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Comparison of Multivariate Means
across Groups with Ordinal
Dependent Variables: A Monte Carlo
Simulation Study
W. Holmes Finch*

Educational Psychology, Ball State University, Muncie, IN, USA

Multivariate analysis of variance (MANOVA) is a widely used technique for simultaneously

comparing means for multiple dependent variables across two or more groups. MANOVA

rests on several assumptions, including that of multivariate normality. Much prior research

has investigated the performance of standard MANOVA with continuous, nonnormally

distributed variables. However, very little work has examined its performance when the

dependent variables are ordinal in nature. Therefore, the current study was designed to

investigate the performance of standard MANOVA with ordinal dependent variables, and

to compare it with several alternatives that might prove superior in this context. Results of

the simulation study demonstrated that methods based on ranks, and spatial ranks and

signs were optimal in terms of controlling the Type I error rate and maintaining reasonably

high power. All of the methods considered here were applied to an existing dataset, and

implications of the study results for practice are discussed.

Keywords: MANOVA, nonparametrics, rank based methods, ordinal data, spatial signs and ranks

INTRODUCTION

Frequently, researchers in the social sciences are interested in testing the null hypothesis of equality
of means for several variables across multiple groups. For example, it may be of interest to
compare performance on several measures of academic achievement between males and females,
or among groups representing different methods of instruction. Due to its ease of use, familiarity,
and clear interpretation, researchers will sometimes address the comparison of group means on
several dependent variables using a series of independent univariate Analysis of Variance (ANOVA)
models. In the previous example, three separate ANOVA models, one each for math, reading,
and science achievement, could be fit to the data in order to determine whether mean academic
achievement differed between males and females. Although easy to use and interpret, this approach
to comparing multivariate means can lead to spurious conclusions due to inflation of the family-
wise Type I error rate, and a potential decrease in power when the dependent variables are
correlated with one another but are analyzed using separate models [1]. Perhaps more importantly,
in the presence of multivariate data such as that described above, the research question(s) of
interest may center on how groups differ along a combination of dimensions or variables, rather
than a single variable at a time. Univariate methods like ANOVA are not designed to address
such questions. In such situations, multivariate analysis of variance (MANOVA) is generally the
preferred method for comparing group means on multiple dependent variables simultaneously,
when those variables are conceptually and statistically related and the research hypotheses treat the
variables in a unitary fashion (Huberty and Olejnik).
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Finch MANOVA for Ordinal Dependent Variables

MANOVA rests upon several assumptions about the nature
of the data, including multivariate normality, equal covariance
matrices across groups, and uncorrelated model errors. A
number of statistical methods have been designed for conducting
MANOVA when one or more of these assumptions are not
met. Much of the research examining these approaches has
focused on the case of nonnormal continuous data [e.g., 2–8].
However, in some situations, the researcher may be interested
in simultaneously comparing the means of multiple ordinal
variables, such as responses to likert questionnaire items, across
groups. When using such items, the researcher may assume that
there is an underlying continuous latent variable, and that the
ordered categories are the observed realizations produced by the
measurement process to represent this latent construct. Such
might be the case, for example, when school psychologists rate
a child’s behavior on a likert-type scale, or when observed score
teachers in terms of their classroom management skills using an
ordinal rating rubric. Relatively little work has examined how
best to address this problem in the context of MANOVA, despite
the fact that such comparisons are not at all uncommon in the
research literature [e.g., 9–12]. Therefore, the purpose of this
simulation study was to investigate the performance of several
approaches for multivariate means comparisons that may be
particularly useful for ordinal dependent variables.

Standard Parametric Multivariate Means
Comparisons
As noted above, MANOVA is often seen as the preferred
approach for comparing group means on multiple dependent
variables because it controls for inflation of the Type I error rate,
and accounts for correlations among a set of conceptually related
dependent variables [13, 14]. The null hypothesis of no difference
on the multivariate dependent variable means for the two groups
case is tested with Hotelling’s T2 statistic:

T2 =

(
Y1 − Y2

)′[
S

(
1

n1
+

1

n2

)]−1 (
Y1−Y2

)
(1)

Where
Y1 =Mean vector for group 1
Y2 =Mean vector for group 2
n1 = Sample size for group 1
n2 = Sample size for group 2

S = Sample pooled covariance matrix; (n1−1)S1 + (n2−1)S2
n1 + n2 − 2

S1 = Covariance matrix for group 1
S2 = Covariance matrix for group 2
Whenmeans for more than two groups are to be compared, there
are four different commonly used multivariate statistics that can
be converted to an approximation of the F statistic, including
Pillai’s trace, (P) Wilk’s lambda (Λ), Hotelling-Lawley Trace (H)
and Roy’s Greatest Root (R). These test statistics can be expressed
as follows:

Λ =
⌊W⌋

⌊W+ B⌋
(2)

Where W = within group sum of squares and cross products
matrix

B= between group sum of squaresand cross products matrix

P = tr
[
B(B+W)−1

]
(3)

H = tr
[
BW−1

]
(4)

