher

Information Ratio, than the Yohai Optimal Function. In Tables 4–8, we report the

WLRR, Beaton-Tukey Bisquare S-Method, M-Method with Huber, S-procedure

with Tukey and MM-Method with the optimal Tukey 99 of efficiency criteria.

The best robust regression procedure is the Tukey 99 efficiency techniques of

the 10 factor Model. All models produce highly statistically specific returns, large

SUMMARY AND CONCLUSIONS

In this analysis, we report evidence confirming the continued
relevance of the robust regression models in estimating
stock selection models. The Beaton-Tukey Bisquare procedure
(approximated with WLRR techniques) has continued to
produce statistically significant results in the post-financial crash
period. More modern robust regression procedures, such as
the Yohai Optimal influence procedure, produce statistically
significant stock selection models. All forms of robust regression
(M, S, and MM-procedures) outperformance OLS in producing
higher portfolio excess returns. The stock selection models
are complemented with Markowitz mean-variance optimization
models. One must use the most sophisticated of statistical and
optimization techniques when markets crash.
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exposures to the Momentum risk factor, and the Momentum Style factor returns

are in the 250–325 basis points range and the t-statistics on Momentum exceed

4.9!

We expanded the 10-factor model to include the 1-month total return reversal,

the annualized stock standard deviation, the dividend yield, and relative dividend

yield, and a price momentum variable with the market return removed.

The proprietary 15-factor model produced Geometric Means of 17.86, 17.23,

and 17.39%, respectively, for the S-Method Bisquare weighting procedure for 85,

95, and 99% efficiency levels, whereas the S-Method Yohai Optimal Influence

weighting procedure produced corresponding Geometric Means of 17.54, 17.36,

and 16.61. The corresponding Morgan Stanley Capital international (MSCI)

All Country World Growth benchmark return was 5.53%. Thus, the Bisquare

procedure slightly outperformed the Yohai Optimal procedure, but there was

no statistical difference in the Geometric Means. The S-Method Bisquare Sharpe

Ratios for the 85, 95, and 99% efficiency levels were 1.247, 1.205, and 1.201, whereas

the corresponding S-Method Yohai Optimal Sharpe Ratios were 1.217, 1.208, and

1.157. The Bisquare Information Ratios for the 85, 95, and 99% efficiency levels

were 0.99, 0.92, and 0.93, whereas the corresponding Optimal Sharpe Ratios were

0.94, 0.92, and 0.88. The corresponding M-method and MM-Method Bisquare

IRs were 0.95 and 0.99, for the 15-factor model, respectively. Thus, the MM-

method and S-Method Bisquare robust regression models were virtually identical

in predictive power and slightly outperformed the M-method Bisquare weighting

procedure. The OLS Model for the 15 factors produced a Geometric Mean of

16.97%, a Sharpe Ratio of 1.158, and an IR of 0.96. The best M-Method for the

15-factor model was the Welsch weighting. Virtually all robust regression (M, S,

and MM-Methods) techniques outperformed the OLS Model. A summary table,

Table 9, contains robust regression results.
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