R = maximum eigenvalue ofW(B+W)−1 (5)

Performance of MANOVA When
Assumptions Are Violated
As mentioned above, the standard hypothesis tests used
with MANOVA all rely upon assumptions regarding the
data, including multivariate normality, equal group covariance
matrices, and independence of model errors. When these
assumptions are met, the standard MANOVA statistics perform
well in terms of controlling the Type I error rate, andmaintaining
appropriate power. However, research has shown that when one
or more of these assumptions is violated, the standardMANOVA
test statistics yield inflated Type I error rates and diminished
statistical power for detecting group differences [e.g., 15–19].
Simulation study results have shown clearly that the performance
of Pillai’s Trace, Wilk’s Lambda, Hotelling-Lawley’s Trace and
Roy’s Greatest Root can be severely compromised when there are
violations in the assumption of equality of covariance matrices
[2, 17, 20, 21]. In particular, when group covariance matrices are
not equivalent in the two groups case, and the smaller group has
the larger variance, Type I error rates will be inflated, whereas
when the larger group has the larger variance power is reduced.
In addition, the presence of skewed dependent variables has also
been shown to be related to reductions in power for correctly
identifying group differences [2, 20, 22]. The results of these prior
studies has also indicated that no one of the standard MANOVA
test statistics is clearly optimal under in all situations when the
assumptions are violated, though all generally perform poorly in
such situations [18, 19, 23].

Synthesizing these results, prior research has demonstrated
that the standard test statistics used with MANOVA are
deleteriously impacted by violations of the assumptions of
multivariate normality and homogeneity of covariance matrices.
With respect to MANOVA in the nonmultivariate normal case,
nearly all of the simulation work has focused on continuous data
that is skewed and/or kurtotic. In response to this type of data
structure, a number of robust statistics have been suggested for
use, of which several (e.g., Yao’s F test, the Brown-Forsythe F
test) have been shown to perform better (maintain the nominal
Type I error rate and render power above 0.8) than the standard
MANOVA tests when the dependent values are skewed [2, 3,
24–26]. In contrast, very little research has been conducted to
investigate how MANOVA methods work when the dependent
variables are ordinal in nature. Yet, researchers frequently use
MANOVA to compare group means on several likert-type items
at once [e.g., 9–12]. It is unclear the extent to which such
practice is optimal, given the fact that these ordinal variables
may not satisfy the assumptions underlying standardMANVOA,
particularly that of multivariate normality. In the univariate case,
analysis of models with ordinal dependent variables such as
likert-type items is generally carried out using some variation of
logistic regression [27]. However, in the context of multivariate
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responses analogous multivariate logistic regression models are
not readily available, leaving the researcher faced with the
aforementioned problems associated with conducting multiple
univariate analyses. Therefore, it is important that methods for
multivariate comparisons appropriate for use with ordinal data
be available and well understood so that applied researchers
can have access to them. The goal of this study, therefore,
was to examine the performance of several such methods.
The techniques that were included in the study are, at least
theoretically, most appropriate for use with ordinal data such as
that produced by likert-type items, because they do not rest on
the presumption of continuity that underlies the robust methods
mentioned above (e.g., Brown and Forsythe, Yao, etc.). Following
is a brief description of the methods that were examined
in this study, including discussion of prior research on their
performance in analyses when the assumptions underlying the
standard MANOVA test statistics are not met.

Permutation Test
One alternative to the standard MANOVA that has been
mentioned in the literature for use when the distribution of
the dependent variables is not multivariate normal is based on
permutation testing [28]. In general, such tests work by creating
all possible permutations of the data, and for each of these
the statistic(s) of interest is calculated, thereby creating a null
distribution for the statistic against which the value taken from
the actual data can be compared. In the context of MANOVA,
the permutation test would be based on the following steps:

1. Calculate Λ for the original sample.
2. For each possible permutation of the data calculate Λ∗

to create a distribution of the test statistic under the null
hypothesis of no group differences on the means.

3. Compare Λ to the distribution of Λ∗ values.
4. The p-value is the percentile for Λ in the permuted

distribution.

Finch and Davenport [29] investigated the performance of the
permutation method with regard to nonnormal continuous data,
and found that it provided good Type I error control when the
dependent variables were skewed, and that it yielded Type I error
and power rates nearly as good as those of the standard test
when the data are multivariate normal [29]. The permutation test
does not make any assumptions about the scale of the dependent
variables (i.e., that they are continuous), and thus may be useful
in the current application involving ordinal data [28].

Structural Equation Models for MANOVA
Tests
A second approach considered in this study involves the
use of structural equation modeling (SEM) for testing the
null hypothesis of equal group means for multiple dependent
variables [30]. Raykov suggested that this approach may be
particularly useful when the assumptions underlying standard
MANOVA are not met. The SEM approach for conducting
MANOVA is based on the confirmatory factor analysis (CFA)
model, which takes the form:

x = Λξ + δ

where

x = observed variable

ξ = vector of latent variables with covariance matrix 8 (6)

Λ = factor loading matrix

δ = error term

Generally with CFA each latent variable is associated with
multiple observed indicator variables. However, when applied
to the multivariate means comparison problem each observed
dependent variable is related to a single unique latent variable,
with the following constraints:

Λ = Ip and 2 = 0pxp (7)

In (7) Ip is the identity matrix and 2 is the covariance matrix for
δ, which consists of 0 elements. These constraints imply that each
latent variable is exactly equal to one of the observed variables
[30], and that the latent variable covariance matrix is identical to
the covariance matrix for the observed variables.

In order to test the null hypothesis of equality of multivariate
group means on the response variables, we must impose two
more restrictions:

(1) E (ξ) = E (µ)

(2) E (δ) = 0
(8)

These additional restrictions to the model make the comparison
of latent means equivalent to a comparison of observed means,
which can be done by fitting two CFA models, one in which
the latent (and therefore also the observed) variable means are
constrained to be equal across groups and the other in which
they are allowed to vary. The test of the null hypothesis of
group difference on the responses can then be constructed as
the difference in the χ2 fit statistics: χ2

Constrained
− χ2

Unconstrained
.

When the group means are allowed to differ the resulting CFA
model is saturated so that the value of χ2

Unconstrained
will be 0.

Therefore, Raykov [30] showed that the test of the null hypothesis
of group differences across the vector of dependent variable
means is equivalent to χ2

Constrained
−χ2

Unconstrained
= χ2

Constrained
−

0 = χ2
Constrained

.
Raykov [30] argued that the primary advantage of using the

SEM approach to compare multivariate group means is that it
may prove to be robust to violations of assumptions underlying
the standard MANOVA test statistics. For example, when the
assumption of normality is violated, an adjusted version of the
χ2 test statistic for nonnormal data, such as the [31] statistic may
be appropriate. In addition, for ordinal data the researcher could
also elect to use an estimation algorithm designed specifically
for use with categorical variables, such as robust weighted least
squares (RWLS; [32]). RWLS is an extension of weighted least
squares (WLS) estimation [33]. RWLS has been found to provide
accurate parameter estimates for ordered categorical observed
variables with samples as small as 100, and appears to perform
better in such cases than either WLS or maximum likelihood
estimation [34, 35]. There are two distinct RWLS estimators,
weighted least squares mean adjusted (WLSM) and weighted
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least squares mean and variance adjusted (WLSMV). Prior
research has found that for group comparisons in the context
of CFA, the WLSMV is an effective tool [36]. Therefore, the
WLSMV estimator was used in the current study. Henceforth,
the acronym RWLS will be used to mean WLSMV.

Relatively little empirical research has been conducted to
evaluate the effectiveness of the SEM based approach for testing
the null hypothesis of multivariate mean equality. Finch and
French [2] found that for continuous data in the absence of
assumption violations, the Satorra-Bentler corrected χ2 test and
the standard MANOVA tests had comparable Type I error rates
and power for sample sizes of 100 or more, whereas for smaller
samples SEM yielded elevated Type I error rates. When the
assumption of multivariate normality was violated, the SEM
approach to MANOVA based on the Satorra-Bentler corrected
χ2 statsitic exhibited only some Type I error inflation for skewed
data, and typically less than the standard test statistic. There
does not seem to have been any research done to investigate
the performance of the SEM method for MANOVA when the
dependent variables are categorical in nature. Given the prior
simulation work showing that it worked well with continuous
nonnormal data in some situations, the SEM method may also
be promising for use with ordinal data, though work needs to be
done to determine this.

Nonparametric Wilks Lambda
Liu et al. [37] introduced a fully nonparametric version of Λ that
is based upon work of Munzel and Brunner [38]. These earlier
authors described a method for calculating Λ that is based on
ranks of the observed data, and that can be used when either the
sample size or the number of treatment groups tends to infinity.
In addition, they described a small sample approximation, which
was used in the current study. In this approach, the individual
values of the dependent variable are first ranked, independently
of one another. The value of Λ is then calculated as:

Λ = det (I+ (a− 1)H1 [(N − a)G1]−1) (9)

Where
I = The identity matrix
a = Number of groups
N = Total sample size
k = Number of dependent variables

(a− 1)H1 =
∑a

j=1 nj
(
Rjk − R.k

) (
Rjk − R.k

)
′ = sum of squares

and cross products matrix due to group

(N − a)G1 =
∑a

j=1

∑nj
i=1

(
Rijk − R.jk

) (
Rijk − R.jk

)
′ = Sum of

squares and cross products due to error
Rjk =Mean rank for group j on variable k

R.k = Overall mean rank on variable k
Rijk = Rank for individual i in group j on variable k

R.jk =Mean rank for group j on variable k
In the finite sample case, an approximation of the F statistic is

then calculated as:

FLBH =

[(
1−Λ1/t

Λ1/t

)](
df 1

df 2

)
(10)

Where

df 1 = k (a− 1)

df 2 = rt −

(
k (a− 1)−2

)

2

r = N − 1−

(
k+ a

2

)

If k (a− 1) = 2 then t= 1

Otherwise t =

√
k2(a− 1)2−4

k2(a− 1)2−5

The resulting FLBH is then referred to the F distribution with
df 1 and df 2, in order to test the null hypothesis of equivalent
distributions across groups.

Liu et al. [37] conducted a simulation study comparing the
Type I error and power rates of FLBH with those of the standard
Λ, as well as a test involving FLBH in which the p-value was
obtained through a permutation methodology. The results of
this study demonstrated that FLBH generally provided the most
accurate hypothesis test results when the underlying distribution
of the dependent variables was skewed and/or kurtotic. Liu
et al. [37] concluded that FLBH offers researchers a useful
alternative to the standard Λ when the data are not multivariate
normal, or even continuous. Therefore, it would seem that this
nonparametric version ofΛmight be particularly appropriate for
use with ordinal dependent variables.

Spatial Signs and Spatial Ranks
Another alternative for comparing multivariate measures of
location involves the use of spatial signs or spatial ranks.
This approach belongs to a larger family of methods based
on score centering, and which has been implemented for use
in the context of regression, principal components analysis,
and univariate means comparisons, as well as the multivariate
means comparisons problem examined here [e.g., 39–41]. This
general approach has been adapted to the problem of comparing
multivariate means when the distribution of the dependent
variables cannot be assumed to be multivariate normal [42].
Collectively, the spatial signs and ranks methods work by
minimizing an L1 criterion, as opposed to standard least squares
basedmethods, whichminimize the L2 criterion. The L2 criterion
is simply the familiar sum of squared residuals, whereas the L1
criteria include the Least Absolute Deviation [43], and variations
of the Hodges-Lehmann estimators [44].

When applying the spatial signs or spatial ranks to the
problem of comparing multivariate means, the researcher must
first standardize the data in some fashion. As mentioned above,
this can be done using either inner or outer standardization.
In the context of MANOVA, the use of outer standardization
is appropriate when the dependent variables are on the same
scale, whereas when they are not on the same scale, inner
standardization should be used [45]. Thus, the decision as to
which standardization approach the researcher will use should
be based on the nature of the data itself. If the dependent
variables are all on the same scale, then outer standardization
is appropriate because all of the variables are on a common
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scale, and standardization of them together will not lead to
problems of variables with large scales having more weight in
the standardization algorithm than those on small scales. In
addition, the method of centering must also be selected, and can
involve either inner or outer centering. Centering in the context
of this analytic approach is similar in spirit to centering in the
context of multilevel data, in that a measure of central tendency is
subtracted from each individual value of each dependent variable.
The difference is that for some of the methods of centering used
here, the mean of the values is replaced with the median or the
mean rank, because they are more robust to the presence of
outliers than is the mean [39]. The mean is used in one instance,
however, along with a robust estimator of the covariance matrix,
as is discussed below.

The centering and standardization approaches can be crossed
with one another. There is not currently a recommendation
for how the centering and standardization methods should
be combined. Indeed, any of the 4 combinations (inner
centering/inner standardization, inner centering/outer
standardization, outer centering/inner standardization, and
outer centering/outer standardization) are possible. Oja [46]
suggests that further research needs to be conducted in order
to identify under what conditions particular combinations of
centering and standardization are most appropriate. Thus,
one goal of the current study is to help address this issue of
which combination of approaches is optimal for multivariate
means comparisons under conditions like those simulated
here. As an example of how these methods can be combined
with one another, spatial signs with inner centering and outer
standardization would take the form:

uijk = xijk − M (11)

where
xijk = Value of dependent variable k for person i in group j.
M = Spatial Median of dependent variables.

Thus, the value uijk simply reflects the deviation from the
median of individual i’s value on variable k. The statistic for
testing the null hypothesis of equal multivariate means across
groups is then:

Q2 =

J∑

j=1

(
nju

′

jB
−1uj

)
(12)

B = E

((
xij −Mj

) (
xij −Mj

)
∣∣xij −Mj

∣∣2

)
= robust covariance matrix.

uj =Mean vector of the centered scores for group j.
The test statisticQ2 is distributed as a χ2 with k (J−1) degrees

of freedom.
The hypothesis test using spatial signs with inner centering

and inner standardization involves the following calculations.
First,

uijk = S−1/2
(
xijk − x

)
(13)

S = Full rank transformation matrix selected so that

COV
(
x
−1/2
ijk

)
∝ IK

x = Overall mean vector across groups.

All other terms are as defined above. In this case, uijk is the
standardized deviation from the mean of individual i’s value on
variable k using a robust estimator of the covariance matrix. The
test statistic is then given as

Q2 = k

J∑

j= 1

nj
∣∣uj
∣∣2 (14)

As was true for the inner centering and inner standardization,Q2

is distributed as χ2 with k (J−1) degrees of freedom.
As mentioned earlier, it is also possible to use the methods

described here with ranks, rather than scores. The algorithm
involving spatial ranks with outer standardization involves the
following steps.

1. Rank the data for each dependent variable.
2. Calculate the mean rank for each group for each dependent

variable for each group, Rjk.
3.

Q2 =

J∑

j= 1

(
njRj

′B−1Rj
)

(15)

Where Rj = Vector of mean ranks for group j.

In Equation (15) centering is done using themean of the ranks for
the dependent variables. As before, Q2 is distributed as χ2 with
k (J−1) degrees of freedom. Finally, testing the null hypothesis
of no multivariate group mean differences using spatial ranks
with inner standardization can be done using the following
steps.

1. Identify the transformation matrix, S, that leads to
RCOV

(
xijkS

1/2
)
∝ Ik.

2.

R̂ijk = Rijk
(
S−1/2

)
(16)

3. Calculate themedian rank for each group for each variable and
put them together in the vector R̃j

4.

Q2= Nk




∑J
j=1 nj

∣∣R̃j
∣∣2

∑N
i=1

∑J
j=1

∣∣R̂ij
∣∣2


 (17)

Where
Rijk = Rank of individual i in group j on variable k

In Equation (17) centering of the standardized ranks obtained
in (16) is done using the median of these standardized values.
The test statistic Q2 is distributed as χ2 with k (J − 1) degrees of
freedom.

There has been some prior research examining the
performance of the spatial sign and rank statistics described
above. Oja Randles [39] reported that when making multivariate
means comparisons with skewed data, the spatial signs and
ranks approach yielded better Type I error control than did the
standard MANOVA test statistics. Similar results were reported
by Rantala and Ilmonen [47], who found, using a simulation
study, that the spatial signs and ranks methods yielded better
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Type I error control than did Wilks Λ when the data contained
outliers.

Goals of the Current Study
Prior research has demonstrated the utility of these methods in
the context of continuous data that is not multivariate normal,
as was cited above. Furthermore, several of them have been
recommended for use with categorical dependent variables, such
as the permutation approach [28], SEM [2], and rank based
methods [48]. These approaches stand in contrast to other
robust methods for multivariate means comparisons, which were
designed for use with continuous data, and are particularly
adept in the context of skewed and kurtotic distributions (e.g.,
variants of the F statistic by Brown and Forsythe, Yao, and
Kim). In some applications, however, a researcher might be
interested in comparing the means of multiple ordinal variables
across two or more groups, as where the dependent variables
are individual likert type items from a questionnaire. In such
situations, the data do not conform to the continuity assumed
by many of these robust methods, and the alternatives described
above may prove to be useful, as they rely either on ranks (or
sign scores), permutation methods, or a SEM with estimators
designed for categorical data. In addition, they have each shown
some promise in the general MANOVA case, so that they can be
considered leading candidates for use with MANOVA involving
ordinal dependent variables. Therefore, the primary goal of
this simulation study was to compare the Type I error and
power rates of the methods described above, with respect to the
comparison of multivariate means for ordinal variables. A variety
of simulation conditions were manipulated, as described below.
It is hoped that the results of this work will provide researchers
with information regarding which method(s) might be optimal
for comparingmeans on ordinal variables, such as likert type item
responses.

METHODS

In order to address the goals outlined above, a Monte Carlo
simulation study was used. Application of the analyses was
also demonstrated with an empirical dataset, which is described
below. For each combination of the simulation conditions, 1000
replications were generated. All data were generated using the
GenOrd library in the R software environment, version 3.1.0
[49]. GenOrd is designed specifically for simulating data from
a multivariate ordinal distribution with a known covariance
structure and a specific number of categories for each variable.
The data were generated with correlations of 0.5 among all of the
dependent variables, and across all conditions two groups were
simulated to be present.

Number of Dependent Variables
Three conditions for the number of dependent variables were
simulated in this study: 2, 4, or 6. These values were selected
in order to represent a range of values that might be seen in
practice.

Number of Categories in Dependent
Variables
The dependent variables were simulated to be ordinal in nature,
and took the values 3, 4, or 5. These values were selected so as
to represent a variety of ordinal variables that can be associated
with, for example, questions on a survey or other psychological
or educational measure.

Sample Size and Group Size Ratio
The sample sizes simulated for this study were 25, 50, 100, 250,
or 500 for the first group. In the equal group size condition, the
second group was also simulated to have 25, 50, 100, 250, or 500
individuals. Thus, the total sample sizes in the equal group size
ratio were 50, 100, 200, 500, or 1000. In the unequal group size
ratio condition, the first group was simulated to be of the sizes
listed above, and the second group was simulated to have 12, 25,
50, 125, or 250 individuals, leading to total sample sizes of 37, 75,
150, 325, and 750.

Distribution Shape of Dependent Variables
All data were simulated to be ordinal using the GenOrd library,
as described above. The dependent variables were simulated to
be either symmetric or skewed, with skewness of 1.5. In the
ordsample command call, the symmetric marginal values used
were (0.3, 0.6), (0.2, 0.5, 0.8), and (0.2, 0.4, 0.6, 0.8). For the
assymetric condition, the marginal values that were used were
(0.1, 0.4), (0.1, 0.3, 0.5), and (0.1, 0.2, 0.3, 0.4).

Group Difference
The groups were simulated to have mean differences on the
dependent variables of 0, 0.25, 0.5, or 0.8. These values represent
the situations where groups’ means were not different on the
dependent variables (0), or differed by a small (0.25), medium
(0.5), or large (0.8) amount, based on Cohen [50] suggested
guidelines for mean differences.

Multivariate Methods
The methods for comparing group means included in this
study were standard MANOVA in the form of Wilks’ Λ

(manova command in the R MASS library), the SEM approach
to multivariate means comparisons was conducted using the
WLSMV estimator (R lavaan package), nonparametric Λ (R
nonpartest command), permutation test for Λ (R adonis
command), spatial signs with inner centering, spatial signs with
outer centering, spatial ranks with inner centering, and spatial
ranks with outer centering (R MNM and HSAUR libraries).

Outcome Variables in the Study
The outcome variables for this study were the Type I error
and power rates for each of the methods. In order to ascertain
which of the manipulated study variables, or their interactions
were significantly related to Type I error and power rates, a
repeated measures analysis of variance (ANOVA) was used. The
dependent variable in this analysis was the Type I error or
power rate for each combination of conditions (taken across
all 1000 replications for that combination), while the within
subjects factor was the multivariate method, and the between
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subjects factors were the number of dependent variables, number
of categories per dependent variable, sample size, sample size
ratio, and for power the magnitude of mean differences between
groups. To be clear, in this ANOVA the observations consisted of
the 540 different combinations of manipulated between subjects
study conditions, and the dependent variable was the rejection
rate for each of these observations, and not the individual binary
rejection decisions for each replication. Each of the assumptions
of the repeated measures analysis (normality of the errors and
sphericity) were assessed and found to hold. In addition to the
hypothesis testing results of the ANOVA, the effect size is also
reported in the results.

RESULTS

Type I Error Rate
The ANOVA used to identify the statistically significant
manipulated factors identified the 3-way interaction of testing
method by number of categories and number of dependent
variables was significantly related to the Type I error rate [F(8, 158)
= 4.873, p < 0.0001, η2 = 0.358]. In addition, the 2-way
interaction of method by distribution shape was also significantly
related to the Type I error rate [F(4, 158) = 3.099, p < 0.0001,
η2 = 0.302]. The top panel of Table 1 contains the Type I
error rate by method, number of dependent variables, and the
number of categories. With the exception of the SEM approach,
all of the methods maintained the Type I error rate at the
nominal 0.05 level. SEM yielded inflated Type I error rates across
all numbers of dependent variables and number of categories
for each dependent variable. This Type I error inflation was
least present for 2 dependent variables, and most marked for
6 dependent variables. In addition, the SEM Type I error rate
declined when the dependent variables hadmore categories of the
dependent variables, and this effect was greater in the presence of
a larger number of dependent variables.

The top two rows of Table 2 contain the Type I error rates
for the methods by the distribution of the dependent variables.
Regardless of the distribution, the Type I error rate was controlled
by all of the methods, with the exception of SEM. SEM displayed
inflated error rates for both distributional shapes, with slightly
higher rates in the assymetric case.

Power
ANOVA identified the interaction of method by degree of group
difference by number of dependent variables by number of
categories [F(12, 68) = 3.651, p < 0.0001, η2 = 0.334], and the
interaction of method by distribution shape [F(12, 158) = 2.882,
p = 0.003, η2 = 0.298] as statistically significantly related to
power. The bottom three panels of Table 1 display power rates
by method, degree of group difference, number of dependent
variables and number of categories. For all of the testingmethods,
power was higher when the group means were simulated to be
more different (0.25 vs. 0.5 vs. 0.8). Secondly, SEM displayed
higher power rates than any of the other methods, across
conditions, though this difference in power was greater when the
group difference was 0.25. However, this higher power for SEM
must be interpreted with great caution, given the inflated Type

I error rate associated with this method. In terms of the other
approaches, which were able to maintain the nominal 0.05 Type I
error rate, power was lowest for the standard Λ statistic, and the
permutation test, across both levels of group difference. The rank
based approach, as well as the spatial statistics methods exhibited
comparable power rates to one another, and higher than either
Λ or the permutation approach. In addition, although power for
the rank and spatial methods were lower than that of SEM, this
difference was much less marked for a group difference of 0.5
than for 0.25. When group means were simulated to differ by
0.8, the power of all methods was 1.00 across conditions. Finally,
for all of the methods, power increased concomitantly with more
categories in the dependent variables, and this effect was greater
for a group difference of 0.25, and for fewer dependent variables.
This impact was least marked for SEM.

The bottom four rows of Table 2 display power by testing
method, magnitude of group difference, and distributional
shape. Power was lower for SEM in the assymetric distribution
condition, whereas for the rank based and spatial statistics
methods, the shape of the distribution did not have an impact
on power. With regard to Λ, power was somewhat lower in the
assymetric case than for symmetric data, except when the group
mean difference was simulated to be 0.8. However, this difference
was much less marked as compared to SEM.

DISCUSSION

The simultaneous comparison of means for multiple dependent
variables across groups is very common in the social sciences.
For example, psychologists may be interested in comparing mean
scores from subscales of a personality measure among several
diagnostic groups (e.g., patients diagnosed with depression,
anxiety, etc.). Likewise, educational researchers may want
to know the extent to which individuals who successfully
matriculate from college differ from those who do not, on
scores from a battery measuring college readiness. Most often in
such instances means are compared using MANOVA, assuming
normality and independence of model errors, and homogeneity
of the groups’ covariance matrices. When these assumptions
are not met, the researcher may be best served using a robust
alternative, of which there are many [2]. Though there has been
a great deal of research focused on the performance of these
robust alternatives when the data are not normally distributed
and/or the covariance matrices differ across groups, there has
been much less work done with respect to dependent variables
that are ordinal, rather than continuous in nature. Nonetheless,
it is not uncommon for researchers to be interested in making
comparisons of means across groups for ordinal variables, such
as individual items on a questionnaire, ratings of behaviors, or
discrete frequency measurements of some event [e.g., 9–12]. The
purpose of this study was to compare the performance of several
methods for conducting MANOVA with ordinal data. These
methods were selected for inclusion in the study specifically
because they have theoretical qualities which may make them
particularly appropriate for use with ordinal dependent variables,
such as estimators designed with noncontinuous data in mind
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TABLE 1 | Rejection Rates by method, number of dependent variables, group difference, and number of categories.

Dependent variables Categories Standard Λ Permutation Rank Inner sign Outer sign Inner rank Outer rank SEM

GROUP DIFFERENCE = 0

2 3 0.04 0.04 0.05 0.05 0.05 0.04 0.05 0.10

2 4 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.09

2 5 0.05 0.05 0.06 0.03 0.04 0.03 0.03 0.08

4 3 0.04 0.05 0.05 0.05 0.06 0.04 0.05 0.14

4 4 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.11

4 5 0.05 0.05 0.05 0.02 0.05 0.05 0.05 0.09

6 3 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.19

6 4 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.13

6 5 0.05 0.05 0.04 0.04 0.05 0.06 0.04 0.11

GROUP DIFFERENCE = 0.25

2 3 0.48 0.49 0.53 0.51 0.50 0.52 0.52 0.65

2 4 0.56 0.57 0.60 0.60 0.59 0.61 0.61 0.66

2 5 0.57 0.56 0.62 0.61 0.62 0.62 0.61 0.69

4 3 0.47 0.47 0.58 0.58 0.56 0.57 0.58 0.66

4 4 0.54 0.54 0.62 0.61 0.62 0.60 0.62 0.68

4 5 0.55 0.57 0.64 0.63 0.65 0.65 0.65 0.70

6 3 0.45 0.48 0.59 0.60 0.59 0.61 0.60 0.69

6 4 0.49 0.50 0.61 0.61 0.60 0.62 0.61 0.72

6 5 0.52 0.51 0.63 0.64 0.64 0.62 0.63 0.73

GROUP DIFFERENCE = 0.50

2 3 0.78 0.77 0.91 0.89 0.91 0.90 0.90 0.94

2 4 0.80 0.78 0.92 0.90 0.92 0.91 0.92 0.95

2 5 0.81 0.79 0.94 0.91 0.94 0.92 0.94 0.96

4 3 0.76 0.77 0.90 0.91 0.90 0.91 0.90 0.94

4 4 0.79 0.78 0.92 0.92 0.92 0.91 0.92 0.95

4 5 0.82 0.80 0.93 0.94 0.93 0.92 0.94 0.96

6 3 0.77 0.78 0.90 0.93 0.91 0.94 0.91 0.93

6 4 0.80 0.81 0.92 0.93 0.93 0.93 0.93 0.94

6 5 0.82 0.82 0.93 0.94 0.95 0.94 0.95 0.95

GROUP DIFFERENCE = 0.80

2 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(RWLS with the SEM approach), the use of ranks or sign scores
(rank based Wilks Λ, spatial signs, and ranks), or permutation
methodology.

The results of the study revealed that the standard approach
for multivariate means comparisons using Wilks Λ with ordinal
dependent variables resulted in control of the Type I error rate,
but a diminution of power when compared to other methods
studied here. Conversely, the SEM based approach had problems
controlling the Type I error rate, calling into question its higher
power values. The fully nonparametric version of WilksΛ, along

with the spatial signs and ranks methods seemed to provide the
best combination of Type I error control with comparatively high
power rates. Between these methods neither was clearly superior
in the sense of yielding the uniformly highest power rates.

It is of some interest to consider why the methods performed
as they did with respect to multivariate comparison of ordinal
means. The Type I error inflation for the SEM estimator
based on RWLS was similar to the results for the Satorra-
Bentler corrected χ2 test reported in Finch and French [2] in
the context of comparing multivariate means for continuous
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TABLE 2 | Rejection rates by method, distribution, and group difference.

Distribution Group difference Standard Λ Permutation Rank Inner sign Outer sign Inner rank Outer rank SEM

Symmetric 0 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.10

Assymetric 0 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.13

Symmetric 0.25 0.51 0.52 0.61 0.62 0.63 0.61 0.62 0.72

Symmetric 0.5 0.79 0.80 0.93 0.93 0.94 0.93 0.93 0.99

Symmetric 0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Assymetric 0.25 0.49 0.51 0.60 0.62 0.62 0.61 0.63 0.58

Assymetric 0.5 0.74 0.79 0.91 0.92 0.92 0.93 0.93 0.88

Assymetric 0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

dependent variables. In addition, prior research in the context
of latent variable modeling has shown that the RWLS χ2

statistic tends to exhibit an upward bias for more complex
models (i.e., models with more variables) and when used with
ordinal variables containing fewer categories [51]. These earlier
findings may help shed light on the results reported in the
current study for the RWLS χ2 test, particularly the Type I
error inflation. Indeed, in the current work this inflation was
more marked for dependent variables with fewer categories
and for models with more dependent variables. This Type I
error inflation may be due in part to the fact that for models
with more variables there are more opportunities for small
differences to be present between the groups. Even if these small
differences are essentially random in nature, they could serve
to drive the value of the RWLS χ2 statistic upward, thereby
leading to the Type I error inflation that is apparent in such
cases.

The results reported here for the nonparametric Λ and
the spatial approaches are similar to some earlier findings for
rank based MANOVA methods in the context of continuous
dependent variables, though different from others. Specifically,
when continuous variables were simulated to be skewed, rank
based test statistics were found to maintain the nominal Type
I error rate and at the same time yield higher power than did
Pillai’s Trace (20). However, Finch also found that when the
data were normally distributed, the power of the rank based
method was lower than that of Pillai’s Trace. In the current
study, the rank based approaches (nonparametric Λ and the
spatial ranks) yielded higher power than did the parametric
test, while also controlling the Type I error rate. It should be
noted that the rank based methods featured in Finch’s paper
differed from the methods used in the current study in that
they involved ranking individuals based on the set of dependent
variable values. In contrast, both the nonparametric Λ and
the spatial methods used here ranked observations for each
variable individually. As noted by Liu et al. [37] this approach
to ranking based on each individual variable, rather than the
marginal distribution of the set of variables, yields a test statistic
that is more like the parametric versions (e.g., Λ), and thereby
retaining several of its positive traits, such as being invariant
under monotone transformations of the individual variables. As
mentioned above, results of the current study demonstrated that
the nonparametric Λ yielded higher power than the parametric

version across conditions when the dependent variables were
ordinal. This would suggest that the problem of lower power
reported in Finch [20] was successfully addressed through the
ranking of observations using the individual dependent variables,
rather than the set. Indeed, although very different in terms of
how the statistics are calculated, the spatial methods also involve
the ordering of individual observations using each variable
separately, as opposed to the marginal distribution of the set.
Given that these approaches also outperformed the parametric
method in terms of power, while controlling the Type I error rate,
it would appear that the ordering of observations based upon the
individual variable values is a key component in the success of
these two approaches to multivariate means testing for ordinal
data.

Based on the results of this study, it would appear that
researchers may be best served using a rank based approach
for simultaneously comparing the means of multiple ordinal
dependent variables across groups. They are relatively easy
to employ in the R software environment, and are also easy
to conceptualize, particularly the rank based Wilks Λ. These
methods all appear to yield good Type I error control and
relatively high power rates for data similar to that simulated in
this study.

Directions for Future Research
An issue of some importance is the appropriate method
for following up a statistically significant MANOVA when
conducted using one of these alternative methods. It is generally
recommended that discriminant analysis be used to follow up
a statistically significant Wilks Λ [1]. However, it is unclear the
extent to which this strategy would work with ordinal dependent
measures. An alternative approach to following up a statistically
significant MANOVA with ordinal dependent variables might be
some type of robust discriminant analysis approach [e.g., 52–
55]. However, these methods are all primarily designed to reduce
the impact of outlying observations, which is not inherently an
issue with ordinal data. Currently, the researcher is faced with
either using standard discriminant analysis with ordinal data and
being unsure as to its performance, or conducting a series of
rank based univariate mean comparisons (presuming rank based
methods were used for the multivariate comparisons) and not
taking full advantage of the multivariate nature of the data. Thus,
given this choice of two less than optimal options it would appear
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that future work needs to be done with regard to discriminant
analysis with ordinal dependent variables. In addition, research
should also focus on expanding the number of groups that are
included in the simulation study, as well as the number of
independent variables. Furthermore, in the current study, the
group size ratio and the total sample size were altered together;
i.e., changing the group size ratio changed the total sample size,
because one group remained the same size under all conditions.
Thus, future research could maintain stable overall sample sizes
while manipulating the groups size ratio. Finally, it would also be
of interest to increase the number of categories in the dependent
variables beyond the common 3, 4, or 5, in order to attempt to
learn how many categories are necessary for the standard Wilks

Λ begins to perform as it does with truly continuous data, if in
fact this does occur.
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